Complementi di Analisi Matematica

Laurea Specialistica in Informatica, A.A. 2005-2006

V.M Tortorelli

Corrigenda al compandio sugli spazi metrici

ERRATA	CORRIGE	
$ f _{L^{\infty}} = \sup_{x \in A} f(x) $	$ f _{\sup} = \sup_{x \in A} f(x) $	
		$3(a)$ -punto 7^o , pag.5
$ f _{L^{\infty}} < C f _{L^p}$	$ f _{\sup} < C f _{L^p}$	
		3(d), pag.5
$ f _{L^p} < (b-a) f _{L^\infty}$	$ f _{L^p} < (b-a)^{\frac{1}{p}} f _{\sup}$	
	· · · · · · · ·	3(d), pag.5
con potenza p sommabile	con potenza p^a sommabile $(p \neq \infty)$	
		3(g), Nota pag.6
ADDENDA	$f\mapsto \sup f $	
	é una norma sulle funzioni limitate	in calce a 3(g), Nota pag.6

COMMENTO

- 1. Si definisce l'integrale generalizzato alla Riemann come segue:
 - i- Sia $f \geq 0$ per cui min $\{f, n\}$ sia Riemann integrabile sugli intervalli
 - ii- Si pone $\int_{\mathbf{R}} f(s)ds =: \lim_{n \to \infty} \int_{-n}^n \min\{f(s), n\} ds$. Se l'integrale è finito la funzione si dirà sommabile.
 - iii- Per g di segno variabile, quando abbia senso, si pone $\int_{\mathbf{R}}g(s)ds=:\int_{\mathbf{R}}\max\{g(s),0\}ds-\int_{\mathbf{R}}\max\{-g(s),0\}ds$
- 2. Si definisce $|\cdot|_{L^{\infty}}$ sullo spazio delle funzioni con 'troncate' Riemann integrabili come segue:

$$f \sim g \iff \forall \ n \in \mathbb{N} \ \int_{-n}^{n} \min\{n, |f(t) - g(t)|\} dt = 0$$

$$|f|_{L^{\infty}} = \inf\{|g|_{\sup}: g \sim f \}$$

- Si ha che $|\cdot|_{L^{\infty}}$ é finito sulle funzioni limitate, od *equivalenti a limitate*: ma **non** é una norma poiché si annulla su funzioni non nulle. Mentre $|\cdot|_{\sup}$ é una norma sullo spazio delle funzioni limitate e suoi sottospazi vettoriali.
- Chiaramente se f é continua si ha $|f|_{\sup} = |f|_{L^{\infty}}$.
- La funzione $|\cdot|_{L^{\infty}}$ é una norma sullo spazio vettoriale quoziente ottenuto da quello "delle funzioni con troncate Riemann integrabili che siano \sim -equivalenti ad una funzione limitata" rispetto alla stessa relazione \sim .
- 3. Analogamente $|\cdot|_{L^p}$ é una norma sullo spazio vettoriale quoziente rispetto alla relazione \sim , ottenuto da quello delle funzioni con potenza p^a sommabile alla Rieamnn in senso generalizzato, su cui non è una norma annulandosi su funzioni non nulle.