Chapter 4
Ergodic theory

4.1 The Poincaré recurrence theorem

Ergodic theory deals with dynamics in a measure space. Let us begin with a definition.

Definition 4.1.1: Let (X, A, u) and (Y, B,v) be two measure spaces, and f: X — Y a measurable map. We
shall denote by f.u the measure on (Y, B) given by f.u(B) = ,u(ffl(B)) for all B € B. We say that f
is measure-preserving if f.u = v. If (X, A, pu) = (Y,B,v) and f is measure-preserving, we say that p is
f-invariant, or that f is an endomorphism of (X, A, u).

The first result in ergodic theory is Poincaré’s recurrence theorem, which states that in a probability
Borel measure space almost every point is recurrent. This is a consequence of the following

Proposition 4.1.1: Let f: X — X be an endomorphism of a probability space (X, A, ). Given A € A,
let A C A be the set of points v € A such that f7(z) € A for infinitely many j € N, that is

A=An (U r7A.

n=0j>n
Then A € A and p(A) = pu(A).
Proof: Let C,, = {x € A| f/(x) ¢ A for all j > n}. We clearly have

A=A\ Gy
n=1
therefore it suffices to prove that C,, € A and u(C,,) = 0 for all n > 1. Now, we have
C,=A\J 174, (4.1.1)
jzn

and thus C,, € A. Furthermore, (4.1.1) implies

c.clJr7mvyrw,

j=0 jzn
and thus
pC) <p | U@ | —p U A
7>0 j>n
But since

UrZ@=r"{Usr’w

Jjzn =0

and f is measure-preserving, it follows that

plUr7@ ) =p|{Ur’@l,

Jj=0 jzn

and we are done. O
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As a consequence we have

Theorem 4.1.2: (Poincaré’s recurrence theorem) Let X be a separable metric space, f: X — X a Borel-
measurable map, and j an f-invariant probability Borel measure on X. Then p-almost every point of X is
f-recurrent.

Proof: Since X is separable, we can find (exercise) a countable basis of open sets {U, }nen such that

lim diam(U,) =0

n—-+oo

and

VYm >0 U v.=x.

n>m

Set U,, = {z € U, | f(x) € U, for infinitely many j > 0}. Proposition 4.1.1 says that each U, is a Borel
set and (U, \ U,) = 0. Put
X: ﬂ U Un7

m=0n>m

so that € X if and only if there are infinitely many n > 0 so that f7 (z) € U, for infinitely many j > 0.
We have

XA\ =pn U [xNU G| =oUUvNUO| ]| <l U U@\T) | =0.
m=0 n>m m=0 \n>m n>m m=0n>m

So it suffices to show that every point of X is recurrent. Given ¢ > 0, choose m > 0 so that diam(U,) < ¢
if n > m. If z € X, there must exist n > m such that = € Uy, and thus f?(z) € U, for infinitely many j > 0.
But this implies d(z, f/(z)) < ¢ for infinitely many j > 0, and thus (being ¢ arbitrary)  is recurrent. [

ExampPLE 4.1.1. If f: X — X has a periodic point p € X of exact period n, then

n—1
1
n==> 0pw
=0

is an f-invariant Borel probability measure, where ¢, is the Dirac measure concentrated at z € X.
EXAMPLE 4.1.2. The Lebesgue measure of S! is R,-invariant for any o € R.

Exercise 4.1.1. Let (X, A, n) and (Y, B,v) be o-finite measure spaces, and f: X — Y a measurable map.
Prove if there exists a generating sub-algebra By C B such that u(f~*(B)) = v(B) for all B € By then f is
measure-preserving.

EXAMPLE 4.1.3. The Lebesgue measure of S! is E,,-invariant for any m € Z, because the inverse image of
an interval of length ¢ small enough is the union of |m/| disjoint intervals of length ¢/|m|, and we can apply
the previous exercise. Poincaré’s recurrence theorem applied to Ejg then says that there exists a Borel set
X c S* of full measure such that for all j > 1 the decimal expansion of each € X contains the sequence
of its first j digits infinitely many times.

EXAMPLE 4.1.4. The Gauss transformation. Let ¢:[0,1] — [0, 1] be given by

1 1 .
¢<x>={;‘ {;J ifz#0,
0 if x =0.
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This map has important connections with the theory of continuous fractions. We claim that ¢ preserves the
Borel probability measure p given by

1 1
A) = —
ui4) log2/Al+xdz

for every Borel set A C [0,1]. Using the Exercise 4.1.1, it suffices to prove that ¢ preserves the measures
of finite unions of intervals, and hence it suffices to check that p(¢~'([a,b])) = p([a,b]) for every inter-
val [a,b] C [0,1]. Since p is absolutely continuous with respect to the Lebesgue measure, it suffices to check
that p(¢~1([0,0])) = p([0,0]) for every b € [0,1]. But indeed we have

and so
1/n 1+ 1
——dt = z
o) = ([ 3]) = S [ T S s
1 «— n+1 n 1
= log— —lo log(b+1
log2mzl<0gb+n+1 b+n> log 2 og(b+1)
——dt = u([0,0]).
log2 1+t ([0, )
EXAMPLE 4.1.5. Assume we have given a probability measure on the set {0,..., N —1}, that is a sequence
of non-negative numbers py, ..., py—1 > 0so that po+---+py_1 = 1. The associated Bernoulli (or product)

measure on )y and Q]J(, is the probability Borel measure u defined on the cylinders by
W(CE ") = Pay -+ Pa,-

It is clearly (full) left shift-invariant. A slightly more involved construction yields another kind of invariant
measure. A stochastic matrix is a matrix S € My n(R"), with row and column indexes running from 0
to N — 1, such that Z 0 5” =1for j =0,...,N —1. If S is a stochastic matrix, it is possible to
prove that there exists a vector p = (po, ... ,pN,l) e RY with non-negative coordinates such that Sp = p
and pg + - -+ + py—1 = 1; furthermore, p is unique if S is transitive (in the sense of Definition 1.7.9). Then
the Markov measure 5, on Q0 is defined on cylinders by

Hs, p(le ") = Sayas """ Sar_1a,Pay-

Again, it is easy to check that it is shift-invariant.

Ezercise 4.1.2. Let f: X — X be an endomorphism of a measure space (X, A, u). Given A € A with
non-zero measure, put A = {z € A | f/(z) € A for infinitely many j > 1}, and define f: A — A by set-
ting f(x) = fI(x), where j is the least positive index such that f7(z) € A (f is sometimes called the
first-return map associated to f). Prove that f(A) C A, that ,u([l \ f(fl)) =0, and that | ; is f-invariant.

Ezercise 4.1.3. (Hopf) Let X be alocally compact separable metric space and f: X — X a Borel-measurable
map. If p is a locally finite f-invariant Borel measure, prove that p-almost every x € X is recurrent or has
empty w-limit set. (Hint: since p is locally finite, Lusin’s theorem yields a sequence {X; } of open sets with
finite measure whose union has full measure. For every X; let X; be defined as in the previous exercise.
Applying Theorem 4.1.2 to f: X; — X; deduce that almost every point of X; is recurrent. Conclude that
almost every point of X; is recurrent or has w-limit set disjoint from Xj.)
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Definition 4.1.2: Let p be a Borel measure on a topological space X. The support of u is the closed set
supppu = X\ U{A | A open in X, p(A) = 0}.

Lemma 4.1.3: Let y be a Borel measure on a topological space X. Then:

(i) if X is second countable then pu(X \ supp p) = 0;

(ii) any set of full measure is dense in supp p;

(iii) if f: X — X is continuous and p is f-invariant then supp u is f-invariant;

(iv) if X is a separable metric space, f: X — X is continuous, and p is an f-invariant probability measure,
then supp u is contained in the closure of recurrent points, and hence supp up € NW(f).

Proof: (i) Indeed, we can write X \ supp p as countable union of measure zero open sets.

(ii) Assume that C' is not dense in supp pu; this means that there exist x € supp u and an open neighbour-
hood A of z disjoint from C. Since A Nsupp u # 0, we must have p(A) > 0; therefore (X \ C) > u(A) > 0,
and so C' is not of full measure.

(iii) Since f is continous and p is f-invariant, we clearly have f~!(X \ suppu) C X \ supp . There-
fore f~1(supp p) 2 supp p, and hence supp p is f-invariant.

(iv) Theorem 4.1.2 says that the set of recurrent points has full measure; hence it is dense in supp y,
and we are done. ]

4.2 Existence of invariant measures

A natural question now is whether invariant measures exist. We have a positive answer in the case of
continuous self-maps of compact metric spaces. To prove it let us recall a couple of definitions and theorems.

Definition 4.2.1: Let A be a o-algebra on a set X. We shall denote by M_4(X) the set of probability
measures on A. If X is a topological space and A is the o-algebra of Borel subsets, we shall write M (X)
instead of M 4(X). If f: X — X is a A-measurable map, we shall denote by MQ(X ) the set of f-invariant
probability measures on A, and by M7 (X) the set of f-invariant Borel probability measures.

The Borel measures on compact Hausdorff spaces have a nice relationship with the dual of the space of
continuous functions:

Theorem 4.2.1: (Riesz representation theorem) Let X be a compact Hausdorff space. Then:

(i) for every bounded linear functional T on C°(X) there exists a unique pair of mutually singular finite
Borel measures ju and v such that T(p) = [y ¢ dp— [y @ dv for all p € C(X).

(ii) a bounded linear functional T on C°(X) is positive (that is, T(p) > 0 if ¢ > 0) if and only if there
exists a unique finite Borel measure p such that T(¢) = [y ¢ dp for all p € C°(X).

As a consequence, if X is a compact Hausdorff space we can realize M(X) as the subset of the unit
ball of the dual of C°(X) consisting of the positive functionals. Now, the dual of a normed vector space is
endowed with the weak-* topology, i.e., the topology of pointwise convergence (a sequence {7} of functionals
on the normed space V' converges to a functional 7' if and only if T;(v) — T'(v) for all v € V'), and we have
the famous

Theorem 4.2.2: (Banach-Alaoglu) The unit ball (with respect to the dual norm) of the dual of a normed
vector space is weak-+ compact.

This is actually a consequence of Tychonoff’s theorem on the product of compact spaces. Indeed, if B is
the unit ball in the normed vector space V', we can realize the unit ball of the dual as a closed (with respect
to the product topology) subset of [~1,1]5, which is compact by Tychonoff’s theorem. Since the topology
of pointwise convergence coincides with the product topology, we are done.

Since the set of positive linear functionals on C%(X) is clearly closed with respect to the weak-* topology,
as a corollary we have
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Corollary 4.2.3: Let X be a compact Hausdorff space. Then M(X) is compact in the weak-x topology.

Exercise 4.2.1. Let X be a compact metric space, and take a countable subset {g;};en C C°(X) dense in
the unit ball of C°(X). Given u, v € M(X) put
/ gj dp — / g; dv
X X

Prove that d is a metric on M(X) inducing the weak-* topology.

=1
d(p,v) = Z 2%
=0

We are now able to prove the existence of invariant Borel measures:

Theorem 4.2.4: (Krylov-Bogolubov) Let f: X — X be a continuous self-map of a compact metric space X .
Then there exists an f-invariant probability Borel measure.

Proof: Let fi.: M(X) — M(X) be defined by (f.u)(4) = u(f~*(A)) for any Borel subset A C X. In

particular we have

Vo € CV(X) /X(chf)du:/Xsod(f*u),

and thus f, is continuous in the weak-* topology. Our aim is to find a fixed point of f,.
Take po € M(X), and let u,, € M(X) be defined by

1 n
Hn = n+ 1 Z(f*)mﬂw

m=0

Since, by Corollary 4.2.3 and Exercise 4.2.1, M(X) is a compact metric space, we can extract a subse-
quence {n, } converging to p € M(X). Now,

1 & 1 & 1 1
- - m+1 — m _ ng+1 )
febins nk+1mz::0(f*) o nk+1mZ::0(f*) o = g0+ o (£ o

The last two terms converge to 0 when k goes to infinity; hence

ng

> ()Mo = Jim i, = p,

m=0

o= B fopin, = 0T
and we are done. O

Ezercise 4.2.2. Let X be a compact Hausdorff space, and f: X — X a continuous map. Prove that a
bounded positive linear functional T on C°(X) is of the form T'(p) = [ ¢ du for a f-invariant finite Borel

measure p € MY (X) if and only if T(¢ o f) = T(¢) for all ¢ € C°(X).
Ezercise 4.2.3. Let f:]0,1] — [0, 1] be given by

1 .
_J 57 if0<x <1,
/(@) {1 if 2 = 0.

Prove that f is Borel measurable and that there are no f-invariant probability Borel measures on [0, 1].
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4.3 Ergodic measures

In general, there may exist several probability measures invariant under the action of a given continuous
map (remember the Example 4.1.1). We would like to single out measures related to the whole dynamics of
the map, and not only to part of it.

Definition 4.3.1: Let f: X — X be a continuous map of a topological space. An f-invariant Borel measure
is ergodic if every completely f-invariant Borel set A C X is either of zero or of full measure, that is,
either u(A) =0 or u(X \ A) =0.

There is a particular case when this happen:

Definition 4.3.2: We shall say that a continuous map f: X — X of a topological space is uniquely ergodic if
there exists one and only one f-invariant Borel probability measure.

The unique invariant measure of a uniquely ergodic map is ergodic. To prove it we need a definition:

Definition 4.3.3: Let (X, A, i) be a measure space, and A € A with 0 < pu(A) < oco. Then the conditional
measure associated to A is the probability measure p4 defined by

VB € A HA(B)%.

We shall sometimes write u(B | A) instead of p4(B).

Proposition 4.3.1: Let f: X — X a uniquely ergodic continuous map. Then the unique f-invariant Borel
probability measure y is ergodic.

Proof: If p1 is not ergodic we can find a completely f-invariant Borel set A so that 0 < p(A4), u(X \ 4) < 1.
Then pa and px\ 4 are f-invariant Borel probability measures, and they are distinct because pa(A4) = 1
whereas px\4(A) = 0. O

Lemma 4.3.2: Let i be a finite f-invariant measure for a continuous self~map f of a topological space X .
Then p is ergodic if and only if every ¢ € L'(X, ) which is f-invariant it is constant u-almost everywhere.

Proof: If p is not ergodic, then there is completely f-invariant Borel set A with p(A), p(X \ A) # 0. Then
the characteristic function y 4 of A is an element of L*(X, u) which is f-invariant and not constant p-almost
everywhere.

Conversely, assume p ergodic, and let f € L'(X,u) be f-invariant. Then for every ¢ € R the
set A = {x € X | f(x) < ¢} is completely f-invariant; therefore either pu(A.) = 0 or u(A.) = p(X), and,
since X = {J,cq Ac, we must have p(A.) = p(X) for at least some ¢ € R. Analogously, since @ = [.cq 4Ae,
we must have p1(A.) = 0 for at least some ¢ € R. Let

co =inf{c € R| u(A:) = p(X)} > —o0.

Then
p{reX | fl@)<cp=n|J4|=0
e
and thus
p({z e X | f(z) =co}) = p(Ac) —p({z € X | f(z) <co}) = p(X),
that is f = ¢y p-almost everywhere. ]

The arguments used in the previous section also yields the existence of ergodic measures. To see this,
we need the following

Lemma 4.3.3: Let f: X — X be a continuous map of a topological space X. If u € M/ (X) is not ergodic
then there exist i1, s € MY (X) and 0 < t < 1 so that py # po and p = tpy + (1 — t) .

Proof: Let A C X be a completely f-invariant Borel set such that 0 < p(A) < 1, and set puy = pa, 12 = fix\ A
and t = u(A). Then py # po and p =ty + (1 — t)po.
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Definition 4.3.4: Let V be a vector space, and K C V a closed convex subset. An extreme point of K
is a point v € K such that if we can write v = tv; + (1 — t)vg with v, v2 € K and 0 < ¢ < 1 then
necessarily v; = vy = v.

So extreme points of M7 (X) are ergodic measures (the converse is true too; see Exercise 4.3.1). Thus
to prove the existence of ergodic measures it suffices to prove the existence of extreme points:

Theorem 4.3.4: Let f: X — X be a continuous self~map of a compact metric space X. Then there exists
an ergodic f-invariant probability Borel measure.

Proof: Let {p;};en be a countable dense set in C°(X), and define M; by setting Mo = M/ (X) and

cdu = max/ 'dl/}.
/);'90‘] M VEMj XSDJ

Since v — [ + ¥; dv is continuous (and recalling Theorem 4.2.4) every M, is a not empty convex compact
set; hence their intersection G is not empty. To conclude the proof it suffices to show that every u € G is an
extreme point of M7 (X).

Take p € G, and write =ty + (1 — t)po with 0 <t < 1 and py, pup € MY (X). Then

Vg € CO(X) /Xsodu:t/xcpdu1+(1*t)/X<Pduz-

Since p € M, this implies

t/ cpoduﬁr(lf)/@oduz—/wodMZInaX{/ sOOdm,/ <podu2},
X X X X X

which is possible if and only if [ wodp = [ eodu1 = [y @oduz; in particular, pu1, pi2 € M;. Repeating
this argument, by induction we see that

/wdu:/%dm:/@jduz
X X X

for every j € N. But {¢;} is dense in C°(X); hence [ odu = [y @du = [ ¢dus for all ¢ € C°(X).
The uniqueness statement in Theorem 4.2.1.(ii) then implies p; = po = pu, and so p is an extreme point
of M7(X), as desired. O

Actually, it is possible to use convex analysis (more precisely, Choquet’s theorem on extreme points) to
prove a sort of decomposition of any invariant measure as integral or ergodic ones:

M1 = {H eM;

Theorem 4.3.5: Every invariant Borel probability measure p for a continuous self-map f of a compact
metric space X can be decomposed into an integral of ergodic invariant Borel probability measures in the
following sense: there is a partition (modulo null sets) of X into completely f-invariant subsets {X,}aca,
where A is a measure space endowed with a probability measure da (actually, A can be taken a Lebesgue
space), so that every X, carries an ergodic f-invariant measure p, and we have

Vo € C°(X) /Xgodu:/A/X pdue da.

Two different ergodic measures are related to completely different parts of the dynamics:

Proposition 4.3.6: Two distinct ergodic measures for a continuous self~-map f of a topological space X are
mutually singular.

Proof: Let p and p1 be two f-invariant ergodic measures, and assume that pq is not absolutely continuous
with respect to p. Then there is a Borel set A such that u(A) =0 but p1(A) > 0. Let

A=UF®W
n>0j5>n
be the set of points whose orbit intersects A infinitely many times. Then A is a completely f-invariant subset
such that ;1(A) = 0 and p1(A) > 0 (compare Proposition 4.1.1). By ergodicity, it follows that X \ A has full
p-measure while A has full p1-measure, and hence p and p7 are mutually singular.

If, on the other hand, u1 << p, the Radon-Nikodym derivative du; /du is f-invariant, and thus p-almost
everywhere constant (by Lemma 4.3.2), which implies 1 = p. O
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Remark 4.3.1. Notice that the last argument in the previous proof shows that if py is f-invariant, u is
ergodic and py << p then p; = p.

Exercise 4.3.1. Prove that a measure f € M7(X) is ergodic if and only if it is an extreme point of M/ (X).
There is a stronger notion of ergodicity:

Definition 4.3.5: An f-invariant measure y is mixing if

lim p(f~"(A)NB) = p(A)u(B) (4.3.1)

n—oo
for every pair of measurable sets A and B.
Lemma 4.3.7: Any mixing measure is ergodic.

Proof: Indeed, if A C X is completely f-invariant we have
p(A)p(X\ A) = lim p(f7"(A)NX\A) = p(AN(X\ 4) =0,

and hence u(A) =0 or u(X \ A) =0. O

Remark 4.3.2. In the next section we shall show that an f-invariant probability measure pu is ergodic if

and only if
1 n—1

Jim = 7 u(f"(A) N B) = p(A)u(B)
m=0

for every pair of measurable sets A and B.

Ergodicity is the statistical equivalent of topological transitivity, unique ergodicity of minimality, and
mixing of topological mixing. We shall give a better explanation of this in the next section, but meanwhile
we can prove the following:

Proposition 4.3.8: Let f: X — X be a homeomorphism of a locally compact Hausdorff space with a
countable basis of open sets and no isolated points. Assume that there exists an ergodic measure
with supp u = X. Then f is topologically transitive.

Proof: Since suppu = X, every open set has positive measure. But, since p is ergodic, there cannot be
two not empty disjoint completely f-invariant open subsets of X and, by Corollary 1.4.5, f is topologically
transitive. n

Remark 4.3.3. If f is a homeomorphism, it is easy to check that the support of an f-invariant measure is
completely f-invariant. Then if an ergodic measure u gives no mass to isolated points the previous argument
shows that f is topologically transitive when restricted to the support of . In the next section we shall
show that this is true even when f is not a homeomorphism.

Remark 4.3.4. Not every f-invariant measure for a topologically transitive map is ergodic. For instance,
if 1 and po are Bernoulli measures on s, they are ergodic for the shift (they are mixing; see Example 4.3.5);
on the other hand, u = (1 + p2)/2 is still shift-invariant and of full support, but it is not ergodic, because
of Proposition 4.3.6.

Proposition 4.3.9: Let f: X — X be a uniquely ergodic continuous self~map of a compact metric space X,
and p the unique element of MY (X). Then f is minimal on supp .

Proof: Take x € supp u, and let A C supp u be the closure of the orbit of x. Since A is clearly f-invariant,
Theorem 4.2.4 yields an f|j-invariant Borel measure v. Define then a Borel measure 7 on X by set-
ting 7(A) = v(AN A) for every Borel set A. Since A is f-invariant we have

p(f7HA) = v(fTHA) NA) = v((fla)TH(ANA)) = v(ANA) = 5(A),

and hence 7 is f-invariant. By unique ergodicity, 7 = p; but since supp 7 C A, this implies A = supp u, and
we are done.
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Ezxercise 4.3.2. Let f: X — X be a continuous map of a topological space X. Assume that there exists a
mixing measure y. Prove that f is topologically mixing on supp .

We shall now describe some examples of ergodic and uniquely ergodic maps. We begin with some
generalities on topological groups.

Definition 4.3.6: A Borel measure on a topological group G invariant under all left (respectively, right)
translations will be said left (respectively, right) invariant.

We have the following important (and deep)

Theorem 4.3.10: (Haar) Let G be a locally compact topological group. Then there exists a unique (up to
multiplicative constants) locally finite left invariant Borel measure on G.

Definition 4.3.7: Let G be a compact topological group. The unique (by the previous theorem) Borel left
invariant probability measure on G is called the Haar measure of G.

ExAMPLE 4.3.1. The usual Lebesgue measure on the torus T™ (the one induced by the Lebesgue measure
of R™), suitably normalized, is the Haar measure of T".

Lemma 4.3.11: The Haar measure u of a compact group G is also right invariant, and invariant under
continuous homomorphisms.

Proof: Given z € G let v = (R,). 1, where R, is the right translation by x. Then v is left invariant, because
for all y € G and Borel sets A we have
v(L, 1 (A) = u(R, 'Ly, (A)) = u(Ly, 'Ry H(A)) = n(R, 1 (A)) = v(A),
where L, is the left translation by y. Since we clearly have v(G) = 1, the uniqueness of the Haar measure
yields v = u, and thus p is right invariant.
Analogously, if H: G — G is a continuous homomorphism, setting v = H,u the same argument shows
that v is left-invariant with v(G) = 1, and hence v = p, as desired. O

Ezxercise 4.3.3. Prove that the support of the Haar measure of a compact group G is the whole group G.

Theorem 4.3.12: Let G be a compact abelian group, i its Haar measure, and L,: G — G a left translation.
Then the following properties are equivalent:
(i) L, is topologically transitive;
(ii) L, Is minimal;
(iii) p is Ly-ergodic;
(iv) L is uniquely ergodic;
(v) the orbit of x is dense.

Proof: (i) = (ii) Lemma 1.4.2.

(ii) = (v) Obvious.

(v) = (iv) Take v € M¥%=(Q); it suffices to prove that v is the Haar measure of G. Given y € G, choose
a sequence {n;} C N* such that L;”_l(z) = n;x converges to y. We shall prove that

Vi € C%G) lim [ polLy,,dv= / poL,dv. (4.3.2)
G el

J—00

By uniform continuity of ¢, for every ¢ > 0 there is a neighbourhood U of the identity element e such that
lo(yr) — o(y2)| < € for every ys € y3 + U. Now,

(00 Lnja)(2) = (w0 Ly)(2)] = l(z + njz) — (2 +y);

if j is large enough we have njz —y € U, and thus |[¢ o Ly;» — ¢ 0 Ly[loc <€, and (4.3.2) follows. But then

/gOd(Ly)*V:/QDOLde: 'lim/QDOLnjde: lim ng(L:j)*I/:/ pdv.
G G Jj— Ja ' G

J—© Ja
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But this means that v is left invariant, and hence it is the Haar measure of GG, as claimed.

(iv) = (iii) Proposition 4.3.1.

(iii) = (i) If G is a finite group, then the Haar measure is the normalized counting measure. If = has
period strictly less than the cardinality of G, then the orbit of = is a completely L,-invariant subset with
measure strictly greater than zero and strictly less than one, against the ergodicity assumption. So the orbit
of  must be the whole of G, and L, is topologically transitive.

If G has an isolated point, then all points are isolated, and thus G (being compact) must be finite. So
we can assume that G has no isolated points, and in this case the assertion follows from Proposition 4.3.11,

because it is easy to see that supp u = G (exercise). O

Corollary 4.3.13: (i) Irrational rotations of S* are uniquely ergodic.

(ii) The Lebesgue measure of T" is ergodic for a translation T,:T" — T™ if and only if 1, v1,...,7, are
rationally independent if and only if T, is uniquely ergodic.

Proof: It follows from Propositions 1.4.1, 1.4.7 and 4.3.12. ]

EXAMPLE 4.3.2. The Lebesgue measure p of St is ergodic for the maps E,,: S* — St with |m| > 1. Indeed,
let ¢ € L*(S*, i) be f-invariant, and let

+o0
o) = Z ok exp(2mikz)

k=—o0

its expansion in Fourier series. Since ¢ o F,, = ¢ almost everywhere, it follows that ¢,k = @i for all k € Z.
But |¢x| — 0 as |k| — 4o00; hence necessarily @5 = 0 for k # 0, and thus ¢ is constant. The assertion then
follows from Lemma 4.3.2. Il

We end this section with a list of examples of mixing measures, together with an (unproved) proposition
useful in proving that a measure is mixing.

Definition 4.3.8: A collection C of measurable sets in a measure space (X, A, 1) is dense if for every A € A
and any £ > 0 there is A’ € C so that u(AAA") < e, where AANA" = (A\ A") U (A" \ A) is the symmetric
difference. More generally, a collection C C A is said sufficient if the family of finite disjoint unions of
elements of C is dense.

Proposition 4.3.14: Let f: X — X be an endomorphism of a measure space (X, A, u). Then:

(i) if (4.3.1) holds for all A and B belonging to a sufficient collection of measurable sets, then p is mixing;
(ii) p is mixing if and only if a given complete system ® of functions in L?(X, ) and any ¢, 1 € ® one has

li o YV dy = du- | Pdu. 3.
im X(sof)wu /Xsou/xwu (4.3.3)

n—-+oo
ExAMPLE 4.3.3. The Lebesgue measure of the torus is never mixing with respect to translations 7’,, while
it is mixing for hyperbolic automorphisms of TZ.
EXAMPLE 4.3.4. The Lebesgue measure of S' is mixing with respect to the maps E,, with |m| > 1.

EXAMPLE 4.3.5. The Bernoulli measure is mixing with respect to the full shift both in 2y and in Q}

4.4 Birkhoff’s theorem
The main result of this section is the following

Theorem 4.4.1: (Birkhoff) Let f: X — X be an endomorphism of a probability space (X, A, u). Then for
every ¢ € LY(X, ) the following limit

n—1

pra)= lm - > e(r(@)
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exists p-almost everywhere. Furthemore, ¢y € LY (X, i) is f-invariant and

/gofd,u:/ pdu. (4.4.1)
b's b's

Proof: Let T = {A € A | f~Y(A) = A} be the invariant o-algebra associated to f. Notice that a func-
tion ¥: X — R is measurable with respect to Z if and only if it is f-invariant and A-measurable.
Given 9 € L'(X, u) set
k

-1
U, = J 1 .
" 2 e e L

since ¥, 1 > ¥, for p-almost every x € X we have either ¥,,(x) — 400 or the sequence {¥,,(z)} is bounded.
Furthermore,
U,of=V,1 —t+min{0, ¥, o f},

and hence the set A, = {x € X | ¥,,(z) — +o0} belongs to Z. Furthermore,

Upt1 —Vpof=¢—min{0,T,0f} \ ¢ on Ay,

So, by the Dominated Convergence Theorem,

0< / (Wrss — U,) dpt = / (W1 — Uno fydu— | wdp (4.4.2)
Ay Ay Ay

Now let ¢z € L*(X, i) be the (invariant) Radon-Nykodim derivative of 1u|z with respect to |z, that is the
unique f-invariant function in L*(X, u|z) € L*(X, i) such that

/Awdu=/szdu

for all A € Z. In particular, (4.4.2) implies that if 17 < 0 then necessarily p(Ay) = 0.
Another general remark is that we have

n—1

1 )
li — B < — =0 4.4.3
1msupnzw0f < limsup — ( )

n—oo n—oo
k=0

for p-almost every « ¢ Ay.
Now take € > 0 and put ¢ = ¢ — 7 —e. Then 17 = —¢, which means that ;1(Ay) = 0. But then (4.4.3)
yields

1 n—1
limsup—ngofk <pr+e
n—-+4oo N
k=0
p-almost everywhere. Replacing ¢ by —¢ yields
n—1

1
liminf—Zcpofk > pr—¢
k=0

n—+oo N

p-almost everywhere. It follows that ¢ = @7 p-almost everywhere, and in particular

/cpfdu:/cpzdu:/sodw
X X X
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Definition 4.4.1: The function ¢y is said the time-average (or orbital average) of ¢. In particular, if ¢ = xa
is the characteristic function of a subset A, then

(a)s(e) = Tim (i€ {0,...,n—1}| () € A}
is denoted by 74 and called the average time spent by x in A.

In particular, Birkhoff’s theorem implies that

/X radp = p(A)

for all measurable sets A.

Corollary 4.4.2: Let f: X — X be an endomorphism of a probability space (X, A, u), and 1 < p < 0.
Then for every ¢ € LP(X, ;i) the time-average ¢y belongs to LP(X, ) with ||¢¢|lp, < ||¢llp, and

lim |lof — — Z pofi| =0 (4.4.4)
p
for1 <p< oo.
Proof: First of all, applying Birkhoff’s theorem to \<p| we get
of(@)] < lim Z\so fi(@)] = lels(@) (4.4.5)

n—-+oo N

for p-almost all z € X. In particular, if ¢ € L>°(X, ,u) then ¢ € L>®(X, 1) and [[¢f|co < [|¢loo-
If 1 < p < oo we have

1 n—1 P 1 n—1 P 1 n—1 P
AN Zwoﬂ <2 Meo sl | = (S lell | =l
X j=0 g j=0 j=0
where we used the fact that |¢ o f7||, = ||¢l||, because f is measure-preserving. Then (4.4.5) and Fatou’s

lemma imply that ¢y € LP(X, ) and |[¢sllp, < |lellp-
To prove (4.4.4), assume for a moment that ¢ € L>(X,u) C LY (X, ). Then
p P

n—1
1 ) 1 ;

)~ 23 o @] <[lerle + - S lleo Plle| < 2Nl
§=0 Jj=0

and (4.4.4) follows from the Dominated Convergence Theorem.
Take now ¢ € LP(X, ). Given € > 0, choose ¢ € L>°(X, i) so that ||¢ — @], < ¢/3, and choose N >0
such that

n—1
1 .
Vn >N Dp— — D I < .
n> P nZWf <¢/3
7=0
p
Then [y = @7llp = (e = @)slly < llo = @llp < €/3 and
1 n—1 1 n—1
—D (p=@ofl <= lle—ly <e/3;
§=0 §=0
P
summing up we get
n—1
Vn >N f——ZgoofJ <e,

and we are done. O
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Corollary 4.4.3: Let f: X — X be an endomorphism of a probability space (X, A, u). Then for every pair
of measurable sets A, B € A the limit

n—1

lim 1 Z,u(f_j(A) N B)

n—+oo N <
j=0

exists.
Proof: We have
u(f7(A)NB) = / Xf-i(A)XB A = / (xa o f7)xB dp.
X X

Since x4 € L'(X, ), we can apply the previous corollary to conclude that the sequence

n—1
1 .
Z j
- Z xao f
7=0
converges in L'(X, ). Thus
1 n—1 ] n—1
w2 @nE) = [0S o s | xads
n =0 b'e
also converges. ]

Corollary 4.4.4: Let f: X — X be an endomorphism of a probability space (X, A, u). Then the following
properties are equivalent:

(i) w is ergodic;

(ii) for every A, B € A we have

n—1

lim 3" u(F79(A) N B) = w(A) - u(B);

n—-+oo N 4
Jj=0

(iii) for every ¢ € L'(X, 1) we have

1
y=1 — d
pf(x nlmng /sﬁ,u

p-almost everywhere; in other words, the time-average is almost always equal to the space average;
(iv) 74 = u(A) p-almost everywhere for all A € A.

Proof: (i) = (iii) Since ¢y is f-invariant, it must be constant p-almost everywhere (Lemma 4.3.2), and the
assertion follows from (4.4.1).

(iii) = (iv) Obvious.

(iv) = (ii) By the Dominated Convergence Theorem

n(n(B) = [

X

TAXBdM:/ lim ZXAOfJ xpdp = lim Z/ (xa o f)xpdu
X

n—-+oo N —+oon

n—1

. 1 iy
SIS WL

(ii) = (i). If A is completely f-invariant we have

' 1n—1 iy ' 1n—1
pA)p(X\ A) ZnEngj;]u(f (AN X\ A) =n£glng§u(AﬂX\A) =0,

and p is ergodic. O
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Remark 4.4.1. Corollary 4.4.4.(iv) says that if u is ergodic then the average time spent in A by p-almost
every point is exactly equal to the measure of A.

Corollary 4.4.5: Let f: X — X be a self-map of a separable metric space X, and p an ergodic Borel
probability measure. Then the orbit of p-almost every x € supp p is dense in supp p. In particular, f is
topologically transitive on supp p.

Proof: Let {Up, }men be a countable basis of open sets for the induced topology on supp y; clearly, pu(Up,) > 0
for all m € N. Applying Corollary 4.4.4.(iv) simultaneously to the characteristic functions of U,, we obtain
a set A C supp p of full measure such that

n—1
T S 0, (@) = p0) >0
=0

for all z € A and all m € N. But then the orbit of every € A must intersect all U,,’s, and hence is dense.[]

EXAMPLE 4.4.1. Let f:[0,1] — R be continuous, and 0 < z < 1. Let 0.ajazas . .. be the decimal expansion
of z, and set x,, = 0.apap41.... Then

lim fl@y) + -+ f(zn) = f(x)dx

n—-4o0o n 0

for almost every x € (0,1). Indeed, the limit on the left is fg,,, and Ejq is ergodic.

One might expect that if i is ergodic and ¢ € C°(X) then the time-average might be constant everywhere
instead of just constant p-almost everywhere. This is not the case, as shown by the following

Theorem 4.4.6: Let f: X — X be a continuous self~map of a compact metric space X. Then the following
properties are equivalent:

(i) f is uniquely ergodic;

(ii) for every ¢ € C°(X) the limit

n—1

1

Jim = o (f(x)
=0

exists for every x € X and does not depend on x;
(iii) for every ¢ € C°(X) the sequence of functions

% Z_: o(F () (4.4.6)
j=0

converges uniformly to a constant.
Proof: (i) = (iii) If (iii) does not hold, there is ¢ € C°(X) so that the sequence (4.4.6) does not converge

uniformly to a constant; in particular, it does not converge uniformly to [  pdu, where p is the unique
element of /\/lf(X). Then there exists £ > 0, a sequence ny — +00, and a sequence {x;} C X such that

T’Lk—l
1

vk e N LY ) - [ edi 2

n
i X

Theorem 4.2.1 implies that for every k € N there exists u; € M(X) such that

ng—1

Vip € CO(X) /deuk = nik > w(f (zr)).
j=0
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Since M (X)) is weakly-* compact, we can assume that the sequence {py} converges to v € M(X). We claim
that v € M7 (X). Indeed,

. N U
/X (0 f)dv = lim /X (60 f)dpu = lim — ; D (f7 (@)

1
= [ dpet Jim [0 () = (k) :/deu

for every 1 € C°(X), because |[¢) o f™ — 1||c < 2||%]|s0, and hence v is f-invariant. But

nk,fl

1 .
dy—/ d zlim/ d —/ d’: lim |— T(x —/ dul > ¢
’/Xw ¢ u’ k_m’xcp pe= | edu| = lim nk;‘ﬁ(f(k)) | pdu

=0
so v # i, and f is not uniquely ergodic.
(iii) = (ii) Obvious.
(ii) = (i) Let T: C°(X) — R be the functional defined by
1 n—1
T(p) = lim — > o(f'(x)

=0

for any « € X. Since T is clearly positive, bounded and linear, there is a measure v € M(X) such that

Vo € C°(X) /andsz(go).
Furthermore, v is f-invariant, because
1 n—1 . 1 n—1 ) 1
T(pof)= lim —> o(f (@) = lim ~> o(f () + lim —[p(f"(2)) - e()] =T(y)
§=0 j=0

for all ¢ € CO(X).
Now take any p € M7 (X). Then the f-invariance of ;1 and the Dominated Convergence Theorem yield

n—1 n—1
1 ) 1 )
pdp = lim — /swfj du=/ lim — » (pof’ du=/T¢ du=T<p=/<pdV
/. Jim 3 [ oo = [l o0 = [ Tt =700 = [
for every ¢ € C°(X). So u = v, and f is uniquely ergodic. ]

4.5 Topological entropy

We now introduce a way to measure the complexity of the orbits of a topological dynamical system. The
idea is to count the number of orbit segments of given length n we can distinguish up to a finite precision ¢,
and then let n go to infinity and € go to zero.

Let us begin with some definitions.

Definition 4.5.1: Let f: X — X be a continuous self-map of a compact metric space. Given n € N*,
let df: X x X — R™ be the distance given by

Ve,y e X dfl(a:,y) = max d(fj(;v),fj(y)).

0<j<n—1
We shall denote by By(z,e,n) the open ball of center z and radius ¢ for dj.
Remark 4.5.1. We have d£+1 > df, and hence By¢(z,e,n+1) C Bf(x,e,n).
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Definition 4.5.2: Let f: X — X be a continuous self-map of a compact metric space. A set E C X is
(n,e)-spanning if X = By (x,e,n). We shall denote by Sy(f,e,n) the minimal cardinality of an (n,¢)-
spanning set.

A

Roughly speaking, S4(f,e,n) is the minimal number of initial conditions needed to approximate all
orbit segments of length n up to a precision €.
Let us now put

1
hd(.fa 5) = limsupﬁlog Sd(f,€,n) € [O,+OO]

n—oo

Since g1 < ¢ implies Sq(f,n,e1) > Sq(f,n,¢e) for all n € N* and hence hq(f,e1) > ha(f, ), the limit

lim hq(f,e) € [0, 400] (4.5.1)

e—0t
exists.
Lemma 4.5.1: The limit (4.5.1) does not depend on the distance chosen to define the topology of X.

Definition 4.5.3: Let f: X — X be a continuous self-map of a compact metric space. Then the topological
entropy h(f) € [0, +o0] of f is

h(f) = lm h4(f,e) = lim limsupllong(f,e,n),
n

e—0+ e—0t pooo
where d is any distance inducing the topology of X. We shall sometimes write hyop(f) instead of h(f).

Lemma 4.5.2: The topological entropy is invariant under topological conjugacy. More generally, if g is a
factor of f, then h(g) < h(f).

Proof: Let h: X — Y be a semiconjugation between f: X — X and ¢:Y — Y, so that ho f = goh. Fix
a distance dx on X, and a distance dy on Y. Since h is uniformly continuous, for every € > 0 there is
a 6(e) > 0 so that dx (x1,22) < d(¢) implies dy (h(z1),h(x2)) < e. Then h(Bf(z,0(¢),n)) C By(h(z),e,n),
and hence
de (f> 5(8)7 n) 2> SdY (ga g, T‘L)
for every € > 0 and n € N*, because h is surjective. Taking logarithms and limits we get the assertion. [
There are two other ways of defining the topological entropy.

Definition 4.5.4: Let f: X — X be a continuous self-map of a compact metric space. Let Dy(f,e,n) be the
minimal cardinality of a cover of X composed by sets of d!-diameter at most ¢.

We clearly have
Sa(f,e,n) < Da(f,e,n) < Sa(f,e/2,n). (45.2)

Lemma 4.5.3: For any € > 0 the limit

1
lim —log D4(f,e,n)

n—oo N

exists. It follows that )
lim lim —log D4(f,e,n) = h(f).

e—0T n—oo N

Remark 4.5.2. Since (4.5.2) also implies
Dd(fa 257 ’I?,) S Sd(fa g, n) S Dd(fa g, n)a

the previous lemma yields
1
lim liminf —log Sq4(f,e,n) = h(f).
n

e—0+T n—oo
Definition 4.5.5: Let f: X — X be a continuous self-map of a compact metric space. We say that aset E C X
is (n,)-separated if df (z,y) > ¢ for all x, y € E. We denote by Ny(f,e,n) the maximal cardinality of an
(n, e)-separated set.
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Since it is easy to see that

Sd(f7€7n) < Nd(f7€7n) < Sd(f7 8/2,%)7

it follows that ) )
lim limsup — log Ny4(f,e,n) = lim liminf - log Na(f,e,n) = h(f).

e—=0t nosco N e—0t n—oo
Definition 4.5.6: If 4l is an open cover of a compact space X, let N(4) denote the minimal cardinality of a
subcover of 4. If U is another open cover, let
UVY={UNV|Uel,VeT}.
Finally, if f: X — X is continuous, set

) ={71 ) | U e u}.

Proposition 4.5.4: Let f: X — X be a continuous self-map of a compact metric space X. Then:

(i) for every open cover i of X the limit
1
lim_ log N (v f7H (80 v - v f= (=D (1))

exists;
(ii) we have

h(f) = sup lim %mgN(uvf*l(u) VARRAVE SRl (TH)

u n—oo

where the supremum is taken over all open covers of X.
We now collect a few properties of the topological entropy:

Proposition 4.5.5: Let f: X — X be a continuous self-map of a compact metric space. Then:

(i) if A C X is a closed f-invariant set then h(f|x) < h(f);

(i) if X = Ay U---UA,,, where Ay, ..., A, are closed f-invariant subsets, then h(f) = maxi<j<m h(f|a,);
iii) if m € N then h(f™) = mh(f);

iv) if f is a homeomorphism then h(f™) = |m|h(f) for all m € Z;

(v) if Y — Y is another continuous self-map of a compact metric space, then h(f x g) = h(f) + h(g).

EXAMPLE 4.5.1. If f: X — X is an isometry of a compact metric space, then d/ = d for all n € N*, and
so h(f) = 0. In particular, the topological entropy of rotations of S* or of translations of the torus is zero.

EXAMPLE 4.5.2.  The topological entropy of E,,: S* — St is log |m]|.
EXAMPLE 4.5.3. The topological entropy of the shift on: Qy — Qu is log V.
EXAMPLE 4.5.4. If F: T? — T? is given by Fy(z,y) = (22 +y,x + ) (mod 1) then h(FL) = (3 +/5)/2.

Definition 4.5.7: Let (X, d) be a compact metric space. For € > 0 let b(e) be the minimal cardinality of a
cover of X by e-balls. The ball dimension of X is

log b
D(X) = limsup 0 b(c) € [0, +o0].
c—0 |loge|

Theorem 4.5.6: Let f: X — X be a Lipschitz-continuous self-map of a compact metric space X. Then

h(f) < D(X) max{0, log Lip(f)}.
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4.6 Measure-theoretic entropy
We shall now describe a more quantitative concept of entropy, obtained using a probability measure.

Definition 4.6.1: Let (X, A, 1) be a probability space. A measurable partition of X is a family of measurable
subsets P = {C, | a € I}, where I is a finite or countable set of indices, such that p(X \ U, Ca) = 0
and p(Cy, N Cqs,) = 0 when oy # 2. Elements of P are called atoms of P. Given two measurable
partitions P and Q, we say that P = Q (mod 0) if for every C' € P there is D € Q such that u(CAD) =0,
and conversely. If f: X — X is a measurable map, we set f~*(P) = {f~1(C.) | a € I}.

Definition 4.6.2: Let P be a measurable partition of a probability space (X, ). For z € X, let P(z) be the
atom of P containing x (this is well-defined outside of a set of zero measure). The information function of
the partition P is the measurable function I»: X — R given by

Ip(z) = —log u(P(x)).

We can think that a partition of X collects the elements of X we cannot tell apart using some measuring
instrument. Then if the atom containing x is small then the information obtained measuring x is large; this
is the meaning of the information function.

Definition 4.6.3: Let (X, A, 1) be a probability space. The entropy of a measurable partition P = {C,, | « € I}
of X is given by
hP) == Y u(Co)log(Ca) = [ Ipdu € [0, +oc].
ael X
n(Caq)>0

We shall also need a conditional notion of entropy.

Definition 4.6.4: Let P = {C, | a € I} and Q = {Dg | § € J} two measurable partitions of a probability
space (X, u). The conditional information function Ip g: X — R of P with respect to Q is defined by

Ip,o(x) = —log u(P(x) | Q(x)) = —log u(P(x) N Q(x)) + log p1(Q(x)).

The conditional entropy of P with respect to Q is given by

ha(P Q) = /X Ipodn=—3 1(Ds) S u(Ca | Dy)log u(Cu | Dy),

BeJ acl

where for simplicity we assume that 0log0 = 0.

Definition 4.6.5: Let P = {C, | « € I} and Q = {Dg | § € J} two measurable partitions of a probability
space (X, u). We say that P is subordinate to Q, or that Q is a refinement of P, and we write P < Q (mod 0),
if for every D € Q there is C' € P so that D C C (mod 0), that is u(D \ C') = 0. The joint partition of P
and Q is

Pvo={CnNnD|CeP,DeQ,uCnD)>0}

clearly PV Q <P, Q. Finally, we say that P and Q are independent if
YC eP,DeQ w(CND)=pu(C)u(D).

The following proposition summarizes the technical properties of the entropy of partitions.
Proposition 4.6.1: Let (X, A, 1) be a probability space, and let P = {Co | « € I}, Q ={Dg | B € J}
and R = {E, | v € K} be measurable partitions of X. Then:

(i) we have

0 < —log(sup u(Ca)) < hyu(P) < logcardP;
ael

furthermore, if P is finite then h,(P) = log cardP if and only if all the atoms of P have equal measure;
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(ii) we have

0<hu(P|Q) < hu(P);

furthermore, we have h,(P | Q) = h,(P) if and only if P and Q are independent, and h,(P | Q) =0
if and only if P < Q (mod 0);

(ili) if @ <R then h,(P | Q) > h,(P | R);

(iv) we have

hu(PV Q) = hu(P) + hy(Q | P) = hu(Q) + hy(P | Q)

and, more generally,

hy(PVQ|R)="h,(P|R)+h,(Q|PVR);

(v) we have

hu(PV Q) < hyu(P) + hyu(Q)

and, more generally,
hu(PV Q[ R) < hu(P [ R) + hu(Q | R);

(vi) we have

hu(P I R) <hu(P | Q) + hu(Q [ R);

(vii) if v is another probability measure on X and P is a partition measurable with respect both to p and
to v, then

vt € [0,1] th,(P) + (1 = t)hu(P) < hypy -1 (P).

Corollary 4.6.2: If P and Q are two measurable partitions with finite entropy of a probability space (X, u),
set
dr(P,Q) = hu(P | Q) + hu(Q | P).

Then dg is a distance on the set of (all equivalence classes mod 0 of) measurable partitions with finite
entropy on X.

Definition 4.6.6: The distance dg is called the Rokhlin distance.
To define the metric entropy we need the following

Lemma 4.6.3: Let {a,} C R* be a sequence of positive real numbers such that an4p, < a, + a,, for

all n, m € N. Then
a .. a
lim —= = inf = > 0.
n—+oo N neN n

Proof: Let ¢ = inf,, a,/n. Given € > 0, let ng € N be such that a,,/ng < c+e. If n > ng, write n = nop+¢
with 0 < g <ng and p > 1. Then
An _ Gnoptq o Plno g _ Ono

a 1
< = + A <cHe+ = sup aj.
n nop +4q nop n no n T 0<j<no

Hence for n large enough we have
a
c< 2 < e+ 2,
n

and we are done. O

Let f: X — X be an endomorphism of the probability space (X, .4, 1), and P a measurable partition
with finite entropy. Then we clearly have h, (f~!(P)) = h,(P), and so, setting

PL=PVf T P)V---V NP,
Proposition 4.6.1.(v) yields
Vm,n € N hy (P'rj;rm) < by (P) + hy (PY) -

Therefore the previous lemma allows us to make the following
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Definition 4.6.7: Let f: X — X be an endomorphism of the probability space (X, A, u), and P a measurable
partition with finite entropy. The metric entropy of f relative to P is

hu(f.P) = lim. %h“(PT{).

Lemma 4.6.4: Let f: X — X be an endomorphism of the probability space (X, A, 1), and P a measurable
partition with finite entropy. Then n — hy, (P | f~! (\/;:01 f~4(P))) is non-increasing, and

hu(f£,P) = lim hy, (P | f71(P])).

Definition 4.6.8: Let f: X — X be an endomorphism of the probability space (X,.A, ). Then the entropy
of f with respect to p (or of u with respect to f) is

h,(f) = sup{h,(f,P) | P is a measurable partition of X with finite entropy} € [0, +o0].

Remark 4.6.1. It suffices to take the supremum with respect to the finite measurable partitions of X.

In some sense, h,(f,P) is the average amount of information given by knowing the present state (up to
approximation P) and an arbitrarily long past. Thus the metric entropy of f measure the maximum amount
of average information we can extract from f if we disregard sets of y-measure zero.

The definition we just gave is due to Kolmogorov. A slightly different approach is due to Shannon-
McMillan-Breiman.

Let f: X — X be an endomorphism of the probability space (X, A, ). If P is a measurable partition
of X, then it is easy to check that the atom of z € X in the partition P/ is given by

n—1

Pl(x)={y € X | f/(y) € P(f(x)) for 0 <j<mn—1} =[] f 7 (P(f'(2))).

j=0
In particular, y € PJ () if and only if x and y have the same n-segment of orbit (up to the approximation P).
Then we have the following

Theorem 4.6.5: (Shannon-McMillan-Breiman) Let f: X — X be an endomorphism of the probability
space (X, A, ) and P is a measurable partition of X with finite entropy. Then the sequence of func-
tions I,; /n converges p-almost everywhere and in L' to a function hp(f) € L'(X, ) which is f-invariant.

Since the convergence is in L' we can apply the Dominated Convergence Theorem and hence we get

1 1 1
/ hp(f)du:/ lim —I,;dp= lim —/ Ippdp = lim ;h#(Pf:):h#(ﬁP),
X n X n n—oo

x n—oo N n—oo N

which was the original definition of entropy. In particular, if p is ergodic we have hp(f) = h,(f, P) p-almost
everywhere.
The third definition is due to Brin and Katok:

Theorem 4.6.6: (Brin-Katok) Let X be a compact metric space, f: X — X continuous, and p € M7 (X)
an f-invariant Borel probability measure, and set

1 1
h:(f,x,s) = —limsupg logu(Bf(x,s,n)), h, (f,z,e) = —liminfﬁlogu(Bf(x,an)).

n—oo

Then the limits
o . Jr . . —
h’ﬂ(fa I) - 51_1,%1+ hu (f7 T, E) - EI_I}’(I)L hu (fa €T, 5)

exist for p-almost every x € X, are equal, are f-invariant and
half) = [ hudfo)
X

Now let us summarize the properties of the metric entropy.
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Proposition 4.6.7: Let f: X — X be an endomorphism of the probability space (X, A, u), and P, Q
measurable partitions with finite entropy. Then:

(i) we have

0 < —limsup 1 log ( sup u(C)) < h,(f,P) < h,(P);

n—00 ceP]
P) + hu(f, Q);
ii) h,(f,Q) < h#(f,”P) +h (Q | P) in particular, if P < Q then h,(f,P) < hu(f, Q);

(7Q)| hu(P | Q) + hyu(Q | P);
h ( ) and, 1ff is invertible, h,(f,P) = h.(f, f(P));

YVt € [0, 1] thu(fap) + (1 _t)hl/(fv ) < ht;Hr 1-t) (f’ )

Proposition 4.6.8: Let f: X — X be an endomorphism of the probability space (X, A, ). Then:
(i) if the endomorphism g:Y — Y of the probability space (Y,v) is a factor of f (that is there exists a
measure-preserving h: X — Y such that goh = ho f), then h,(g9) < h,(f);
(ii) if A is completely f-invariant and p(A) > 0 then h,(f) = p(A)hu, (f) + (X \ Ahyy L (F);
(iii) if v is another f-invariant probability measure then

vt e [07 1] th/t(f) + (1 - t)hu(f) < htu+(1—t)u(f);
(iv) hu(f*) = kh,(f) and, if f is invertible, h,(f %) = |k|h,(f);

(v) if Y — Y is an endomorphism of a probab1l1ty space (Y,v) then hyx,(f x g) = hu(f) + huo(g).

EXAMPLE 4.6.1. The entropy of the rotations R,:S' — S' and of translations T,: T" — T" of the torus
with respect to the Lebesgue measure is zero.

EXAMPLE 4.6.2. The entropy of E,,: S — S with respect to the Lebesgue measure id log |m)|.

ExaMPLE 4.6.3. The entropy of the shift ox: Qn — Qpn with respect to the Bernoulli measure associated
o (pos---,pn-1) 8 —pologpo — -+ — pn—1logpn—1.

EXAMPLE 4.6.4. If Fp:T? — T? is given by Fp(z,y) = (2¢ +y,2 + y) (mod 1) then its entropy with
respect to the Lebesgue measure is (3 + v/5) /2.

4.7 The variational principle

The aim of this section is to prove that the topological entropy is the supremum of the metric entropies. To
do so we need two lemmas.

Lemma 4.7.1: Let X be a compact metric space, and y € M(X). Then:

(i) for every x € X and § > 0 there is ¢’ € (0,0) such that (0B(z,0")) =0
(ii) given 6 > 0 there is a finite measurable partition P of X such that diam(C) < ¢ and u(0C) = 0 for
allC' e P.

Proof: (i) B(x,6) = g5 .5 9B(x,0") is an uncountable disjoint union with finite measure.
(ii) Let {B1, ..., B} be a cover of X by balls of radius less than /2 and with y(0B;) = 0for j = 1,... k.
Put C; = By and C; = E\U{;EE for j=2,...,k. Then P ={C4,...,Cy} is as required. O

Lemma 4.7.2: Let f: X — X be a continuous self~map of a compact metric space, and € > 0 given. For
every n € N choose an (n, e)-separated set E,, C X, and put

n—1
1 X
= O d p,=- Ty,
v card Z and njgof*y

IEE
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Then there is an accumulation point p (in the weak-* topology) of {u,} in M(X) which is f-invariant and
satisfies

1
lim sup - log card(E,,) < hyu(f).

n—00

Proof: Choose a sequence ny, so that

1 1
lim — logcard(E,, ) = limsup — log card(E,).
n

k—oo N n—00

Since M(X) is weak-* compact, we can also assume that p,, — p € M(X). But we have

1
Jabbn — pin = E(ffl/n - Vn)7

and hence p is f-invariant, because the v,, are probability measures.

Let now P be a finite measurable partition with atoms of diameter less than € and satisfying the prop-
erties of Lemma 4.7.1.(ii). Since each C' € P/ contains at most one element of E,,, there are card(E,,)
atoms of P} with v, measure 1/card(E,), while the other atoms have vanishing v,-measure; in particu-
lar, h,, (P}) = logcard(E,).

Now fix0<g<nand 0 <k <qg—1. Ifa, = |[(n—k)/q|, we have

{0,1,....n—=1}y={k+rq+j|0<r<a0<j<qtUs,

where
S={0,1,....,k,k+arg+1,...,n—1}

notice that card(S) < k + ¢ < 2¢ by the definition of aj. Now,

7)7{ - (ai/lf (k+rq) 'pf ) \/ fi ;

r=0 JES
hence )
ap—
log card(E,,) = h,,, (Pf) < Z b, (f~ (k+rq) Pf +Zhun ~(P))
jJjES
ap—1

< Z hy-oeira), (77({) + 2qlog card(P),

where we used Proposition 4.6.1.(1) and (v). Now recalling Proposition 4.6.1.(vii) we get

qg—1 q— ap—1
qlogcard(E,) = Z h,, (Pf) < Z (Z hy—tetra), ) + 2qlog card(P))
k=0 =0

k=0
< nh (Pf) + 2¢* log card(P).

Hence ; ;
1 hu, (P) (P
lim sup — log card(E,) = lim — logcard(E,,) < hm “"k( 2) _ u(Pg )

n—oo N k—oo N k—o0 q q

Since this is now true for all ¢ we can pass to the limit in ¢ and we get

lim sup — 1ogcard( n) < hu(f,P) < hu(f),

n—oo 1

and we are done. O
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Then we are able to prove the wvariational principle:

Theorem 4.7.3: Let f: X — X be a continuous self~-map of a compact metric space. Then

heop(f) = sup{h,(f) | 1€ MI(X)}.

Proof: If P ={C4,...,Cy} is a finite measurable partition of X then, since p is a Borel measure, we have
vC e P u(C) =sup{u(B) | B C C,C closed}.

So for j = 1,...,k we can choose a compact set B; C C; so that if we take Q = {By, Bi,..., B}
where By = X \ (B1 U---U By) we have h,(P | Q) < 1. Proposition 4.6.7.(iii) yields

hu(f,P) < hu(f, Q) + hu(P | Q) < hu(f, Q) + 1.
Now 8 = {By U By,...,ByU By} is an open cover of X. Proposition 4.6.1.(1) yields
h(Qf) < logcardQ! < log(2"cardsl!).

If 69 > 0 is the Lebesgue number of I then it is also the Lebesgue number of ilfl with respect to the
distance df. Now, { is a minimal cover; hence also each il,’; is. This means that every B € ilfL contains a
point xp that does not belong to any other element of ﬂg. In particular, the zp form an (n,dg)-separated
set. Consequently,

hu(fa Q) < htop(f) +log 2

and
h#(f7 P) S htop(f) + 10g2 +1

for every finite measurable partition P. Therefore using Propositions 4.6.8.(iv) and 4.5.5.(iii) we get

hiop(f™) +1log2+1 log2+1
hu(f): n < tp( )n thop(f)“—T

for every n € N*, and hence

hu(f) < hiop(f)-
On the other hand, applying Lemma 4.7.2 to maximal (n,e)-separated sets in X yields

1
limsup ENd(fvgﬂ’L) S hu(f)7

n—oo

where 1 € M7(X) is the accumulation point provided by the lemma. But then

1
lim sup _Nd(f7 €, n) S sup h,u.(f)v
n—oo N peMI (X)

and letting ¢ — 0 we get the assertion. ]
In general, the supremum in the variational principle is not achieved.

Definition 4.7.1: Let f: X — X be a continuous self-map of a compact metric space. A measure u € M/ (X)
satisfying h,,(f) = hop(f) is said of maximal entropy. If f has one and only one measure of maximal entropy,
we say that f is intrinsically ergodic.

Ezercise 4.7.1. Let f: X — X be an intrinsecally ergodic continuous self-map of a compact metric space.
Prove that the unique measure of maximal entropy is ergodic.



