Log geometry	Tropical geometry	

Log geometry (with a slight view towards tropical geometry) and root stacks

Mattia Talpo

University of British Columbia

Brown STAGS - April 17th, 2015

- (born in) Arithmetic geometry (log crystalline cohomology), work of Fontaine-Illusie, Kato.
- Hodge theory
- Tropical/non-Archimedean geometry
- Moduli theory
- Mirror symmetry and log GW invariants
- etc

(many other names. <u>Some</u> of them: Deligne, Faltings, Kato (a different one), Nakayama, Ogus, Olsson, Abramovich, Chen, Gross, Siebert, ...)

Log geometry	Tropical geometry	
0000000000		00000

Log geometry = ?

Log geometry		
0000000000		00000

Log geometry = ?

in form of monoids P (commutative with 0).


```
Log scheme = a scheme + "additional stuff"
```

The "additional stuff" has a combinatorial nature (link with tropical geometry)

in form of monoids P (commutative with 0).

Toric case: $P = \sigma^{\vee} \cap M$, where $\sigma \subseteq N_{\mathbb{R}}$ is a rational polyhedral cone and $M \simeq N^{\vee}$ is a lattice.

The scheme X_P = Spec k[P] has a natural structure of log scheme, the "additional stuff" in this case is just "given by" P.

Another example: X a smooth variety, $D \subseteq X$ an effective Cartier divisor (\approx codim. 1 subvariety with a nice equation)

(example: compactify some $U \subseteq X$ by adding a simple normal crossing divisor $D = X \setminus U$ at the boundary. Do stuff on X, and then go back to U, so need to "keep track" of D)

Another example: X a smooth variety, $D \subseteq X$ an effective Cartier divisor (\approx codim. 1 subvariety with a nice equation)

(example: compactify some $U \subseteq X$ by adding a simple normal crossing divisor $D = X \setminus U$ at the boundary. Do stuff on X, and then go back to U, so need to "keep track" of D)

One way to do it:

$$M_{(X,D)} = \{ f \in \mathcal{O}_X \mid f|_{X \setminus D} \text{ is invertible} \} \subseteq \mathcal{O}_X$$

This is a sheaf of submonoids, and contains all the units \mathcal{O}_X^* (and recovers *D* in good cases).

In this case the "additional stuff" is the sheaf $M_{(X,D)}$ together with the map to \mathcal{O}_X .

Log geometry		
0000000000		00000

Definition

- A log scheme (X, M_X) is
 - a scheme X
 - ► a sheaf of monoids M_X with a map α_X: M_X → (O_X, ·) (pre-log)

Log geometry	Tropical geometry	Root stacks
00000000000		00000

Definition

A log scheme (X, M_X) is

- a scheme X
- ► a sheaf of monoids M_X with a map α_X: M_X → (O_X, ·) (pre-log)
- such that a⁻¹_X(O^{*}_X) → O^{*}_X is an isomorphism (i.e. the units are the same).

The sheaf M_X contains "distinguished" or "new" "regular functions" that you want to keep track of.

Log geometry		Tropical geometry	
0000000000			
Evample	د		

Example

If X is a scheme, then (X, \mathcal{O}_X^*) is a log scheme (trivial log structure).

The sheaf $\overline{M}_X = M_X / \mathcal{O}_X^*$ (characteristic sheaf) contains the "non-trivial" part of the log structure.

Log geometry Moduli theory Tropical geometry Root stacks

Example

If X is a scheme, then (X, \mathcal{O}_X^*) is a log scheme (trivial log structure).

The sheaf $\overline{M}_X = M_X / \mathcal{O}_X^*$ (characteristic sheaf) contains the "non-trivial" part of the log structure.

There is a notion of morphism of log schemes $(X, M_X) \rightarrow (Y, M_Y)$: a morphism $f: X \rightarrow Y$ of schemes with

$$f^{-1}M_Y \longrightarrow M_X$$

$$\downarrow \qquad \qquad \downarrow$$

$$f^{-1}\mathcal{O}_Y \longrightarrow \mathcal{O}_X$$

The functor $X \mapsto (X, \mathcal{O}_X^*)$ embeds schemes in log schemes.

Log geometry	Tropical geometry	
00000000000		

Where is the combinatorics? In "discrete" local models for the sheaf M_X .

Example

If *P* is a monoid, $X_P = \operatorname{Spec} k[P]$ has a log structure:

Where is the combinatorics? In "discrete" local models for the sheaf M_X .

Example

If *P* is a monoid, $X_P = \operatorname{Spec} k[P]$ has a log structure:

$$P o k[P] = \Gamma(\mathcal{O}_{X_P})$$

induces a pre-log structure (by sheafifying)

$$P_{X_P} \to \mathcal{O}_{X_P}.$$

You can "logify" in a universal way to get

$$M_{X_P} \to \mathcal{O}_{X_P}.$$

Log geometry	Tropical geometry	
00000000000		00000

In general if by this process $\phi: P \to \mathcal{O}_X(X)$ induces $\alpha_X: M_X \to \mathcal{O}_X$, we say that ϕ is a chart of the log structure.

In general if by this process $\phi: P \to \mathcal{O}_X(X)$ induces

 $\alpha_X \colon M_X \to \mathcal{O}_X$, we say that ϕ is a chart of the log structure.

- require that charts exist locally on X
- impose "niceness" conditions on the log structure using the local models. For example
 - P integral
 - P finitely generated (fine = finitely generated and integral)
 - P saturated (fs = fine and saturated)

The category of fs log schemes is particularly popular.

In general if by this process $\phi: P \to \mathcal{O}_X(X)$ induces

 $\alpha_X \colon M_X \to \mathcal{O}_X$, we say that ϕ is a chart of the log structure.

- require that charts exist locally on X
- impose "niceness" conditions on the log structure using the local models. For example
 - P integral
 - P finitely generated (fine = finitely generated and integral)
 - P saturated (fs = fine and saturated)

The category of fs log schemes is particularly popular.

Example: if $D \subseteq X$ is NC, then (étale) locally it looks like $\{x_1 \cdots x_r = 0\} \subseteq \mathbb{A}^n$, and $\mathbb{N}^r \to \mathcal{O}_{\mathbb{A}^n}(\mathbb{A}^n)$ that sends e_i to x_i is a chart for the log structure.

So how do you visualize a (fs) log scheme?

One way: look at \overline{M}_X .

▶ there is a largest open subscheme $U \subseteq X$ such that $\overline{M}_X|_U = 0$ (i.e. the log structure is trivial on *U*). (*U* might be empty)

So how do you visualize a (fs) log scheme?

One way: look at \overline{M}_X .

- ▶ there is a largest open subscheme $U \subseteq X$ such that $\overline{M}_X|_U = 0$ (i.e. the log structure is trivial on *U*). (*U* might be empty)
- more generally \overline{M}_X is locally constant on a stratification of X.

So $X = \bigsqcup_i X_i$ and we have a single monoid P_i on each constructible piece X_i .


```
Geometry \approx each piece X_i
```

```
Combinatorics \approx the monoids P_i
```

The way in which the X_i are attached together is a mixture of the two aspects (the are "specialization maps" between the monoids).

A spectrum of log schemes:

Moduli theory

Starting point: there is a notion of log smooth morphism that generalizes usual smoothness.

Every toric variety is log smooth (even though as schemes they are often singular).

Moduli theory

Starting point: there is a notion of log smooth morphism that generalizes usual smoothness.

Every toric variety is log smooth (even though as schemes they are often singular).

- log infinitesimal liftings
- log differentials Ω¹_{log}
- log deformation theory
- log de Rham cohomology
- etc

Moduli theory

Starting point: there is a notion of log smooth morphism that generalizes usual smoothness.

Every toric variety is log smooth (even though as schemes they are often singular).

- log infinitesimal liftings
- log differentials Ω¹_{log}
- log deformation theory
- log de Rham cohomology
- etc

If the log scheme is (X, D) where D is NC, the sheaf Ω_{\log}^1 is exactly the sheaf of differential forms with at most a pole of order 1 along D, locally generated by Ω^1 and $d \log(x_i) = \frac{dx_i}{x_i}$.

Log geometry	Moduli theory	Tropical geometry	
	000		

One application: moduli of log smooth curves.

You can construct a moduli space (or stack) $\mathcal{M}_{g,n}^{\log}$ of (basic, stable) log smooth curves of genus g and "type" n. Every smooth curve is log smooth, and this gives $\mathcal{M}_{g,n} \subseteq \mathcal{M}_{g,n}^{\log}$.

Log geometry	Moduli theory	Tropical geometry	Root stacks
	000		00000

One application: moduli of log smooth curves.

You can construct a moduli space (or stack) $\mathcal{M}_{g,n}^{\log}$ of (basic, stable) log smooth curves of genus g and "type" n. Every smooth curve is log smooth, and this gives $\mathcal{M}_{g,n} \subseteq \mathcal{M}_{g,n}^{\log}$.

- The moduli space M^{log}_{g,n} is proper (degenerations are already there)
- $\mathcal{M}_{g,n} \subseteq \mathcal{M}_{g,n}^{\log}$ is an open immersion
- in the boundary we find exactly stable nodal curves.

Log geometry	Moduli theory	Tropical geometry	Root stacks
	000		00000

So log smoothness "selects" good degenerations of smooth objects.

This idea was applied in many other cases: log K3 surfaces, abelian varieties, toric hilbert schemes....

Log geometry	Moduli theory	Tropical geometry	
	000		00000

So log smoothness "selects" good degenerations of smooth objects.

This idea was applied in many other cases: log K3 surfaces, abelian varieties, toric hilbert schemes....

Another instance: Gross-Siebert program for mirror symmetry. Idea: degenerate a smooth variety to a union of toric varieties and then use a combinatorial construction.

Log smoothness is used to ensure that the degeneration is nice enough.

Tropical geometry

The relation with tropical geometry is via a tropicalization map (Martin's work).

In the case of a subvariety of a torus $T = \operatorname{Spec} k[M]$ (here k is trivially valued), define

trop: $T^{\mathrm{an}} \to N_{\mathbb{R}}$

Tropical geometry

The relation with tropical geometry is via a tropicalization map (Martin's work).

In the case of a subvariety of a torus $T = \operatorname{Spec} k[M]$ (here k is trivially valued), define

trop:
$$T^{\mathrm{an}} \to N_{\mathbb{R}}$$

by requiring

$$\langle \operatorname{trop}(x), m \rangle = -\log |\chi^m|_x.$$

Here $x \in T^{an}$ corresponds to the seminorm $|\cdot|_x : k[M] \to \mathbb{R}$ and N and M are dual via $\langle \cdot, \cdot \rangle$ (Einsiedler-Kapranov-Lind).

Then the tropicalization of $Y \subseteq T$ is the closure of trop(Y^{an}).

Log geometry	Tropical geometry	
	00	

► There is a version of this that replaces T by a T-toric variety X_∆

trop:
$$X_{\Delta}^{\mathrm{an}} \to N_{\mathbb{R}}(\Delta)$$

where $N_{\mathbb{R}}(\Delta)$ is a partial compactification of $N_{\mathbb{R}}$ (Kajiwara-Payne)

Log geometry	Tropical geometry	
	00	

► There is a version of this that replaces *T* by a *T*-toric variety X_∆

trop:
$$X_{\Delta}^{\mathrm{an}} \to N_{\mathbb{R}}(\Delta)$$

where $N_{\mathbb{R}}(\Delta)$ is a partial compactification of $N_{\mathbb{R}}$ (Kajiwara-Payne)

and a version for fs log schemes of finite type X

trop:
$$X^{\beth} \to \overline{\Sigma}_X$$

where $\overline{\Sigma}_X$ is a combinatorial object that depends on *X* (Ulirsch).

This gives a nice bridge between the two theories.

(infinite) root stacks incorporate the "log geometry" of X into their "bare" geometry.

In

$$\alpha_X \colon M_X \to \mathcal{O}_X$$

the units \mathcal{O}_X^* appear on both sides and are identified by α_X .

(infinite) root stacks incorporate the "log geometry" of X into their "bare" geometry.

In

$$\alpha_X \colon M_X \to \mathcal{O}_X$$

the units \mathcal{O}_X^* appear on both sides and are identified by α_X .

If we mod out by them

$$\overline{\alpha}_X \colon \overline{M}_X \to [\mathcal{O}_X/\mathcal{O}_X^*] = \mathsf{Div}_X$$

where Div_X is the category of line bundles with a global section (L, s).

Log geometry Noduli theory on Tropical geometry of Root stacks The functor $\overline{\alpha}_X : \overline{M}_X \to \text{Div}_X$ (a "Deligne-Faltings" structure) sends sums into tensor products (is a "symmetric monoidal functor").

This point of view is completely equivalent to Kato's.

sends sums into tensor products (is a "symmetric monoidal functor").

This point of view is completely equivalent to Kato's.

Fix $n \in \mathbb{N}$. Define $\sqrt[n]{X}$ as the (algebraic) stack that parametrizes liftings

that you could call "n-th roots" of the log structure.

If $D \subseteq X$ is a smooth divisor, then using a chart we can look at

and $\frac{1}{n}$ will go into (L, s) such that $(L, s)^{\otimes n} \simeq (\mathcal{O}_X(D), s_D)$.

This is the same as Cadman's "stack of *n*-th roots" of the divisor *D*.

To consider all roots, take a limit for growing *n*.

If $n \mid k$, then there is $\sqrt[k]{X} \to \sqrt[n]{X}$, and these form an inverse system. Take

$$\sqrt[\infty]{X} = \varprojlim_n \sqrt[n]{X}$$

- not algebraic, but has a flat (fpqc) atlas
- incorporates the log geometry of X in its "bare" geometry
- ▶ is an algebraic analogue of the "Kato-Nakayama" space.

To consider all roots, take a limit for growing *n*.

If $n \mid k$, then there is $\sqrt[k]{X} \to \sqrt[n]{X}$, and these form an inverse system. Take

$$\sqrt[\infty]{X} = \varprojlim_n \sqrt[n]{X}$$

- not algebraic, but has a flat (fpqc) atlas
- incorporates the log geometry of X in its "bare" geometry
- ▶ is an algebraic analogue of the "Kato-Nakayama" space.

Theorem (-, Vistoli)

There is a procedure that gives back (X, M_X) from $\sqrt[\infty]{X}$. In particular if $\sqrt[\infty]{X} \simeq \sqrt[\infty]{Y}$, then $(X, M_X) \simeq (Y, M_Y)$.

Log geometry	Tropical geometry	Root stacks	
			00000

Thank you for listening!

(Brown STAGS)