IDEMPOTENT ULTRAFILTERS AND SET THEORY FINER TOPOLOGIES TOOLS SOME (INDEPENDENCE) RESULTS QU

IDEMPOTENT ULTRAFILTERS AND FINER TOPOLOGIES ON $\beta\mathbb{N}$

Peter Krautzberger

Institut für Mathematik, Freie Universität Berlin

UltraMath Pisa, June 1-7, 2008

OUTLINE

- 1 IDEMPOTENT ULTRAFILTERS AND SET THEORY
- **2** Finer Topologies
- 3 Tools
- 4 Some (Independence) results
- 5 QUESTIONS

OUTLINE

- 1 IDEMPOTENT ULTRAFILTERS AND SET THEORY
- 2 Finer Topologies
- 3 Tools
- 4 Some (Independence) results
- 5 QUESTIONS

IDEMPOTENT ULTRAFILTERS AND SET THEORY FINER TOPOLOGIES TOOLS SOME (INDEPENDENCE) RESULTS QUESTION

STRONGLY SUMMABLE AND UNION ULTRAFILTER

CLASSICAL DEFINITIONS

- For a sequence $(x_n)_{n \in \mathbb{N}}$ in a some semigroup (S, \cdot) let $FP(x_n) := \{ \prod_{i \in F} x_i \mid \emptyset \neq F \subseteq S \text{ finite} \}.$
- $u \in \beta \mathbb{N}$ is strongly summable, if it has a base of FS-sets.

IDEMPOTENT ULTRAFILTERS AND SET THEORY FINER TOPOLOGIES TOOLS SOME (INDEPENDENCE) RESULTS QUESTION

STRONGLY SUMMABLE AND UNION ULTRAFILTER

CLASSICAL DEFINITIONS

- For a sequence $(x_n)_{n\in\mathbb{N}}$ in a some semigroup (S,\cdot) let $FP(x_n) := \{\prod_{i\in F} x_i \mid \emptyset \neq F \subseteq S \text{ finite}\}.$
- $u \in \beta \mathbb{N}$ is **strongly summable**, if it has a base of *FS*-sets.

Some properties I

Let u be (very) strongly summable.

Algebra (Hindman)

- u is idempotent (in the semigroup $(\beta \mathbb{N}, +)$).
- If p+q=u (in $\beta\mathbb{N}$), then $\left\{ egin{array}{l} p=u+z \\ q=u-z \end{array}
 ight\}$ for some $z\in\mathbb{Z}$.
- The maximal subgroup in $\beta\mathbb{N}$ with identity u is minimal ($\cong \mathbb{Z}$).

IDEMPOTENT ULTRAFILTERS AND SET THEORY FINER TOPOLOGIES TOOLS SOME (INDEPENDENCE) RESULTS QUESTION

Some properties II

Let u be (very) strongly summable.

Combinatorics (Blass)

- u- $prod(\omega)$ has exactly 5 constellations and 3 skies.
- u has a Ramsey property for partitions of finite sums.
- min(u) and max(u) are selective ultrafilters.

OUTLINE

- IDEMPOTENT ULTRAFILTERS AND SET THEORY
- **2** Finer Topologies
- 3 Tools
- 4 Some (Independence) results
- 5 QUESTIONS

DAGUENET (-TEISSIER)'S TOPOLOGICAL FAMILIES

TOPOLOGICAL FAMILIES

A family Φ of filters on \mathbb{N} is a topological family, if it

includes the countably generated filters

 \square is closed under images and preimages (for all $f: \mathbb{N} \to \mathbb{N}$

is closed under countable (compatible) unions.

DAGUENET (-TEISSIER)'S TOPOLOGICAL FAMILIES

TOPOLOGICAL FAMILIES

- includes the countably generated filters
- $oxed{2}$ is closed under images and preimages (for all $f:\mathbb{N} o\mathbb{N}$)
- 3 is closed under countable (compatible) unions.

DAGUENET (-TEISSIER)'S TOPOLOGICAL FAMILIES

TOPOLOGICAL FAMILIES

- includes the countably generated filters
- $oxed{2}$ is closed under images and preimages (for all $f: \mathbb{N} \to \mathbb{N}$)
- 3 is closed under countable (compatible) unions.

DAGUENET (-TEISSIER)'S TOPOLOGICAL FAMILIES

TOPOLOGICAL FAMILIES

- includes the countably generated filters
- 2 is closed under images and preimages (for all $f: \mathbb{N} \to \mathbb{N}$)
- 3 is closed under countable (compatible) unions.

DAGUENET (-TEISSIER)'S TOPOLOGICAL FAMILIES

TOPOLOGICAL FAMILIES

- 1 includes the countably generated filters
- $oxed{2}$ is closed under images and preimages (for all $f: \mathbb{N} \to \mathbb{N}$)
- 3 is closed under countable (compatible) unions.

DAGUENET (-TEISSIER)'S TOPOLOGICAL FAMILIES

TOPOLOGICAL FAMILIES

A family Φ of filters on \mathbb{N} is a topological family, if it

- 1 includes the countably generated filters
- $oxed{2}$ is closed under images and preimages (for all $f: \mathbb{N} \to \mathbb{N}$)
- **3** is closed under countable (compatible) unions.

Then the sets of ultrafilters extending filters in Φ generate a (finer) topology on $\beta\mathbb{N}$.

EXAMPLES

- Countably generated filters
- \blacksquare F_{σ} filters
- Σ_1^1 filters

FINER TOPOLOGIES

Let Φ be a topological family and consider $\beta\mathbb{N}$ with the Φ -topology.

Baire Category Theorem (Daguenet)

The intersection of ω_1 -many open dense sets is dense $(\omega_1$ -comeager).

ULTRAFILTERS AND FINER TOPOLOGIES

Consider the F_{σ} -topology on $\beta \mathbb{N}$.

APPLICATION(DAGUENET)

- The set of P-points is the intersection of 2^{\aleph_0} open dense sets.
- Under CH: the set of P-points with no image being selective/rapid/"property C" is ω_1 -comeager.

OUTLINE

- I IDEMPOTENT ULTRAFILTERS AND SET THEORY
- 2 Finer Topologies
- 3 Tools
- 4 Some (Independence) results
- 5 QUESTIONS

SUMS OF FILTERS

Let F, G, H be filters; $\overline{F}, \overline{G}, \overline{H}$ the corresponding subsets of $\beta \mathbb{N}$.

(Combinatorical) sum

$$F + G := \{ A \subseteq \mathbb{N} \mid (\exists V \in F, (W_v)_{v \in V} \text{ in } G) \bigcup_{v \in V} v + W_v \subseteq A \}$$

Γ opological characterization

$$F + G \supset H$$
 iff

For all
$$q \in \overline{F}$$
, $(p_n)_{n \in \omega}$ in \overline{G} : q - $\lim_{n \in \mathbb{N}} (n + p_n) \in \overline{H}$

SUMS OF FILTERS

Let F, G, H be filters; $\overline{F}, \overline{G}, \overline{H}$ the corresponding subsets of $\beta \mathbb{N}$.

(Combinatorical) sum

$$F + G := \{ A \subseteq \mathbb{N} \mid (\exists V \in F, (W_v)_{v \in V} \text{ in } G) \bigcup_{v \in V} v + W_v \subseteq A \}$$

${ m Topological}$ characterization

$$F+G\supseteq H$$
 iff
For all $g\in \overline{F}$, $(p_n)_{n\in\omega}$ in \overline{G} : g -lim $_{n\in\mathbb{N}}(n+p_n)\in \overline{H}$

SUMS OF FILTERS

Let F, G, H be filters; $\overline{F}, \overline{G}, \overline{H}$ the corresponding subsets of $\beta \mathbb{N}$.

(Combinatorical) sum

$$F + G := \{ A \subseteq \mathbb{N} \mid (\exists V \in F, (W_v)_{v \in V} \text{ in } G) \bigcup_{v \in V} v + W_v \subseteq A \}$$

TOPOLOGICAL CHARACTERIZATION

$$F + G \supset H$$
 iff

For all
$$q \in \overline{F}$$
, $(p_n)_{n \in \omega}$ in \overline{G} : q - $\lim_{n \in \mathbb{N}} (n + p_n) \in \overline{H}$.

IDEMPOTENT FILTERS

IDEMPOTENCY

F is idempotent, if $F + F \supseteq F$.

Addition and finer Topologies

There are (many) idempotent filters in every topological family Φ .

IDEMPOTENT FILTERS

IDEMPOTENCY

F is idempotent, if $F + F \supseteq F$.

Addition and finer Topologies

There are (many) idempotent filters in every topological family Φ .

EXAMPLES

Examples in every topological family (for $\beta\mathbb{N}$)

- "Adequate partial semigroups"
- $2 FS_{\infty}$ -filters
- \mathbf{B} min⁻¹, max⁻¹ filters (!)

EXAMPLES

Examples in every topological family (for $\beta\mathbb{N}$)

- "Adequate partial semigroups"
- $2 FS_{\infty}$ -filters
- $3 \text{ min}^{-1}, \text{ max}^{-1} \text{ filters (!)}$

dempotent Ultrafilters and set theory $\,$ Finer $\,$ Topologies $\,$ Tools $\,$ Some (independence) $\,$ results $\,$ Ques

EXAMPLES

Examples in every topological family (for $\beta\mathbb{N}$)

- "Adequate partial semigroups"
- $2 FS_{\infty}$ -filters
- $\mathbf{3}$ min⁻¹, max⁻¹ filters (!)

- IDEMPOTENT ULTRAFILTERS AND SET THEORY
- 2 Finer Topologies
- 3 Tools
- 4 Some (independence) results
- 5 QUESTIONS

TOPOLOGICAL FAMILIES REVISITED

Let Φ be a topological family and consider the Φ -topology.

IDEMPOTENT ULTRAFILTERS

Assume CH and let $A \subseteq \beta \mathbb{N}$ be ω_1 -comeager. There exists dense $D \subseteq E(\beta \mathbb{N})$, such that $\{\min(e) \mid e \in D\}$ and $\{\max(e) \mid e \in D\}$ are dense in A.

TOPOLOGICAL FAMILIES REVISITED

Let Φ be a topological family and consider the Φ -topology.

IDEMPOTENT ULTRAFILTERS

Assume CH and let $A \subseteq \beta \mathbb{N}$ be ω_1 -comeager. There exists dense $D \subseteq E(\beta \mathbb{N})$, such that $\{\min(e) \mid e \in D\}$ and $\{\max(e) \mid e \in D\}$ are dense in A.

IDEMPOTENT ULTRAFILTERS AND SET THEORY FINER TOPOLOGIES TOOLS SOME (INDEPENDENCE) RESULTS QUESTION

APPLICATION

Examples revisited

- (Blass) For countably generated filters: The set of (very) strongly summable ultrafilters (with selective image).
- For F_{σ} -filters: The set of idempotent ultrafilters with min and max strong P-points.
- For \sum_{1}^{1} -filters: The set of idempotent ultrafilters with min and max not \geq_{RK} any P-point or any rapid.

APPLICATION

Examples revisited

- (Blass) For countably generated filters: The set of (very) strongly summable ultrafilters (with selective image).
- For F_{σ} -filters: The set of idempotent ultrafilters with min and max strong P-points.
- For \sum_{1}^{1} -filters: The set of idempotent ultrafilters with min and max not \geq_{RK} any P-point or any rapid.

APPLICATION

Examples revisited

- (Blass) For countably generated filters: The set of (very) strongly summable ultrafilters (with selective image).
- For F_{σ} -filters: The set of idempotent ultrafilters with min and max strong P-points.
- For \sum_{1}^{1} -filters: The set of idempotent ultrafilters with min and max not \geq_{RK} any P-point or any rapid.

- IDEMPOTENT ULTRAFILTERS AND SET THEORY
- 2 Finer Topologies
- 3 Tools
- 4 Some (Independence) results
- 5 QUESTIONS

QUESTIONS

- Can "dense" be replaced by " ω_1 -comeager "?
- What is the position of these ultrafilters in the partial order of idempotent ultrafilters?
- What other algebraic properties do these new idempotent ultrafilters have?
- What other topological families are there and may they help with the above?

LITERATURE

Forcing with ultrafilters and complete combinatorics Ann. Pure Appl. Logic, 1989.

🔋 Maryvonne Daguenet.

Propriété de Baire de βN muni d'une nouvelle topologie et application à la construction d'ultrafiltres.

Semin. Choquet, Initiation l'Anal., 1975.

Andreas Blass.

Ultrafilters related to Hindman's finite-unions theorem Logic and Combinatorics, 1987.

Neil Hindman, Dona Strauss.

Algebra in the Stone-Čech compactification

De Gruyter, 1998.

THE END

Thank You!

