Parabolic sheaves, root stacks and the Kato-Nakayama space

Mattia Talpo

UBC Vancouver

February 2016

Parabolic sheaves, root stacks and the Kato-Nakayama space

Outline

Parabolic sheaves as sheaves on "stacks of roots", and log geometry.

Partly joint with A. Vistoli, and Carchedi-Scherotzke-Sibilla.

Outline

Parabolic sheaves as sheaves on "stacks of roots", and log geometry.

Partly joint with A. Vistoli, and Carchedi-Scherotzke-Sibilla.

Parabolic sheaves

Log schemes and (in)finite root stacks

Kato-Nakayama space and real roots

Parabolic sheaves (on a curve)

Let X be a compact Riemann surface.

Narasimhan-Seshadri correspondence: there is a bijection

{unitary irreducible representations of $\pi_1(X)$ } \uparrow {degree 0 stable (holomorphic) vector bundles on *X*}. (via local systems)

Parabolic sheaves (on a curve)

Let X be a compact Riemann surface.

Narasimhan-Seshadri correspondence: there is a bijection

{unitary irreducible representations of $\pi_1(X)$ } \uparrow {degree 0 stable (holomorphic) vector bundles on *X*}. (via local systems)

What about the non-compact case?

Let $x_1, \ldots, x_k \in X$, and consider $X \setminus \{x_1, \ldots, x_k\}$.

There is a bijection

{unitary irreducible representations of $\pi_1(X \setminus \{x_1, \dots, x_k\})$ } \uparrow

Let $x_1, \ldots, x_k \in X$, and consider $X \setminus \{x_1, \ldots, x_k\}$.

There is a bijection

{unitary irreducible representations of $\pi_1(X \setminus \{x_1, \dots, x_k\})$ } \uparrow {degree 0 stable parabolic vector bundles on $(X, \{x_1, \dots, x_k\})$ }.

(Mehta-Seshadri, Deligne)

Let $x_1, \ldots, x_k \in X$, and consider $X \setminus \{x_1, \ldots, x_k\}$.

There is a bijection

{unitary irreducible representations of $\pi_1(X \setminus \{x_1, \ldots, x_k\})$ } \uparrow

{degree 0 stable parabolic vector bundles on $(X, \{x_1, \ldots, x_k\})$ }.

(Mehta-Seshadri, Deligne)

The "parabolic" structure is meant to encode the action of the small loops around the punctures.

Definition

A parabolic bundle on $(X, D = \{x_1, ..., x_k\})$ is a holomorphic vector bundle *E* on *X* with additional data:

Definition

A parabolic bundle on $(X, D = \{x_1, ..., x_k\})$ is a holomorphic vector bundle *E* on *X* with additional data:

for every point x_i there is a filtration

$$0 \subset F_{i,h_i} \subset \cdots \subset F_{i,2} \subset F_{i,1} = E_{x_i}$$

of the fiber of *E* over x_i , and weights $0 \le a_{i,1} < \cdots < a_{i,h_i} < 1$.

Definition

A parabolic bundle on $(X, D = \{x_1, ..., x_k\})$ is a holomorphic vector bundle *E* on *X* with additional data:

for every point x_i there is a filtration

$$0 \subset F_{i,h_i} \subset \cdots \subset F_{i,2} \subset F_{i,1} = E_{x_i}$$

of the fiber of *E* over x_i , and weights $0 \le a_{i,1} < \cdots < a_{i,h_i} < 1$.

~ eigenspaces and eigenvalues of the matrix corresponding to a small loop $\gamma \in \pi_1(X \setminus \{x_1, \ldots, x_k\})$ around the puncture x_i .

I will assume that the weights $a_{i,k}$ are rational numbers.

Parabolic bundles arising from representations of the algebraic fundamental group $\hat{\pi}_1(X \setminus \{x_1, \dots, x_k\})$ always have rational weights.

I will assume that the weights $a_{i,k}$ are rational numbers.

Parabolic bundles arising from representations of the algebraic fundamental group $\hat{\pi}_1(X \setminus \{x_1, \dots, x_k\})$ always have rational weights.

If $D = x_1 + \cdots + x_k$ (divisor on *X*), by taking inverse images along $E \to E|_D$, a parabolic bundle can be seen as

$$E(-D) \subset F_h \subset \cdots \subset F_1 = E$$

with weights $0 \le a_1 < \cdots < a_h < 1$.

We can generalize and allow sheaves and maps

$$E\otimes \mathcal{O}(-D) o F_h o \cdots o F_1 = E$$

whose composition $E(-D) \rightarrow E$ is multiplication by the section 1_D of the line bundle $\mathcal{O}(D)$, and weights $0 \le a_1 < \cdots < a_h < 1$.

This definition makes sense for any variety X with an effective Cartier divisor $D \subseteq X$ (Maruyama-Yokogawa).

We can generalize and allow sheaves and maps

$$E\otimes \mathcal{O}(-D) o F_h o \cdots o F_1 = E$$

whose composition $E(-D) \rightarrow E$ is multiplication by the section 1_D of the line bundle $\mathcal{O}(D)$, and weights $0 \le a_1 < \cdots < a_h < 1$.

This definition makes sense for any variety X with an effective Cartier divisor $D \subseteq X$ (Maruyama-Yokogawa).

One defines morphisms, subsheaves, kernels, cokernels, etc.. ~> a nice category of parabolic sheaves.

Parabolic sheaves are "best" defined on an arbitrary logarithmic scheme.

Log schemes (K. Kato, Fontaine-Illusie)

Definition (Borne-Vistoli) A log scheme is a scheme *X* with

Parabolic sheaves, root stacks and the Kato-Nakayama space

Log schemes (K. Kato, Fontaine-Illusie)

Definition (Borne-Vistoli) A log scheme is a scheme *X* with a sheaf of monoids *A* and a symmetric monoidal functor $A \rightarrow \text{Div}_X$. Div_X = (symmetric monoidal fibered) category over $X_{\acute{e}t}$ of line bundles with a global section (*L*, *s*).

Log schemes (K. Kato, Fontaine-Illusie)

Definition (Borne-Vistoli) A log scheme is a scheme *X* with a sheaf of monoids *A* and a symmetric monoidal functor $A \rightarrow \text{Div}_X$. Div_X = (symmetric monoidal fibered) category over $X_{\acute{e}t}$ of line bundles with a global section (*L*, *s*).

More concretely: if *P* is a monoid, a symmetric monoidal functor *L*: $P \rightarrow \text{Div}(X)$ sends

$$p\mapsto (L_p,s_p)$$

with isomorphisms

$$L_p \otimes L_q \cong L_{p+q}$$

carrying $s_p \otimes s_q$ to s_{p+q} .

If $D \subseteq X$ is an eff. Cartier divisor we get a log scheme (X, D): take the symmetric monoidal functor $\mathbb{N} \to \text{Div}(X)$ sending 1 to $(\mathcal{O}(D), 1_D)$.

If *D* has *r* irreducible components D_1, \ldots, D_r and is simple normal crossings you might want to "separate the components" with the functor $\mathbb{N}^r \to \text{Div}(X)$ sending e_i to $(\mathcal{O}(D_i), 1_{D_i})$ (lyer-Simpson, Borne). If $D \subseteq X$ is an eff. Cartier divisor we get a log scheme (X, D): take the symmetric monoidal functor $\mathbb{N} \to \text{Div}(X)$ sending 1 to $(\mathcal{O}(D), 1_D)$.

If *D* has *r* irreducible components D_1, \ldots, D_r and is simple normal crossings you might want to "separate the components" with the functor $\mathbb{N}^r \to \text{Div}(X)$ sending e_i to $(\mathcal{O}(D_i), 1_{D_i})$ (lyer-Simpson, Borne).

Example: start with X non-proper, compactify to $X \subseteq \overline{X}$ with SNC complement $D = \overline{X} \setminus X = D_1 \cup \ldots \cup D_r$,

and take $(\overline{X}, (D_1, \ldots, D_r))$.

How to think about this

To visualize the log scheme $(X, L: A \rightarrow Div_X)$, think about the stalks of the sheaf *A*.

There is a largest open subset $U \subseteq X$ where $A_p = 0$ (might be empty). In the "divisorial" case, $U = X \setminus D$.

How to think about this

To visualize the log scheme $(X, L: A \rightarrow \text{Div}_X)$, think about the stalks of the sheaf *A*.

There is a largest open subset $U \subseteq X$ where $A_p = 0$ (might be empty). In the "divisorial" case, $U = X \setminus D$.

More generally A is locally constant on a stratification (\sim discrete data).

Example: $X = \mathbb{A}^2$, $D = \{xy = 0\}$. The stalks of the sheaf A are

0	on	$\mathbb{A}^2 \setminus \{xy = 0\}$
\mathbb{N}	on	${xy = 0} \setminus {(0, 0)}$
N2	on	{ (0 , 0)}.

Parabolic sheaves (on log schemes)

A parabolic sheaf on X with respect to D

$$E \otimes \mathcal{O}(-D) \to F_h \to \cdots \to F_1 = E$$

with rational weights $0 \le a_1 < \cdots < a_h < 1$ with common denominator *n*

Parabolic sheaves (on log schemes)

A parabolic sheaf on X with respect to D

$$E\otimes \mathcal{O}(-D) o F_h o \cdots o F_1 = E$$

with rational weights $0 \le a_1 < \cdots < a_h < 1$ with common denominator *n*

can be seen as a diagram

$$-1$$
 $-a_h$ \cdots $-a_2$ $-a_1$ 0

$$E \otimes \mathcal{O}(-D) \longrightarrow F_h \longrightarrow \cdots \longrightarrow F_2 \longrightarrow F_1 \longrightarrow E$$

of sheaves placed in the interval [-1, 0], with maps going in the positive direction.

We can fill the (possible) "gaps" in $[-1, 0] \cap \frac{1}{n}\mathbb{Z}$ by "looking at the sheaf on the left", and

extend out of [-1,0] by tensoring with powers of $\mathcal{O}(D)$.

(so that $E_{q+1} \cong E_q \otimes \mathcal{O}(D)$ for every $q \in \frac{1}{n}\mathbb{Z}$)

We can fill the (possible) "gaps" in $[-1,0] \cap \frac{1}{n}\mathbb{Z}$ by "looking at the sheaf on the left", and

extend out of [-1,0] by tensoring with powers of $\mathcal{O}(D)$.

(so that $E_{q+1} \cong E_q \otimes \mathcal{O}(D)$ for every $q \in \frac{1}{n}\mathbb{Z}$)

We obtain a functor

$$\frac{1}{n}\mathbb{Z}\to\operatorname{Qcoh}(X)$$

where there is one arrow $a \to b$ in $\frac{1}{n}\mathbb{Z}$ if and only if $a \le b$ (i.e. there is $p \in \frac{1}{n}\mathbb{N}$ such that a + p = b).

Let *X* be a log scheme with log structure $L: P \to Div(X)$, and choose an index $n \in \mathbb{N}$ (~ common denominator of the weights).

Denote by $\frac{1}{n}P^{\text{wt}}$ the category with objects the elements of $\frac{1}{n}P^{gp}$ and arrows $a \rightarrow b$ elements $p \in \frac{1}{n}P$ such that a + p = b.

Let *X* be a log scheme with log structure $L: P \to Div(X)$, and choose an index $n \in \mathbb{N}$ (~ common denominator of the weights).

Denote by $\frac{1}{n}P^{\text{wt}}$ the category with objects the elements of $\frac{1}{n}P^{gp}$ and arrows $a \to b$ elements $p \in \frac{1}{n}P$ such that a + p = b.

Definition (Borne-Vistoli)

A parabolic sheaf on X with weights in $\frac{1}{n}P$ is a functor $E: \frac{1}{n}P^{\text{wt}} \rightarrow \text{Qcoh}(X)$ together with isomorphisms

$$E_{a+p} \cong E_a \otimes L_p$$
 for any $a \in \frac{1}{n} P^{gp}$ and $p \in P$

(that satisfy some compatibility properties).

Example

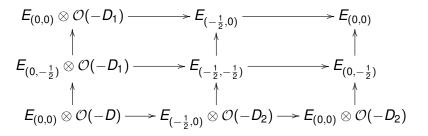
If the log structure on X is given by a snc divisor $D = D_1 + D_2$ with 2 irreducible components and we take n = 2,

Parabolic sheaves, root stacks and the Kato-Nakayama space

Example

If the log structure on X is given by a snc divisor $D = D_1 + D_2$ with 2 irreducible components and we take n = 2,

then a parabolic sheaf can be seen as



in the "negative unit square", and extended outside by tensoring with powers of $\mathcal{O}(D_1)$ and $\mathcal{O}(D_2)$.

Root stacks (Olsson, Borne-Vistoli)

Take a log scheme X with log structure $L: A \rightarrow \text{Div}_X$, and $n \in \mathbb{N}$.

The *n*-th root stack $\sqrt[n]{X}$ parametrizes liftings

where $\wedge n$: $\text{Div}_X \rightarrow \text{Div}_X$ is given by

 $(L, s) \mapsto (L^{\otimes n}, s^{\otimes n}).$

If the log structure is induced by an irreducible Cartier divisor D ⊆ X, the stack ⁿ√X parametrizes *n*-th roots of the divisor D.

That is, pairs (L, s) such that $(L, s)^{\otimes n} \cong (\mathcal{O}(D), 1_D)$.

▶ If *X* is a compact Riemann surface and $D = x_1 + ... + x_k$, then $\sqrt[n]{X}$ is an orbifold with coarse moduli space *X*, and stabilizer $\mathbb{Z}/n\mathbb{Z}$ over the punctures x_i . Root stacks are tame Artin stacks, Deligne–Mumford in good cases (for example if char(k) = 0).

Theorem (Borne-Vistoli)

Let X be a log scheme with log structure $A \rightarrow \text{Div}_X$. There is an equivalence between

parabolic sheaves on X with weights in $\frac{1}{n}A$, and

quasi-coherent sheaves on the root stack $\sqrt[n]{X}$.

Root stacks are tame Artin stacks, Deligne–Mumford in good cases (for example if char(k) = 0).

Theorem (Borne-Vistoli)

Let X be a log scheme with log structure $A \rightarrow \text{Div}_X$. There is an equivalence between

parabolic sheaves on X with weights in $\frac{1}{n}A$, and

quasi-coherent sheaves on the root stack $\sqrt[n]{X}$.

The "pieces" E_a of the parabolic sheaves are obtained (roughly) as eigensheaves for the action of the stabilizers of $\sqrt[n]{X}$.

The infinite root stack

(with A. Vistoli)

If $n \mid m$, there is a projection morphism

$$\sqrt[m]{X} \to \sqrt[n]{X}$$

that corresponds to raising to the $\frac{m}{n}$ -th power. This gives a projective system of algebraic stacks.

The infinite root stack

(with A. Vistoli)

If $n \mid m$, there is a projection morphism

$$\sqrt[m]{X} \to \sqrt[n]{X}$$

that corresponds to raising to the $\frac{m}{n}$ -th power. This gives a projective system of algebraic stacks.

Definition The infinite root stack of X is the inverse limit $\sqrt[\infty]{X} = \lim_{n \to \infty} \sqrt[n]{X}$.

The stack $\sqrt[\infty]{X}$ parametrizes compatible systems of roots of all orders. It is not algebraic, but it has local presentations as a quotient stack.

If *X* is a compact Riemann surface with the log structure induced by the divisor $D = x_1 + \cdots + x_k$, the infinite root stack $\sqrt[\infty]{X}$

- looks like X outside of D, and
- there is a stabilizer group $\widehat{\mathbb{Z}}$ at each of the points x_i .

If *X* is a compact Riemann surface with the log structure induced by the divisor $D = x_1 + \cdots + x_k$, the infinite root stack $\sqrt[\infty]{X}$

- looks like X outside of D, and
- there is a stabilizer group $\widehat{\mathbb{Z}}$ at each of the points x_i .

Theorem (-, Vistoli)

There is an equivalence between quasi-coherent sheaves on $\sqrt[\infty]{X}$ and parabolic sheaves on X with arbitrary rational weights. (\rightsquigarrow moduli spaces for parabolic sheaves)

If *X* is a compact Riemann surface with the log structure induced by the divisor $D = x_1 + \cdots + x_k$, the infinite root stack $\sqrt[\infty]{X}$

- ▶ looks like X outside of D, and
- there is a stabilizer group $\widehat{\mathbb{Z}}$ at each of the points x_i .

Theorem (-, Vistoli)

There is an equivalence between quasi-coherent sheaves on $\sqrt[\infty]{X}$ and parabolic sheaves on X with arbitrary rational weights. (\rightsquigarrow moduli spaces for parabolic sheaves)

Theorem (-, Vistoli)

Every isomorphism $\sqrt[\infty]{X} \cong \sqrt[\infty]{Y}$ of stacks comes from a unique isomorphism of log schemes $X \cong Y$.

The Kato-Nakayama space

From now on consider schemes locally of finite type over \mathbb{C} . Let *X* be a log scheme.

There is an "underlying topological space" X_{log} with a surjective map $\tau : X_{log} \rightarrow X$.

The Kato-Nakayama space

From now on consider schemes locally of finite type over \mathbb{C} . Let *X* be a log scheme.

There is an "underlying topological space" X_{log} with a surjective map $\tau : X_{log} \rightarrow X$.

The fiber of τ over $x \in X$ can be identified with $(S^1)^k$, where k = rank of the free abelian group A_x^{gp} . (over the locus $U \subseteq X$ where the log structure is trivial, τ is an isomorphism)

The Kato-Nakayama space

From now on consider schemes locally of finite type over \mathbb{C} . Let *X* be a log scheme.

There is an "underlying topological space" X_{log} with a surjective map $\tau : X_{log} \rightarrow X$.

The fiber of τ over $x \in X$ can be identified with $(S^1)^k$, where k = rank of the free abelian group A_x^{gp} . (over the locus $U \subseteq X$ where the log structure is trivial, τ is an isomorphism)

The (reduced) fiber of $\sqrt[\infty]{X} \to X$ over x is $B\widehat{\mathbb{Z}}^k$, where k is the same number.

Note that $S^1 = B\mathbb{Z}$, and so $\widehat{(S^1)^k} \cong B\widehat{\mathbb{Z}}^k$.

There is a functor $(-)_{top}$ that associates to a stack over schemes an underlying topological stack in the sense of Noohi (~ analytification functor).

There is a functor $(-)_{top}$ that associates to a stack over schemes an underlying topological stack in the sense of Noohi (~ analytification functor).

Theorem (Carchedi, Scherotzke, Sibilla, -) There is a canonical map of topological stacks

$$\Phi_X \colon X_{log} \to \sqrt[\infty]{X_{top}}$$

that induces an equivalence upon profinite completion.

The description of the map is easier if one interprets X_{log} itself as parametrizing "roots" of a certain kind.

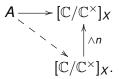
X_{log} as a root stack

As the stack $\sqrt[n]{X}$ parametrizes

X_{log} as a root stack

As the stack $\sqrt[n]{X}$ parametrizes

it turns out $\sqrt[n]{X_{top}}$ parametrizes

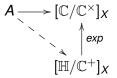


(note $\operatorname{Div}_X \sim [\mathbb{A}^1/\mathbb{G}_m]_X$).

A way to map to something that dominates every morphism $\land n: [\mathbb{C}/\mathbb{C}^{\times}]_X \to [\mathbb{C}/\mathbb{C}^{\times}]_X$ is to (in some sense) extract a logarithm.

A way to map to something that dominates every morphism $\land n: [\mathbb{C}/\mathbb{C}^{\times}]_X \to [\mathbb{C}/\mathbb{C}^{\times}]_X$ is to (in some sense) extract a logarithm.

Consider the stack $X_{\mathbb{H}}$ that parametrizes

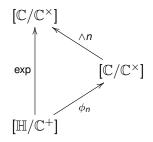


where $\mathbb{H}=\mathbb{R}_{\geq 0}\times\mathbb{R}$ and exp is induced by $\mathbb{H}\to\mathbb{C}$ given by

$$(x,y)\mapsto x\cdot e^{iy}$$

and by the exponential $\mathbb{C}^+ \to \mathbb{C}^{\times}.$

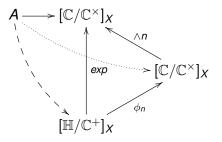
For every *n* we have a factorization



where $\phi_n \colon [\mathbb{H}/\mathbb{C}^+] \to [\mathbb{C}/\mathbb{C}^\times]$ is given by $\mathbb{H} \to \mathbb{C}$

$$(x,y)\mapsto (\sqrt[n]{x},y/n)\mapsto \sqrt[n]{x}\cdot e^{irac{y}{n}}$$
and by $\mathbb{C}^+ o \mathbb{C}^ imes$ given by $z\mapsto e^{rac{z}{n}}$.

Now the diagram



gives a natural transformation $X_{\mathbb{H}} \to \sqrt[n]{X_{top}}$.

These are compatible and give $X_{\mathbb{H}} \to \sqrt[\infty]{X_{top}} = \varprojlim_n \sqrt[n]{X_{top}}$.

Theorem ((in progress) -, Vistoli) The topological space X_{log} represents the stack $X_{\mathbb{H}}$.

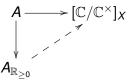
The morphism $X_{log} \rightarrow \sqrt[\infty]{X_{top}}$ that we obtain is the one mentioned before.

Theorem ((in progress) -, Vistoli) The topological space X_{log} represents the stack $X_{\mathbb{H}}$.

The morphism $X_{log} \rightarrow \sqrt[\infty]{X_{top}}$ that we obtain is the one mentioned before.

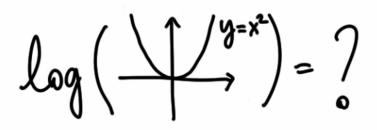
This is related to

real roots of the log structure, i.e. diagrams



parabolic sheaves with real weights.

Thank you for your attention!



Parabolic sheaves, root stacks and the Kato-Nakayama space