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Logarithmic geometry1

Log scheme = scheme X + “extra data”.
The “extra data” typically
• keeps track of a “boundary” in X , or
• contains infinitesimal information about a family,
of which X is a fiber

and involves monoids (→ toric geometry, combina-
torics, etc.).
Example: start with a smooth non-proper variety
Y/k, compactify it to Y ⊆ X , and say D = X \ Y
is a NC (normal crossings) divisor.
X is nicer to work with, but what we actually care
about is Y . Idea: encode the stuff that we added
(the divisor D) in the geometry.
One way to do it: take
M(U) = {f ∈ OX(U) | f is invertible outside of D}.
This is a subsheaf of monoids of OX containing
O×X, that somehow keeps track of the boundary D.

(take two) Log scheme = scheme X + sheaf of
monoids M and a map α : M → OX, that iden-
tifies the units.

One can develop (some) EGA-style algebraic ge-
ometry with log schemes. For example:

• one can define a sheaf Ωlog
X of “logarithmic

differentials”, related to log derivations and
deformation theory

• in the example above Ωlog
X = Ω1

X(log D) is the
sheaf of logarithmic 1-forms

• one can define a whole log de Rham complex
Ω•X(log D), and in good cases this computes the
cohomology of X \D = Y .

Moreover, in this spirit, there is a notion of log
smoothness that extends the classical notion.
Some morphisms that aren’t classically smooth be-
come log smooth when the spaces are equipped with
appropriate log structures.
Roughly, this is related to Ωlog

X as classical smooth-
ness is related to ΩX.

Example: log smooth curves1

We all know the moduli space (stack) of smooth curves Mg,n of genus g with n marked points. It’s not
compact. The Deligne-Mumford compactificationMg,n has nodal curves in the boundary ∂Mg,n ⊆Mg,n

(that is a NC divisor... you probably see where this is going).
Back to log geometry, there is a notion of (stable) log smooth log curve, and of families of those over log
schemes. This defines a moduli functor LogMg,n : (Logsch)op→ (Groupoids) over log schemes.
(g is the genus of the underlying curve, n is another invariant, corresponding of course to marked points)

Magic:
• the underlying curve of every log smooth log curve is nodal, and every family of nodal curves admits
“canonical” log structures (on the base and the total space) for which it becomes log smooth

• the boundary divisor ∂Mg,n gives a log structure onMg,n. The resulting log stack (Mg,n, ∂Mg,n)
represents the functor LogMg,n, in the sense that there is an equivalence

LogMg,n
∼= Hom(−, (Mg,n, ∂Mg,n)).

So log smoothness “automatically singles out” nodal curves. More generally

log smoothness selects “good” degenerations.
This philosophy was applied to other cases (K3 surfaces, abelian varieties, toric Hilbert schemes, etc.).

Root stacks4

Say D ⊆ X is an effective Cartier divisor (giving a log structure on X). An n-th root of D is a line bundle
L with a global section s such that L⊗n ∼= O(D), with s⊗n corresponding to the canonical section sD.
There is a stack n

√
X,D over X that functorially parametrizes n-th roots of D. The map n

√
X,D → X is an

isomorphism outside of D, and a µn-gerbe along D.
For example say X = A1 and D is the origin. Then the n-th root stack is the quotient [A1/µn]→ A1, where
A1→ A1 is z 7→ zn and µn acts by multiplication.
More generally, a log scheme X has root stacks n

√
X for any n. Taking these roots somehow “magnifies”

the log structure. Take this to the extreme: lim←−n
n
√
X =: ∞

√
X .

This “infinite root stack” is not algebraic but has a flat atlas and local quotient stack presentations. It’s still
some kind of orbifold over X , although with huge stabilizers.

∞
√
X “embodies” aspects the log geometry of X , turning them into “plain” geometry.

Intuitively, having every possible root completely determines the “infinitesimal information” given by the log
structure. In fact:
Theorem4: one can reconstruct X starting from ∞

√
X . In particular if ∞

√
X ∼= ∞

√
Y as stacks, then X ∼= Y

as log schemes.
Another fact: parabolic sheaves on X can be seen as plain quasi-coherent sheaves on its root stacks. This
can be exploited to construct moduli spaces of parabolic sheaves3.

Root stacks vs Kato-Nakayama2

If X is a log scheme over C, theKato-Nakayama
spaceXlog is a topological space that can be seen as
an “underlying topological space” of the log scheme.
The projection

τ : Xlog → Xan

has fiber over x given by (S1)r, where r is the “rank”
of the log structure at x.
Example: if X = A1 with the log structure given
by the origin, then Xlog

∼= R≥0 × S1 is a cylinder.

The reduced fiber of ∞
√
X → X over x is B(Ẑ)r,

where r is the rank of the log structure at x again.
Note that S1 ≈ BZ, and Ŝ1 ≈ BẐ.
This is not a coincidence.
Theorem2: there is a morphism of topological
stacksXlog → ( ∞

√
X)top that induces an equivalence

X̂log
∼= ̂( ∞
√
X)top

between profinite completions.
This suggests to define the profinite homotopy type
of a log scheme X as the profinite étale homotopy
type (à la Artin-Mazur) of ∞

√
X , which coincides

with ̂( ∞
√
X)top over C, but is defined even outside of

this case.
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