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van der Waerden / Hales-Jewett

van der Waerden’s Theorem (1927)
Let k , r ∈ N, C1 ∪ . . . ∪ Cr = N. ⇒ ∃s and a,d ∈ N s.t.

a + d · i ∈ Cs for i = 0, . . . , k

Hales-Jewett Theorem (1963)
Let k , r ∈ N, C1 ∪ . . . ∪ Cr = Fin(N× {0, . . . , k}). ⇒ ∃s and
α ⊆ N× {0, . . . , k}, γ ⊆ N s.t.

α ] γ × {i} ∈ Cs for i = 0, . . . , k

Szemerédi’s Theorem ←→ density Hales-Jewett
Polynomial van der Waerden ←→ Polynomial Hales-Jewett

M. Beiglböck (TU Vienna) A variant of the Hales-Jewett theorem June 2008 / Pisa 2 / 7



van der Waerden / Hales-Jewett

van der Waerden’s Theorem (1927)
Let k , r ∈ N, C1 ∪ . . . ∪ Cr = N. ⇒ ∃s and a,d ∈ N s.t.

a + d · i ∈ Cs for i = 0, . . . , k

Hales-Jewett Theorem (1963)
Let k , r ∈ N, C1 ∪ . . . ∪ Cr = Fin(N× {0, . . . , k}). ⇒ ∃s and
α ⊆ N× {0, . . . , k}, γ ⊆ N s.t.

α ] γ × {i} ∈ Cs for i = 0, . . . , k

Szemerédi’s Theorem ←→ density Hales-Jewett
Polynomial van der Waerden ←→ Polynomial Hales-Jewett

M. Beiglböck (TU Vienna) A variant of the Hales-Jewett theorem June 2008 / Pisa 2 / 7



van der Waerden / Hales-Jewett

van der Waerden’s Theorem (1927)
Let k , r ∈ N, C1 ∪ . . . ∪ Cr = N. ⇒ ∃s and a,d ∈ N s.t.

a + d · i ∈ Cs for i = 0, . . . , k

Hales-Jewett Theorem (1963)
Let k , r ∈ N, C1 ∪ . . . ∪ Cr = Fin(N× {0, . . . , k}). ⇒ ∃s and
α ⊆ N× {0, . . . , k}, γ ⊆ N s.t.

α ] γ × {i} ∈ Cs for i = 0, . . . , k

Szemerédi’s Theorem ←→ density Hales-Jewett
Polynomial van der Waerden ←→ Polynomial Hales-Jewett

M. Beiglböck (TU Vienna) A variant of the Hales-Jewett theorem June 2008 / Pisa 2 / 7



A combined additive and multiplicative van der
Waerden theorem

Bergelson 2005
Let k , r ∈ N and N = C1 ∪ . . . ∪ Cr . There exist a,b,d , s s.t.

b(a + id)j ∈ Cs

for all i , j ∈ {0, . . . , k}.

In fact: Every set C ⊆ N of positive upper multiplicative density
contains such configurations.
Idea: Uniform IP-Szemeredi implies that every such C contains a large
set G of geometric progressions. Then Szemerédi’s Theorem yields
that G contains arithmetic progressions.
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abstract version of Bergelson’s result:
“One cell contains many combinatorial lines”

F . . . family of finite subsets of N.
F is partition regular iff one cell of any finite partition contains an
element of F .
(E.g. F = {{a,a + d , . . . ,a + kd} : a,d ∈ N}.)

Theorem
Let k , r ∈ N, C1 ∪ . . . ∪ Cr = Fin(N× {0, . . . , k}) and let F be a
partition regular family of finite sets.
⇒ ∃s, α, γ and F ∈ F s.t.

α ]
(
γ ] {t}

)
× {j} ∈ Cs for all j ∈ {0, . . . , k} and t ∈ F

main idea: C large ⇒ {(α, γ) : α ] γ × {i} ∈ C, i = 0, . . . , k} large.

simpler: C ⊆ Z large ⇒ {(a,d) ∈ Z2 : a + id ∈ C, i = 0, . . . , k} large.
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preservation of largeness

Furstenberg & Glasner 1998
Let k ∈ N, assume that C ⊆ Z is piecewise syndetic.

⇒ {(a,d) : a,a + d , . . . ,a + kd ∈ C} is piecewise syndetic in Z2.

C ⊆ Z is piecewise syndetic ⇔ C + {0, . . . ,n} contains arbitrarily long
intervals for n large enough.

In commutative groups: C ⊆ G is piecewise syndetic
⇔ there is some finite set F such C + F contains a shifted copy of
every finite set
⇔ ∃p ∈ K (βG) s.t. C ∈ p.

fact: One cell of any finite partition of G is piecewise syndetic.
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preservation of largeness

Bergelson & Hindman 2001
Let k ∈ N, assume that C ⊆ Z is central.

⇒ {(a,d) : a,a + d , . . . ,a + kd ∈ C} is central in Z2.

C ⊆ G is central ⇔ there is a minimal idempotent p ∈ βG s.t. S ∈ p.
p ∈ βG is idempotent if p + p = p, the idempotents are ordered by

p ≤ q ⇔ p + q = q + p = p.

sketch of proof: Set φi(a,d) = a + id , let φ̂i : β(Z2)→ βZ be its
continuous extension. Goal:

{(a,d) : φ0(a,d), . . . , φk (a,d) ∈ C} is central

Pick a minimal idempotent p s.t. C ∈ p. ⇒ ∃q ∈ β(G2), minimal
idempotent s.t.

φ̂0(q) = . . . = φ̂k (q) = p.
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preservation of largeness

Furstenberg & Glasner 1998
Let k ∈ N, assume that C ⊆ Z is piecewise syndetic. Then

{(a,d) : a,a + d , . . . ,a + kd ∈ C}

is piecewise syndetic in Z2.

modest version
Assume that C1 ∪ C2 = Z. There exists s ∈ {1,2} s.t.

{(a,d) : a,a + d ,a + 2d ∈ Cs}

is piecewise syndetic in Z2.
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