Analisi Matematica II **a.a.** 2021-2022

Prova scritta – 13/9/2022

Non è consetito l'uso di telefoni cellulari, tablet, smartwatch (né di altri dispositivi connessi), né di calcolatrici, libri, dispense, appunti...

Nome:

Cognome:

Parte 1. (Domande a risposta aperta. Sarà valutata solo la risposta finale.)

Esercizio 1. Con $B_R(a,b)$ indichiamo la palla di raggio R>0 e centro (a,b) in \mathbb{R}^2

$$B_R(a,b) = \{(x,y) : (x-a)^2 + (y-b)^2 < R^2 \}.$$

Consideriamo qli insiemi

(A)
$$\Omega_A = \overline{B}_2(0,0) \cap B_1(2,0)$$
; (D) $\Omega_D = \overline{B}_2(0,0) \setminus B_1(2,0)$;

$$(D) \quad \Omega_D = \overline{B}_2(0,0) \setminus B_1(2,0) ;$$

(B)
$$\Omega_B = \overline{B}_2(0,0) \cup B_1(2,0)$$
; (E) $\Omega_E = \overline{B}_2(0,0) \cap \overline{B}_1(2,0)$;

(E)
$$\Omega_E = \overline{B}_2(0,0) \cap \overline{B}_1(2,0)$$

(C)
$$\Omega_C = B_2(0,0) \setminus B_1(2,0)$$

(C)
$$\Omega_C = \overline{B}_2(0,0) \setminus \overline{B}_1(2,0)$$
; (F) $\Omega_F = \overline{B}_2(0,0) \cup \overline{B}_1(2,0)$.

Gli insiemi seguenti sono chiusi :

D, E, F

Esercizio 2. Trovare la frontiera dell'insieme

$$D = \{(x, y) \in \mathbb{R}^2 : x > 0, y \ge 0\} \setminus \partial B_1(0, 0)$$

$$\partial D = \left\{ (x,0) : x \ge 0 \right\} \cup \left\{ (0,y) : y \ge 0 \right\} \cup \left\{ (x,y) : x^2 + y^2 = 1, x \ge 0, y \ge 0 \right\}$$

Esercizio 3. Sviluppare fino al secondo ordine in (0,0) la funzione

$$\frac{e^{x+xy}}{1+2y} = 1+x-2y+\frac{x^2}{2}+4y^2-xy+o(x^2+y^2)$$

Esercizio 4. Siano
$$\gamma(t) = ((1-t)^3 - 1, (1+t)^2 - 1)$$
 $e^{-F(x,y)} = e^{x+y} (\sin(3x) + \sin(2y))$.

$$\frac{d}{dt}\Big|_{t=0}F(\gamma(t)) = (-3,2) \cdot (3,2) = -5$$

Esercizio 5. Calcolare la matrice hessiana H della funzione $F(x,y) = \frac{\sqrt{1+5xy}}{\cos(2x)\cos y}$ in (0,0). Dire se H è definita positiva, semi-definita positiva, definita negativa, semi-definita negativa, indefinita.

$$H = \begin{pmatrix} 4 & 5/2 \\ 5/2 & 1 \end{pmatrix}$$
 La matrice H è: indefinita

Esercizio 6. Sia $\alpha = (xe^x - y) dx + (xy^2 - ye^y) dy$ e sia γ la curva semplice chiusa e C^1 a tratti che parametrizza il bordo del dominio $\Omega = \{(x,y) : y \ge 0, \ 0 \le x \le y - y^3\}$ in senso antiorario.

Calcolare $\int_{\gamma} \alpha = \frac{1}{3}$

Esercizio 7. Consideriamo il campo $F(x,y) = \left(\frac{9x+2y}{(1+x^2+y^2)^4}, \frac{x-y}{(3+x^2+y^2)^2}\right)$.

Sulla palla B_R di centro (0,0) e raggio R=1, calcolare $\iint_{B_R} \operatorname{div} F(x,y) \, dx \, dy = 2$

Parte 2. Saranno valutate sia la risposta finale che lo svolgimento degli esercizi.

Esercizio 8. Consideriamo la funzione

$$F(x,y) = x^2y + y^3 - 3y + x^2.$$

Trovare (se esistono!) i punti critici di F in \mathbb{R}^2 e, studiando la matrice hessiana, dire se si tratta di punti di massimo relativo, di minimo relativo oppure di punti di sella.

(0,1) - minimo relativo ; (v,-1) - hossiana somi definita negativa.

Esercizio 9. Trovare il massimo della funzione

sull'in sieme

$$D = \left\{ (x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 \le 2 \right\}.$$

Esercizio 10. Data la funzione

$$F(x,y) = \frac{y \sin(x^2 + y^2)}{(x^2 + y^2)^2 + y^2} ,$$

calcolare $\limsup_{(x,y)\to(0,0)} F(x,y) = 4$

Esercizio 11. Consideriamo la funzione $F: \mathbb{R}^2 \to \mathbb{R}$ definita come

$$F(0,0) = 0 e F(x,y) = \frac{(x+y)^n x^{n+2} y^{n+3}}{(x^4+y^4)^n} se (x,y) \neq (0,0),$$

dove $n \geq 1$ è un numero intero.

- (1) Per quali valori del parametro $n \ge 1$ la funzione è derivabile in (0,0).
- (2) Per quali valori del parametro $n \ge 1$ la funzione F è continua in (0,0).
- (3) Per quali valori del parametro $n \ge 1$ la funzione F è differenziabile in (0,0).