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Log geometry

I (born in) Arithmetic geometry (log crystalline cohomology),
work of Fontaine-Illusie, Kato.

I Hodge theory
I Tropical/non-Archimedean geometry
I Moduli theory
I Mirror symmetry and log GW invariants
I etc

(many other names. Some of them: Deligne, Faltings, Kato (a
different one), Nakayama, Ogus, Olsson, Abramovich, Chen,
Gross, Siebert, . . . )
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Log geometry = “enhanced” algebraic geometry

Log scheme = a scheme + “additional stuff”

The “additional stuff” has a combinatorial nature (link with
tropical geometry)

in form of monoids P (commutative with 0).

Toric case: P = σ∨ ∩M, where σ ⊆ NR is a rational polyhedral
cone and M ' N∨ is a lattice.

The scheme XP = Spec k [P] has a natural structure of log
scheme, the “additional stuff” in this case is just “given by” P.
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Another example: X a smooth variety, D ⊆ X an effective
Cartier divisor (≈ codim. 1 subvariety with a nice equation)

(example: compactify some U ⊆ X by adding a simple normal
crossing divisor D = X \ U at the boundary. Do stuff on X , and
then go back to U, so need to “keep track” of D)

One way to do it:

M(X ,D) = {f ∈ OX | f |X\D is invertible} ⊆ OX

This is a sheaf of submonoids, and contains all the units O∗X
(and recovers D in good cases).

In this case the “additional stuff” is the sheaf M(X ,D) together
with the map to OX .
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Definition
A log scheme (X ,MX ) is

I a scheme X
I a sheaf of monoids MX with a map αX : MX → (OX , ·)

(pre-log)

I such that α−1
X (O∗X )

'−→ O∗X is an isomorphism (i.e. the
units are the same).

The sheaf MX contains “distinguished” or “new” “regular
functions” that you want to keep track of.
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Example
If X is a scheme, then (X ,O∗X ) is a log scheme (trivial log
structure).
The sheaf MX = MX/O∗X (characteristic sheaf) contains the
“non-trivial” part of the log structure.

There is a notion of morphism of log schemes
(X ,MX )→ (Y ,MY ): a morphism f : X → Y of schemes with

f−1MY //

��

MX

��
f−1OY // OX

The functor X 7→ (X ,O∗X ) embeds schemes in log schemes.
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Where is the combinatorics? In “discrete” local models for the
sheaf MX .

Example
If P is a monoid, XP = Spec k [P] has a log structure:

P → k [P] = Γ(OXP )

induces a pre-log structure (by sheafifying)

PXP → OXP .

You can “logify” in a universal way to get

MXP → OXP .
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In general if by this process φ : P → OX (X ) induces
αX : MX → OX , we say that φ is a chart of the log structure.

I require that charts exist locally on X
I impose “niceness” conditions on the log structure using the

local models. For example
I P integral
I P finitely generated (fine = finitely generated and integral)
I P saturated (fs = fine and saturated)

The category of fs log schemes is particularly popular.

Example: if D ⊆ X is NC, then (étale) locally it looks like
{x1 · · · · · xr = 0} ⊆ An, and Nr → OAn (An) that sends ei to xi is
a chart for the log structure.
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So how do you visualize a (fs) log scheme?

One way: look at MX .

I there is a largest open subscheme U ⊆ X such that
MX |U = 0 (i.e. the log structure is trivial on U).
(U might be empty)

I more generally MX is locally constant on a stratification of
X .

So X =
⊔

i Xi and we have a single monoid Pi on each
constructible piece Xi .
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In the case where D = {xy = 0} ⊆ A2 = X ,
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Geometry ≈ each piece Xi

Combinatorics ≈ the monoids Pi

The way in which the Xi are attached together is a mixture of
the two aspects (the are “specialization maps” between the
monoids).

A spectrum of log schemes:
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Moduli theory
Starting point: there is a notion of log smooth morphism that
generalizes usual smoothness.

Every toric variety is log smooth (even though as schemes they
are often singular).

I log infinitesimal liftings
I log differentials Ω1

log
I log deformation theory
I log de Rham cohomology
I etc

If the log scheme is (X ,D) where D is NC, the sheaf Ω1
log is

exactly the sheaf of differential forms with at most a pole of
order 1 along D, locally generated by Ω1 and d log(xi) = dxi

xi
.
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One application: moduli of log smooth curves.

You can construct a moduli space (or stack)Mlog
g,n of (basic,

stable) log smooth curves of genus g and “type” n.
Every smooth curve is log smooth, and this givesMg,n ⊆Mlog

g,n.

I The moduli spaceMlog
g,n is proper (degenerations are

already there)
I Mg,n ⊆Mlog

g,n is an open immersion
I in the boundary we find exactly stable nodal curves.
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So log smoothness “selects” good degenerations of smooth
objects.

This idea was applied in many other cases: log K3 surfaces,
abelian varieties, toric hilbert schemes....

Another instance: Gross-Siebert program for mirror symmetry.
Idea: degenerate a smooth variety to a union of toric varieties
and then use a combinatorial construction.

Log smoothness is used to ensure that the degeneration is nice
enough.
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Tropical geometry

The relation with tropical geometry is via a tropicalization map
(Martin’s work).

In the case of a subvariety of a torus T = Spec k [M] (here k is
trivially valued), define

trop : T an → NR

by requiring
〈trop(x),m〉 = − log |χm|x .

Here x ∈ T an corresponds to the seminorm | · |x : k [M]→ R and
N and M are dual via 〈·, ·〉 (Einsiedler-Kapranov-Lind).

Then the tropicalization of Y ⊆ T is the closure of trop(Y an).
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I There is a version of this that replaces T by a T -toric
variety X∆

trop : X an
∆ → NR(∆)

where NR(∆) is a partial compactification of NR
(Kajiwara-Payne)

I and a version for fs log schemes of finite type X

trop : Xi → ΣX

where ΣX is a combinatorial object that depends on X
(Ulirsch).

This gives a nice bridge between the two theories.
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Root stacks

(infinite) root stacks incorporate the “log geometry” of X into
their “bare” geometry.

In
αX : MX → OX

the units O∗X appear on both sides and are identified by αX .

If we mod out by them

αX : MX → [OX/O∗X ] = DivX

where DivX is the category of line bundles with a global section
(L, s).
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The functor αX : MX → DivX (a “Deligne-Faltings” structure)
sends sums into tensor products (is a “symmetric monoidal
functor”).

This point of view is completely equivalent to Kato’s.

Fix n ∈ N. Define n
√

X as the (algebraic) stack that parametrizes
liftings

MX

��

// DivX

1
n MX

<<

that you could call “n-th roots” of the log structure.
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If D ⊆ X is a smooth divisor, then using a chart we can look at

1 � // (OX (D), sD)

N

��

// Div(X )

1
nN

88

and 1
n will go into (L, s) such that (L, s)⊗n ' (OX (D), sD).

This is the same as Cadman’s “stack of n-th roots” of the divisor
D.
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To consider all roots, take a limit for growing n.

If n | k , then there is k
√

X → n
√

X , and these form an inverse
system. Take

∞√X = lim←−
n

n
√

X

I not algebraic, but has a flat (fpqc) atlas
I incorporates the log geometry of X in its “bare” geometry
I is an algebraic analogue of the “Kato-Nakayama” space.

Theorem (-,Vistoli)
There is a procedure that gives back (X ,MX ) from ∞√X. In
particular if ∞√X ' ∞√Y, then (X ,MX ) ' (Y ,MY ).
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Thank you for listening!

(Brown STAGS)
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