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The Navier-Stokes equations in T"

The Navier-Stokes problem

The initial value problem for the Navier-Stokes equations is:
u—vAu+ (u-V)u=—-Vp+f inD

divu=0 inD (1)
u=up on T" x {0}
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The Navier-Stokes equations in T"

The Navier-Stokes problem

The initial value problem for the Navier-Stokes equations is:
u—vAu+ (u-V)u=—-Vp+f inD
divu=0 inD (1)
u = up on T" x {0}

Here, let T" = R"/Z" is the n-dimensional torus and
D=T"x][0,T), with T > 0.
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The Navier-Stokes equations in T"

The Navier-Stokes problem

The initial value problem for the Navier-Stokes equations is:
u—vAu+ (u-V)u=—-Vp+f inD
divu=0 inD (1)
u = up on T" x {0}

Here, let T" = R"/Z" is the n-dimensional torus and
D=T"x[0,T), with T >0. Let v € RT.
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The Navier-Stokes equations in T"

The Navier-Stokes problem

The initial value problem for the Navier-Stokes equations is:

u—vAu+ (u-V)u=—-Vp+f inD
divu=0 inD (1)
u = up on T" x {0}

Here, let T" = R"/Z" is the n-dimensional torus and
D=T"x[0,T), with T >0. Let v € RT.

Let up : R"/Z" — R" be C2 with second order partial derivatives
Lipshitz continuous.
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The Navier-Stokes equations in T"

The Navier-Stokes problem

The initial value problem for the Navier-Stokes equations is:

u—vAu+ (u-V)u=—-Vp+f inD
divu=0 inD (1)
u = up on T" x {0}

Here, let T" = R"/Z" is the n-dimensional torus and
D=T"x[0,T), with T >0. Let v € RT.

Let up : R"/Z" — R" be C2 with second order partial derivatives
Lipshitz continuous. Let f : R"/Z" — R be C!, with Lipshitz
continuous partial derivatives.
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The Navier-Stokes equations in T"

The Navier-Stokes problem

The initial value problem for the Navier-Stokes equations is:

u—vAu+ (u-V)u=—-Vp+f inD
divu=0 inD (1)
u = up on T" x {0}

Here, let T" = R"/Z" is the n-dimensional torus and
D=T"x[0,T), with T >0. Let v € RT.

Let up : R"/Z" — R" be C2 with second order partial derivatives
Lipshitz continuous. Let f : R"/Z" — R be C!, with Lipshitz
continuous partial derivatives. Without loss of generality,

div f = 0. (Otherwise, replace f by f — Vpg, with Apy = — div f).
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The Navier-Stokes equations in T"

The Navier-Stokes problem

The initial value problem for the Navier-Stokes equations is:

u—vAu+ (u-V)u=—-Vp+f inD
divu=0 inD (1)
u = up on T" x {0}

Here, let T" = R"/Z" is the n-dimensional torus and
D=T"x[0,T), with T >0. Let v € RT.

Let up : R"/Z" — R" be C2 with second order partial derivatives
Lipshitz continuous. Let f : R"/Z" — R be C!, with Lipshitz
continuous partial derivatives. Without loss of generality,

div f = 0. (Otherwise, replace f by f — Vpg, with Apy = — div f).
The unique (if it exists) strong solution of (1) is a pair of
“sufficiently regular” functions u: D — R", p: D — R satisfying

(1)
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The Navier-Stokes equations in T"

Modified Navier-Stokes equations

Consider a cut-off function x™ € C>([0, 00)) such that:

M . 1 ifr<M
X(’)_{o if r>2M
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The Navier-Stokes equations in T"

Modified Navier-Stokes equations

Consider a cut-off function x™ € C>([0, 00)) such that:

M . 1 ifr<M
X(’)_{o if r>2M

Let [[ul1,2 = max [ug]| oo (zox[o, 1) + max (| uxix; || Loo (T x [0, T7)
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The Navier-Stokes equations in T"

Modified Navier-Stokes equations

Consider a cut-off function x™ € C>([0, 00)) such that:

M . 1 ifr<M
X(’)_{o if r>2M

Let [[ul1,2 = max [ug]| oo (zox[o, 1) + max (| txix; [l oo (Trx [0, 77) - A
long as ||ul[1,2 < M, the Navier-Stokes equations are equivalent to:
u—vAu+(u-V)u=—-Vp+f inD

Ap = —xM([lull1,2) tr(Dxu)? in D (2)
u =g on T" x {0}
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The Navier-Stokes equations in T"

Modified Navier-Stokes equations

Consider a cut-off function x™ € C>([0, 00)) such that:

1 ifr<M
0 if r>2M

Let [[ul1,2 = max [ug]| oo (zox[o, 1) + max (| txix; [l oo (Trx [0, 77) - A

long as ||ul[1,2 < M, the Navier-Stokes equations are equivalent to:

Ut—VAU+(U~V)u:—Vp+f in D
Ap = —x"(|lull12) tr(Dxu)? in D (2)
u = up on T" x {0}

Note that div(u - V)u = tr(Dyu) Z gu, guj
Xj OXi
7.j_
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Discretization of the modified Navier-Stokes problem

Discretized space and time

e Discretization of T"” (for any n € N):
T = {0,h,2h,...,(M—1)h,1}"
= h(Z mod M)";
with M € Ny, and h = 4.
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Discretization of the modified Navier-Stokes problem

Discretized space and time

e Discretization of T"” (for any n € N):
T = {0,h,2h,...,(M—1)h,1}"
= h(Z mod M)";

with M € Ny, and h = 4.
Given any x = (my,ma,...,mp)hand y = (h, h,...,l,)hin
Thy, let:

x+y= ((ml+ll)modM,...,(m,,+/,,)modM)h
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Discretization of the modified Navier-Stokes problem

Discretized space and time

e Discretization of T"” (for any n € N):
T = {0, h,2h, ..., (M— 1)h,1}"
h (Z mod M)";

with M € N, and h = ;.

Given any x = (my,ma,...,mp)hand y = (h, h,...,l,)hin
Thy, let:

x+y= ((ml+ll)modM,...,(m,,+/,,)modM)h

e Discretization of time: with T € RT and K € Ny, let k = %
and define:

17 = {o,k,zk,...,(K—1)k} — k (NN [0, K)):
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Discretization of the modified Navier-Stokes problem

Gridfunctions

e Discretization of T” x [0, T]: to each triple d = (M, K, T),
with T € R* and M, N € N; we associate discretizations as
defined above. Let:

Dy =T%, x {o,k,zk,...,(K—l)k}

Dy =TI, x {o,k,zk,...,(K—l)k,T}
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Discretization of the modified Navier-Stokes problem

Gridfunctions

e Discretization of T” x [0, T]: to each triple d = (M, K, T),
with T € R* and M, N € N; we associate discretizations as
defined above. Let:

Dy =T%, x {o,k,zk,...,(K—l)k}

Dy =TI, x {o,k,zk,...,(K—l)k,T}

e Gridfunctions:
U:Dy—R"

P:@d—ﬂRn
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Discretization of the modified Navier-Stokes problem

Finite diference operators

e Discretization of the gradient:

1
VaU(x.t) = - (U(x + hej, t) — U(x — he, t)) _

i=1,...,n
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Discretization of the modified Navier-Stokes problem

Finite diference operators

e Discretization of the gradient:

1
VaU(x.t) = - (U(x + hej, t) — U(x — he, t))l_ZI )

e Discretization of the laplacian:

AqU(x, t) 22( x—|—he,-,t)—2U(x,t)+U(x—he,-,t))
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Discretization of the modified Navier-Stokes problem

Discretization of Pu= u; — vAu+ (v - V)u:

U(x,t+ k) — U(x, t)
k
n Z Us(x, 1) U(x + hej, t) — U(x — hej, t)
i=1

PaU(x,t) = —vA4U(x, t)

2h
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Discretization of the modified Navier-Stokes problem

Discretization of Pu= u; — vAu+ (v - V)u:

Py, 1) = St kzz — U8 AU 1)
a . U(x + hej, t) — U(x — hej, t)
+ Z Ui(x,t) o

1
=z (U(X, t+k)—(1—2nv\)U(x,t)

—AZ <<I/—U X, t)) U(x+hej, t) + <V+ZU,‘(X, t)> U(x— he;, t)))

k TM?
where )\:?: % e R,
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Discretization of the modified Navier-Stokes problem

The finite-diference problem

( PaU(x,t) = —V4P+ f(x,t) in Dy

AgP =—xXM(|UII{5) > 6h;Ui 6p,;U; in Dy
ij=1

L U(x,0) = up(x) on T},.

where

1
00, Uj(x,t) = 5= (Ui(x + hei, £) = Uj(x — ey, )
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Discretization of the modified Navier-Stokes problem

Explicit solution of the finite-diference problem

Solving PyU(x,t) = =V 4P(x, t) + f(x, t) for U(x, t + k) yields:
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Discretization of the modified Navier-Stokes problem

Explicit solution of the finite-diference problem

Solving PyU(x,t) = =V 4P(x, t) + f(x, t) for U(x, t + k) yields:

U(x,t+k) = (1—2mX) U(x, t)
- h
+)\; ((u — 5 Uilx, t)) U(x + he;, t)

+ (u + gU,-(x, t)) U(x — he;, t)>

+ AR f(x, 1)
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Discretization of the modified Navier-Stokes problem

Explicit solution of the finite-diference problem

Solving PyU(x,t) = =V 4P(x, t) + f(x, t) for U(x, t + k) yields:

U(x,t+k) = (1—2mX) U(x, t)
- h
+)\; ((u — 5 Uilx, t)) U(x + he;, t)

+ (u + gU,-(x, t)) U(x — he;, t)>

+ AR f(x, 1)

where f(x,t) = —VgP(x,t) + f(x, t).

Jodo Teixeira Local in-time Navier-Stokes eqn. existence and regularity



Discretization of the modified Navier-Stokes problem

Iteration function

... that is:

U(x, t + k) = &(U, U)(x, t) + f(x, t)
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Discretization of the modified Navier-Stokes problem

Iteration function

... that is:
U(x, t + k) = &(U, U)(x, t) + f(x, t)

with

O(U, V)(x,t) = (1—2mA) U(x,t)

n

Y ((y _ g\/,-(x, t)> U(x + hey, t)

+ <u + gW(X, t)> U(x + he, t)> )

Jodo Teixeira
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Discretization of the modified Navier-Stokes problem

Solution of the discrete problem (3)

U(x, t + k) = &(U, U)(x, t) + Ah?F(x, t) (x,t) € Dy

ApP(x, 1) = =xXM(UIIF2) D 6aUi(x, £) 6inUj(x,t)  (x,t) € Dy
ij=1

U(x,0) = up(x,0) x € T},.

where f(x,t) = —V4P(x, t) + f(x, t).

Jodo Teixeira Local in-time Navier-Stokes eqn. existence and regularity



Estimating the iterates

Stability conditions

Stability conditions are needed to ensure that the iterates behave
nicely. These conditions ensure that ¢(U, U)(x, t) is a weighted
average of the values of U at (x, t) and its neighbouring points.
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Estimating the iterates

Stability conditions

Stability conditions are needed to ensure that the iterates behave
nicely. These conditions ensure that ¢(U, U)(x, t) is a weighted
average of the values of U at (x, t) and its neighbouring points.

1
e Stability condition: A < —
2nv

Jodo Teixeira Local in-time Navier-Stokes eqn. existence and regularity



Estimating the iterates

Stability conditions

Stability conditions are needed to ensure that the iterates behave
nicely. These conditions ensure that ¢(U, U)(x, t) is a weighted
average of the values of U at (x, t) and its neighbouring points.

1
e Stability condition: A < —
2nv

h
e Need also EU,'(X, t) “small”: h infinitesimal.
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Estimating the iterates

Estimate for discretized Poisson equation

The solutions of

AgP =xM(|U]I{ ) 25 i 5. Uj

ij=1

can be estimated using the Maximum Principle for Ay on an
appropriate domain (A. Brandt's method).
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Estimating the iterates

Estimate for discretized Poisson equation

The solutions of

AgP =xM(|U]I{ ) 25 i 5. Uj

ij=1

can be estimated using the Maximum Principle for Ay on an
appropriate domain (A. Brandt's method).

For some C = C(n) > 0 finite):

1PI§2 < CM?
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Estimating the iterates

Properties of the iteration function

We now work in (V(R), *V(R), %)
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Estimating the iterates

Properties of the iteration function

We now work in (V(R), *V(R), %)

Let h be a positive infinitesimal. Let U,V, W, Z € (R")Pd. If
there exists an M € *R such that, for all (x,t) € Dy, B
|U(x, t)] < M and V(x, t) is finite, then, for all (x,t) € Dy:
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Estimating the iterates

Properties of the iteration function

We now work in (V(R), *V(R), %)

Let h be a positive infinitesimal. Let U,V, W, Z € (R")Pd. If
there exists an M € *R such that, for all (x,t) € Dy, B
|U(x,t)| < M and V(x, t) is finite, then, for all (x,t) € Dy:
(a) [®(U, V)(x, )| <M
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Estimating the iterates

Properties of the iteration function

We now work in (V(R), *V(R), %)

Let h be a positive infinitesimal. Let U,V, W, Z € (R")Pd. If
there exists an M € *R such that, for all (x,t) € Dy,

|U(x, t)| < M and V/(x, t) is finite, then, for all (x,t) € Dy:
(a) [®(U, V)(x,t)| < M

(b) (U, Wit} = @V, 2) (6 ) = S(U =V, Wilo £) =

% (Z,-(X, t) — Wi(x, t)) (V(X + hej, t) — V(x — he;, t))

i=1
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Estimating the iterates

Estimate for ||U|| (4

Let [[Ullige(a) = max [U(x, t)|

(x,t)e

If U is the solution of the discrete problem then

IUlle@, < ol + TIFllez
< luolleee + T (CM? + [|f]| =)
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Estimating the iterates

Estimate for [U] = (a)

max |U(X7 t)_U(yat)‘
(x.8),(y,t)€A, xZy Ix =yl

Let [U]1o(a) =
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Estimating the iterates

Estimate for [U] = (a)

max |U(X7 t)_ U(y> t)‘
(x:t),(y,t)EA, xFy Ix —y|

- <\%[?]Ls°wd)>l/2 < (C’W*\/E[f]“"y/ 2

Lo = [uolige(my,)

Let [U]ise(a) =

Lemma
Let

IfU is the solution of the discrete problem then for any
T < m [U]Loo(D y is uniformly bounded by a constant

depending only on T, ug, f, n and M.
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Estimating the iterates

Estimate for [[U]];=(a)

[U(x, t + k) = U(x, t)]
o Let [[U]]LEO(A) - (X7t),(T,?-)i(-k)EA k
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Estimating the iterates

Estimate for [[U]];=(a)

[U(x, t + k) = U(x, t)]
o Let [[U]]LEO(A) - (X7t),(T,?-)i(-k)EA k

e Let [, = max <[[uo]]L30(1r;/,)7 %([[?]]Lgo(ﬁd))l/2>
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Estimating the iterates

Estimate for [[U]];=(a)

U(x, t + k) = U(x, 1)
o Let [[U]]L?(A) - (x,t), (T?—)i(—k)eA k

o Let Lo = max ([[uolleg(my- 3(Fll g0, ")
e Using the regularity of up:

(Xk) U(x,0) Z(Sh,,

~ vAup(x) — (uo - V)up(x) — Vp(x,0) + f(x,0)

This gives us an estimate for [[uo]] s (rn ) in terms of the
initial data.
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Estimating the iterates

Estimate for [[U]];=(a)

IfU is the solution of the discrete problem then: For any

T < m [[UllLs(a) is uniformly bounded by a constant

(dependent only on n, ug, f, M and T).
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Existence and regularity of solutions

First existence result

A good candidate for solution is:

u(st x,st t) = st U(x, t)
p(st x,st t) = st P(x, t)
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Existence and regularity of solutions

First existence result

A good candidate for solution is:

u(st x,st t) = st U(x, t)
p(st x,st t) = st P(x, t)

These functions are well-defined on T" x [0, T| and Lipshitz
continuous for T smaller than the (possible) blow-up time of the
estimates of U.

Jodo Teixeira Local in-time Navier-Stokes eqn. existence and regularity



Existence and regularity of solutions

First existence result

A good candidate for solution is:

u(st x,st t) = st U(x, t)
p(st x,st t) = st P(x, t)

These functions are well-defined on T" x [0, T| and Lipshitz
continuous for T smaller than the (possible) blow-up time of the
estimates of U.

Let u, p and T be as above. Then u is a strong solution (i.e, at
least C?) of the modified Navier-Stokes problem (2) on
T" x [0, T].
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Existence and regularity of solutions

Sketch of the proof
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Existence and regularity of solutions

Sketch of the proof

e Since ||PHg’2 < CM?, pis C! (with its first derivatives
Lipshitz continuous). Then —Vp + f is Lipshitz continuous.
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Existence and regularity of solutions

Sketch of the proof

e Since ||PH&2 < CM?, pis C! (with its first derivatives
Lipshitz continuous). Then —Vp + f is Lipshitz continuous.

o Estimate the diference between U and the (smooth) solution
of the classical parabolic problem:

ve —VAv+ (u-V)v=—-Vp+f in D
V=1 on T" x {0}.
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Existence and regularity of solutions

Sketch of the proof

e Since ||PH&2 < CM?, pis C! (with its first derivatives
Lipshitz continuous). Then —Vp + f is Lipshitz continuous.

o Estimate the diference between U and the (smooth) solution
of the classical parabolic problem:

ve —VAv+ (u-V)v=—-Vp+f in D
V=1 on T" x {0}.

o It follows that U — *v is infinitesimal. So (the standard) u is
equal to the C>1:® function v.
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Existence and regularity of solutions

Sketch of the proof

e Since ||PH&2 < CM?, pis C! (with its first derivatives
Lipshitz continuous). Then —Vp + f is Lipshitz continuous.

o Estimate the diference between U and the (smooth) solution
of the classical parabolic problem:

ve —VAv+ (u-V)v=—-Vp+f in D
V=1 on T" x {0}.
o It follows that U — *v is infinitesimal. So (the standard) u is

equal to the C>1:® function v.
e Let g satisfy

Aq = —xM(J|uflo2) tr(Dxu)?

Then Ayqg — Agp ~ 0. Use the maximum principle to
conclude that P — *q is infinitesimal. Then (the standard) p
is equal to the C3>* function q.
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Existence and regularity of solutions

Main result

Let u, p be as above. Then there exists a T > 0 such that u is a
(strong) solution of the Navier-Stokes problem (1) on T" x [0, T].
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Existence and regularity of solutions

Main result

Let u, p be as above. Then there exists a T > 0 such that u is a
(strong) solution of the Navier-Stokes problem (1) on T" x [0, T].

Proof: u, p solve the modified problem and are C%%. By uniform
continuity of u and its first and second derivatives we conclude
that for any M > ||uglo2 there is a T > 0 such that [|ullo2 < M.
Then, for 0 < t < T, the modified problem is equivalent to the
original problem.
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