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Outline

Parabolic sheaves as sheaves on “stacks of roots”, and log
geometry.

Partly joint with A. Vistoli, and Carchedi-Scherotzke-Sibilla.
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Parabolic sheaves (on a curve)

Let X be a compact Riemann surface.

Narasimhan-Seshadri correspondence: there is a bijection

{unitary irreducible representations of π1(X )}
l

{degree 0 stable (holomorphic) vector bundles on X}.

(via local systems)

What about the non-compact case?
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Let x1, . . . , xk ∈ X , and consider X \ {x1, . . . , xk}.

There is a bijection

{unitary irreducible representations of π1(X \ {x1, . . . , xk})}
l

{degree 0 stable parabolic vector bundles on (X , {x1, . . . , xk})}.

(Mehta-Seshadri, Deligne)

The “parabolic” structure is meant to encode the action of the
small loops around the punctures.
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Definition
A parabolic bundle on (X ,D = {x1, . . . , xk}) is a holomorphic
vector bundle E on X with additional data:

for every point xi there is a filtration

0 ⊂ Fi,hi ⊂ · · · ⊂ Fi,2 ⊂ Fi,1 = Exi

of the fiber of E over xi , and weights 0 ≤ ai,1 < · · · < ai,hi < 1.

∼ eigenspaces and eigenvalues of the matrix corresponding to
a small loop γ ∈ π1(X \ {x1, . . . , xk}) around the puncture xi .
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I will assume that the weights ai,k are rational numbers.

Parabolic bundles arising from representations of the algebraic
fundamental group π̂1(X \ {x1, . . . , xk}) always have rational
weights.

If D = x1 + · · ·+ xk (divisor on X ), by taking inverse images
along E → E |D, a parabolic bundle can be seen as

E(−D) ⊂ Fh ⊂ · · · ⊂ F1 = E

with weights 0 ≤ a1 < · · · < ah < 1.
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We can generalize and allow sheaves and maps

E ⊗O(−D)→ Fh → · · · → F1 = E

whose composition E(−D)→ E is multiplication by the section
1D of the line bundle O(D), and weights 0 ≤ a1 < · · · < ah < 1.

This definition makes sense for any variety X with an effective
Cartier divisor D ⊆ X (Maruyama-Yokogawa).

One defines morphisms, subsheaves, kernels, cokernels, etc..
 a nice category of parabolic sheaves.

Parabolic sheaves are “best” defined on an arbitrary logarithmic
scheme.
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Log schemes (K. Kato, Fontaine-Illusie)

Definition (Borne-Vistoli)
A log scheme is a scheme X with

a sheaf of monoids A and
a symmetric monoidal functor A→ DivX .
DivX = (symmetric monoidal fibered) category over Xét of line
bundles with a global section (L, s).

More concretely: if P is a monoid, a symmetric monoidal
functor L : P → Div(X ) sends

p 7→ (Lp, sp)

with isomorphisms
Lp ⊗ Lq ∼= Lp+q

carrying sp ⊗ sq to sp+q.
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If D ⊆ X is an eff. Cartier divisor we get a log scheme (X ,D):
take the symmetric monoidal functor N→ Div(X ) sending 1 to
(O(D),1D).

If D has r irreducible components D1, . . . ,Dr and is simple
normal crossings you might want to “separate the components”
with the functor Nr → Div(X ) sending ei to (O(Di),1Di )
(Iyer-Simpson, Borne).

Example: start with X non-proper, compactify to X ⊆ X with
SNC complement D = X \ X = D1 ∪ . . . ∪ Dr ,

and take (X , (D1, . . . ,Dr )).
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How to think about this
To visualize the log scheme (X ,L : A→ DivX ), think about the
stalks of the sheaf A.

There is a largest open subset U ⊆ X where Ap = 0 (might be
empty).
In the “divisorial” case, U = X \ D.

More generally A is locally constant on a stratification
(∼ discrete data).

Example: X = A2, D = {xy = 0}. The stalks of the sheaf A are

0 on A2 \ {xy = 0}
N on {xy = 0} \ {(0,0)}
N2 on {(0,0)}.
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Parabolic sheaves (on log schemes)
A parabolic sheaf on X with respect to D

E ⊗O(−D)→ Fh → · · · → F1 = E

with rational weights 0 ≤ a1 < · · · < ah < 1 with common
denominator n

can be seen as a diagram

−1 −ah · · · −a2 −a1 0

E ⊗O(−D) // Fh // · · · // F2 // F1 // E

of sheaves placed in the interval [−1,0], with maps going in the
positive direction.
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We can fill the (possible) “gaps” in [−1,0] ∩ 1
nZ by “looking at

the sheaf on the left”, and

extend out of [−1,0] by tensoring with powers of O(D).

(so that Eq+1
∼= Eq ⊗O(D) for every q ∈ 1

nZ)

We obtain a functor

1
n
Z→ Qcoh(X )

where there is one arrow a→ b in 1
nZ if and only if a ≤ b (i.e.

there is p ∈ 1
nN such that a + p = b).
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Let X be a log scheme with log structure L : P → Div(X ), and
choose an index n ∈ N (∼ common denominator of the
weights).

Denote by 1
n Pwt the category with objects the elements of 1

n Pgp

and arrows a→ b elements p ∈ 1
n P such that a + p = b.

Definition (Borne-Vistoli)
A parabolic sheaf on X with weights in 1

n P is a functor
E : 1

n Pwt → Qcoh(X ) together with isomorphisms

Ea+p ∼= Ea ⊗ Lp for any a ∈ 1
n Pgp and p ∈ P

(that satisfy some compatibility properties).
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Example
If the log structure on X is given by a snc divisor D = D1 + D2
with 2 irreducible components and we take n = 2,

then a parabolic sheaf can be seen as

E(0,0) ⊗O(−D1) // E(− 1
2 ,0)

// E(0,0)

E(0,− 1
2 ) ⊗O(−D1) //

OO

E(− 1
2 ,−

1
2 )

//

OO

E(0,− 1
2 )

OO

E(0,0) ⊗O(−D) //

OO

E(− 1
2 ,0) ⊗O(−D2) //

OO

E(0,0) ⊗O(−D2)

OO

in the “negative unit square”, and extended outside by
tensoring with powers of O(D1) and O(D2).
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Root stacks (Olsson, Borne-Vistoli)

Take a log scheme X with log structure L : A→ DivX , and
n ∈ N.

The n-th root stack n
√

X parametrizes liftings

A //

!!

DivX

DivX

∧n

OO

where ∧n : DivX → DivX is given by

(L, s) 7→ (L⊗n, s⊗n).
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I If the log structure is induced by an irreducible Cartier
divisor D ⊆ X , the stack n

√
X parametrizes n-th roots of the

divisor D.

That is, pairs (L, s) such that (L, s)⊗n ∼= (O(D),1D).

I If X is a compact Riemann surface and D = x1 + . . .+ xk ,
then n

√
X is an orbifold with coarse moduli space X , and

stabilizer Z/nZ over the punctures xi .
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Root stacks are tame Artin stacks, Deligne–Mumford in good
cases (for example if char(k) = 0).

Theorem (Borne-Vistoli)
Let X be a log scheme with log structure A→ DivX .
There is an equivalence between

parabolic sheaves on X with weights in 1
n A, and

quasi-coherent sheaves on the root stack n
√

X.

The “pieces” Ea of the parabolic sheaves are obtained (roughly)
as eigensheaves for the action of the stabilizers of n

√
X .
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The infinite root stack
(with A. Vistoli)

If n | m, there is a projection morphism

m
√

X → n
√

X

that corresponds to raising to the m
n -th power.

This gives a projective system of algebraic stacks.

Definition
The infinite root stack of X is the inverse limit ∞

√
X = lim←−n

n
√

X .

The stack ∞√X parametrizes compatible systems of roots of all
orders. It is not algebraic, but it has local presentations as a
quotient stack.
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If X is a compact Riemann surface with the log structure
induced by the divisor D = x1 + · · ·+ xk , the infinite root stack
∞√X
I looks like X outside of D, and
I there is a stabilizer group Ẑ at each of the points xi .

Theorem (-, Vistoli)
There is an equivalence between quasi-coherent sheaves on
∞√X and parabolic sheaves on X with arbitrary rational weights.
( moduli spaces for parabolic sheaves)

Theorem (-, Vistoli)
Every isomorphism ∞√X ∼= ∞√Y of stacks comes from a unique
isomorphism of log schemes X ∼= Y.
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The Kato-Nakayama space

From now on consider schemes locally of finite type over C.
Let X be a log scheme.

There is an “underlying topological space” Xlog with a surjective
map τ : Xlog → X .

The fiber of τ over x ∈ X can be identified with (S1)k , where
k = rank of the free abelian group Agp

x .
(over the locus U ⊆ X where the log structure is trivial, τ is an
isomorphism)

The (reduced) fiber of ∞
√

X → X over x is BẐk , where k is the
same number.

Note that S1 = BZ, and so (̂S1)k ∼= BẐk .
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There is a functor (−)top that associates to a stack over
schemes an underlying topological stack in the sense of Noohi
(∼ analytification functor).

Theorem (Carchedi, Scherotzke, Sibilla, -)
There is a canonical map of topological stacks

ΦX : Xlog →
∞√X top

that induces an equivalence upon profinite completion.

The description of the map is easier if one interprets Xlog itself
as parametrizing “roots” of a certain kind.
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Xlog as a root stack
As the stack n

√
X parametrizes

A //

!!

DivX

DivX

∧n

OO

it turns out n
√

X top parametrizes

A //

##

[C/C×]X

[C/C×]X .

∧n

OO

(note DivX ∼ [A1/Gm]X ).
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A way to map to something that dominates every morphism
∧n : [C/C×]X → [C/C×]X is to (in some sense) extract a
logarithm.

Consider the stack XH that parametrizes

A //

##

[C/C×]X

[H/C+]X

exp

OO

where H = R≥0 × R and exp is induced by H→ C given by

(x , y) 7→ x · eiy

and by the exponential C+ → C×.
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For every n we have a factorization

[C/C×]

[C/C×]

∧n
ee

[H/C+]

exp

OO

φn

99

where φn : [H/C+]→ [C/C×] is given by H→ C

(x , y) 7→ ( n
√

x , y/n) 7→ n
√

x · ei y
n

and by C+ → C× given by z 7→ e
z
n .
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Now the diagram

A

..

//

##

[C/C×]X

[C/C×]X

∧n
ff

[H/C+]X

exp

OO

φn

88

gives a natural transformation XH → n
√

X top.

These are compatible and give XH → ∞√X top = lim←−n
n
√

X top.
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Theorem ((in progress) -, Vistoli)
The topological space Xlog represents the stack XH.

The morphism Xlog → ∞√X top that we obtain is the one
mentioned before.

This is related to
I real roots of the log structure, i.e. diagrams

A //

��

[C/C×]X

AR≥0

::

I parabolic sheaves with real weights.
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Thank you for your attention!
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