

Log geometry (with a slight view towards tropical geometry) and root stacks

Mattia Talpo

University of British Columbia

Brown STAGS - April 17th, 2015

- \triangleright (born in) Arithmetic geometry (log crystalline cohomology), work of Fontaine-Illusie, Kato.
- \blacktriangleright Hodge theory
- \blacktriangleright Tropical/non-Archimedean geometry
- \blacktriangleright Moduli theory
- \triangleright Mirror symmetry and log GW invariants
- \blacktriangleright etc.

(many other names. **Some** of them: Deligne, Faltings, Kato (a different one), Nakayama, Ogus, Olsson, Abramovich, Chen, Gross, Siebert, . . .)

Log geometry $= ?$

Log geometry $= ?$

The "additional stuff" has a combinatorial nature (link with tropical geometry)

in form of monoids *P* (commutative with 0).

Log geometry = "enhanced" algebraic geometry

Log scheme $=$ a scheme $+$ "additional stuff"

The "additional stuff" has a combinatorial nature (link with tropical geometry)

in form of monoids *P* (commutative with 0).

Toric case: $P = \sigma^\vee \cap M$, where $\sigma \subseteq \mathsf{N}_\mathbb{R}$ is a rational polyhedral cone and $M \simeq N^{\vee}$ is a lattice.

The scheme $X_P = \text{Spec } k[P]$ has a natural structure of log scheme, the "additional stuff" in this case is just "given by" *P*.

Another example: *X* a smooth variety, *D* ⊆ *X* an effective Cartier divisor (\approx codim. 1 subvariety with a nice equation)

(example: compactify some *U* ⊆ *X* by adding a simple normal crossing divisor $D = X \setminus U$ at the boundary. Do stuff on X, and then go back to *U*, so need to "keep track" of *D*)

Another example: *X* a smooth variety, *D* ⊆ *X* an effective Cartier divisor (\approx codim. 1 subvariety with a nice equation)

(example: compactify some *U* ⊆ *X* by adding a simple normal crossing divisor $D = X \setminus U$ at the boundary. Do stuff on X, and then go back to *U*, so need to "keep track" of *D*)

One way to do it:

$$
M_{(X,D)} = \{ f \in \mathcal{O}_X \mid f|_{X \setminus D} \text{ is invertible} \} \subseteq \mathcal{O}_X
$$

This is a sheaf of submonoids, and contains all the units $\mathcal{O}^*_{\boldsymbol{\lambda}}$ (and recovers *D* in good cases).

In this case the "additional stuff" is the sheaf *M*(*X*,*D*) together with the map to \mathcal{O}_X .

Definition

- A log scheme (X, M_X) is
	- \blacktriangleright a scheme X
	- **Ex** a sheaf of monoids M_X with a map $\alpha_X \colon M_X \to (\mathcal{O}_X, \cdot)$ (pre-log)

Definition

A log scheme (X, M_X) is

- \blacktriangleright a scheme X
- **Ex** a sheaf of monoids M_X with a map $\alpha_X \colon M_X \to (\mathcal{O}_X, \cdot)$ (pre-log)
- ► such that α_X^{-1} $\overline{X}^{1}(\mathcal{O}_{X}^{*}) \stackrel{\simeq}{\longrightarrow} \mathcal{O}_{X}^{*}$ is an isomorphism (i.e. the units are the same).

The sheaf *M^X* contains "distinguished" or "new" "regular functions" that you want to keep track of.

Example

If X is a scheme, then (X,\mathcal{O}_X^*) is a log scheme (trivial log structure).

The sheaf $\overline{M}_X = M_X/{\mathcal O}_X^*$ (characteristic sheaf) contains the "non-trivial" part of the log structure.

Example

If X is a scheme, then (X,\mathcal{O}_X^*) is a log scheme (trivial log structure).

The sheaf $\overline{M}_X = M_X/{\mathcal O}_X^*$ (characteristic sheaf) contains the "non-trivial" part of the log structure.

There is a notion of morphism of log schemes $(X, M_X) \rightarrow (Y, M_Y)$: a morphism $f: X \rightarrow Y$ of schemes with

$$
f^{-1}M_Y \longrightarrow M_X
$$

\n
$$
\downarrow \qquad \qquad \downarrow
$$

\n
$$
f^{-1}\mathcal{O}_Y \longrightarrow \mathcal{O}_X
$$

The functor $X \mapsto (X, \mathcal{O}_X^*)$ embeds schemes in log schemes.

Where is the combinatorics? In "discrete" local models for the sheaf *M^X* .

Example

If *P* is a monoid, $X_P = \text{Spec } k[P]$ has a log structure:

Where is the combinatorics? In "discrete" local models for the sheaf *M^X* .

Example

If *P* is a monoid, $X_P = \text{Spec } k[P]$ has a log structure:

$$
P \to k[P] = \Gamma(\mathcal{O}_{X_P})
$$

induces a pre-log structure (by sheafifying)

$$
P_{X_P} \to \mathcal{O}_{X_P}.
$$

You can "logify" in a universal way to get

$$
M_{X_P} \to \mathcal{O}_{X_P}.
$$

In general if by this process $\phi: P \to \mathcal{O}_X(X)$ induces α_X : $M_X \to \mathcal{O}_X$, we say that ϕ is a chart of the log structure.

In general if by this process $\phi: P \to \mathcal{O}_X(X)$ induces

 α_X : $M_X \to \mathcal{O}_X$, we say that ϕ is a chart of the log structure.

- \blacktriangleright require that charts exist locally on X
- \triangleright impose "niceness" conditions on the log structure using the local models. For example
	- \blacktriangleright *P* integral
	- \triangleright *P* finitely generated (fine = finitely generated and integral)
	- \triangleright *P* saturated (fs = fine and saturated)

The category of fs log schemes is particularly popular.

In general if by this process $\phi: P \to \mathcal{O}_X(X)$ induces

 α_X : $M_X \to \mathcal{O}_X$, we say that ϕ is a chart of the log structure.

- \blacktriangleright require that charts exist locally on X
- \triangleright impose "niceness" conditions on the log structure using the local models. For example
	- \blacktriangleright *P* integral
	- \triangleright *P* finitely generated (fine = finitely generated and integral)
	- \triangleright *P* saturated (fs = fine and saturated)

The category of fs log schemes is particularly popular.

Example: if $D \subseteq X$ is NC, then (étale) locally it looks like $\{x_1 \cdot \cdots \cdot x_r = 0\} \subseteq \mathbb{A}^n$, and $\mathbb{N}^r \to \mathcal{O}_{\mathbb{A}^n}(\mathbb{A}^n)$ that sends e_i to x_i is a chart for the log structure.

So how do you visualize a (fs) log scheme?

One way: look at \overline{M}_X .

If there is a largest open subscheme $U \subset X$ such that $\overline{M}_X|_U = 0$ (i.e. the log structure is trivial on *U*). (*U* might be empty)

So how do you visualize a (fs) log scheme?

One way: look at \overline{M}_Y .

- If there is a largest open subscheme $U \subset X$ such that $\overline{M}_X|_U = 0$ (i.e. the log structure is trivial on *U*). (*U* might be empty)
- **In** more generally \overline{M}_X is locally constant on a stratification of *X*.

So $X = \bigsqcup_i X_i$ and we have a single monoid P_i on each constructible piece *Xⁱ* .


```
Log geometry Common Contract Common ModuliTropical geometryRoot stacks
                                                                     00000
```

```
Geometry \approx each piece X_i
```

```
Combinatorics \approx the monoids P_i
```
The way in which the *Xⁱ* are attached together is a mixture of the two aspects (the are "specialization maps" between the monoids).

A spectrum of log schemes:

Moduli theory

Starting point: there is a notion of log smooth morphism that generalizes usual smoothness.

Every toric variety is log smooth (even though as schemes they are often singular).

Moduli theory

Starting point: there is a notion of log smooth morphism that generalizes usual smoothness.

Every toric variety is log smooth (even though as schemes they are often singular).

- \blacktriangleright log infinitesimal liftings
- ► log differentials $Ω_{\text{log}}^{1}$
- \blacktriangleright log deformation theory
- \blacktriangleright log de Rham cohomology
- \blacktriangleright etc.

Moduli theory

Starting point: there is a notion of log smooth morphism that generalizes usual smoothness.

Every toric variety is log smooth (even though as schemes they are often singular).

- \blacktriangleright log infinitesimal liftings
- ► log differentials $Ω_{\text{log}}^{1}$
- \blacktriangleright log deformation theory
- \blacktriangleright log de Rham cohomology
- \blacktriangleright etc.

If the log scheme is (X,D) where D is NC, the sheaf Ω_{\log}^1 is exactly the sheaf of differential forms with at most a pole of order 1 along *D*, locally generated by Ω^1 and $d\log(x_i) = \frac{dx_i}{x_i}$.

One application: moduli of log smooth curves.

You can construct a moduli space (or stack) $\mathcal{M}_{g,n}^{\mathsf{log}}$ of (basic, stable) log smooth curves of genus *g* and "type" *n*. Every smooth curve is log smooth, and this gives $\mathcal{M}_{g,n} \subseteq \mathcal{M}_{g,n}^{\mathsf{log}}.$

One application: moduli of log smooth curves.

You can construct a moduli space (or stack) $\mathcal{M}_{g,n}^{\mathsf{log}}$ of (basic, stable) log smooth curves of genus *g* and "type" *n*. Every smooth curve is log smooth, and this gives $\mathcal{M}_{g,n} \subseteq \mathcal{M}_{g,n}^{\mathsf{log}}.$

- \blacktriangleright The moduli space $\mathcal{M}_{g,n}^{\mathsf{log}}$ is proper (degenerations are already there)
- $\blacktriangleright\;\mathcal{M}_{g,n}\subseteq\mathcal{M}_{g,n}^{\mathsf{log}}$ is an open immersion
- \blacktriangleright in the boundary we find exactly stable nodal curves.

So log smoothness "selects" good degenerations of smooth objects.

This idea was applied in many other cases: log K3 surfaces, abelian varieties, toric hilbert schemes....

So log smoothness "selects" good degenerations of smooth objects.

This idea was applied in many other cases: log K3 surfaces, abelian varieties, toric hilbert schemes....

Another instance: Gross-Siebert program for mirror symmetry. Idea: degenerate a smooth variety to a union of toric varieties and then use a combinatorial construction.

Log smoothness is used to ensure that the degeneration is nice enough.

Tropical geometry

The relation with tropical geometry is via a tropicalization map (Martin's work).

In the case of a subvariety of a torus $T = \text{Spec } k[M]$ (here k is trivially valued), define

trop: $\mathcal{T}^{\rm an} \to \mathcal{N}_{\mathbb{R}}$

Tropical geometry

The relation with tropical geometry is via a tropicalization map (Martin's work).

In the case of a subvariety of a torus $T = \text{Spec } k[M]$ (here k is trivially valued), define

$$
\text{trop}\colon\thinspace\mathcal{T}^\text{an}\to\mathcal{N}_\mathbb{R}
$$

by requiring

$$
\langle \operatorname{trop}(x), m \rangle = -\log |\chi^m|_x.
$$

Here $x \in \mathcal{T}^{\mathrm{an}}$ corresponds to the seminorm $|\cdot|_{x} \colon k[M] \to \mathbb{R}$ and *N* and *M* are dual via $\langle \cdot, \cdot \rangle$ (Einsiedler-Kapranov-Lind).

Then the tropicalization of $Y \subseteq T$ is the closure of trop(Y^{an}).

 \triangleright There is a version of this that replaces *T* by a *T*-toric variety *X*[∆]

$$
\text{trop} \colon X_\Delta^\text{an} \to \textit{N}_\mathbb{R}(\Delta)
$$

where $N_{\mathbb{R}}(\Delta)$ is a partial compactification of $N_{\mathbb{R}}$ (Kajiwara-Payne)

 \triangleright There is a version of this that replaces T by a T-toric variety *X*[∆]

$$
\text{trop}\colon X_\Delta^\text{an}\to \textit{N}_\mathbb{R}(\Delta)
$$

where $N_{\mathbb{R}}(\Delta)$ is a partial compactification of $N_{\mathbb{R}}$ (Kajiwara-Payne)

 \triangleright and a version for fs log schemes of finite type X

$$
\operatorname{trop} \colon X^{\beth} \to \overline{\Sigma}_X
$$

where \sum_{x} is a combinatorial object that depends on X (Ulirsch).

This gives a nice bridge between the two theories.

Root stacks

(infinite) root stacks incorporate the "log geometry" of *X* into their "bare" geometry.

In

$$
\alpha_X\colon M_X\to \mathcal{O}_X
$$

the units \mathcal{O}_X^* appear on both sides and are identified by $\alpha_X.$

Root stacks

(infinite) root stacks incorporate the "log geometry" of *X* into their "bare" geometry.

In

$$
\alpha_X\colon M_X\to \mathcal{O}_X
$$

the units \mathcal{O}_X^* appear on both sides and are identified by $\alpha_X.$

If we mod out by them

$$
\overline{\alpha}_X\colon \overline{M}_X\to [\mathcal{O}_X/\mathcal{O}_X^*]=\mathsf{Div}_X
$$

where Div_x is the category of line bundles with a global section (*L*, *s*).

[Log geometry](#page-1-0) **[Moduli theory](#page-21-0) [Tropical geometry](#page-28-0) [Root stacks](#page-32-0)** Root stacks 00000 The functor $\overline{\alpha}_X \colon \overline{M}_X \to \mathsf{Div}_X$ (a "Deligne-Faltings" structure)

sends sums into tensor products (is a "symmetric monoidal functor").

This point of view is completely equivalent to Kato's.

[Log geometry](#page-1-0) **[Moduli theory](#page-21-0) [Tropical geometry](#page-28-0) [Root stacks](#page-32-0)** Root stacks 00000 nnnnnnnnnn

The functor $\overline{\alpha}_X \colon \overline{M}_X \to \text{Div}_X$ (a "Deligne-Faltings" structure) sends sums into tensor products (is a "symmetric monoidal functor").

This point of view is completely equivalent to Kato's.

Fix $n \in \mathbb{N}.$ Define $\sqrt[n]{X}$ as the (algebraic) stack that parametrizes liftings

$$
\overline{M}_X \longrightarrow \text{Div}_X
$$
\n
$$
\downarrow
$$
\n
$$
\frac{1}{n} \overline{M}_X
$$

that you could call "*n*-th roots" of the log structure.

If *D* ⊆ *X* is a smooth divisor, then using a chart we can look at

and $\frac{1}{n}$ will go into (L, s) such that $(L, s)^{\otimes n} \simeq (\mathcal{O}_X(D), s_D)$.

This is the same as Cadman's "stack of *n*-th roots" of the divisor *D*.

To consider all roots, take a limit for growing *n*.

If $n \mid k,$ then there is $\sqrt[k]{X} \rightarrow \sqrt[n]{X},$ and these form an inverse system. Take ∞√ √*n*

$$
\sqrt[\infty]{X} = \varprojlim_n \sqrt[n]{X}
$$

- not algebraic, but has a flat (fpqc) at las
- incorporates the log geometry of X in its "bare" geometry
- \triangleright is an algebraic analogue of the "Kato-Nakayama" space.

To consider all roots, take a limit for growing *n*.

If $n \mid k,$ then there is $\sqrt[k]{X} \rightarrow \sqrt[n]{X},$ and these form an inverse system. Take ∞√ √*n*

$$
\sqrt[\infty]{X} = \varprojlim_n \sqrt[n]{X}
$$

- \triangleright not algebraic, but has a flat (fpqc) atlas
- incorporates the log geometry of X in its "bare" geometry
- \triangleright is an algebraic analogue of the "Kato-Nakayama" space.

Theorem (-,Vistoli)

There is a procedure that gives back (*X*, *^M^X*) *from* [∞][√] *X. In particular if* $\sqrt[\infty]{X} \simeq \sqrt[\infty]{X}$ *Y*, then $(X, M_X) \simeq (Y, M_Y)$.

Thank you for listening!

(Brown STAGS)