An explicit construction of brace blocks

Lorenzo Stefanello

Joint work with Andrea Caranti

Braces in Bracelet Bay, 4 January 2022

- Introduction
- The main construction
- Examples and applications

Introduction

Definition ([Rump, 2007], [Guarnieri and Vendramin, 2017])

A *skew brace* is a triple (G, \cdot, \circ) , where (G, \cdot) and (G, \circ) are groups and for all $g, h, k \in G$,

$$g \circ (h \cdot k) = (g \circ h) \cdot g^{-1} \cdot (g \circ k).$$

(Here $^{-1}$ denotes the inverse with respect to \cdot .)

Definition ([Childs, 2019])

A *bi-skew brace* is a triple (G, \cdot, \circ) , where both (G, \cdot, \circ) and (G, \circ, \cdot) are skew braces.

Definition ([Koch, 2021b], [Caranti and LS, 2021a])

Let G be a nonempty set. A brace block on G is a family $(\circ_i | i \in I)$ of group operations on G, where I is an index set, such that (G, \circ_i, \circ_j) is a (bi-)skew brace for all $i, j \in I$.

Main goal: find an explicit way to construct brace blocks.

The main construction

In [Koch, 2021a], the following construction was introduced. Let (G, \cdot) be a finite group, and let ψ be an abelian endomorphism of G (meaning that the image $\psi(G)$ is abelian). Then (G, \cdot, \circ) is a bi-skew brace, where

$$g \circ h = g \cdot \psi(g)^{-1} \cdot h \cdot \psi(g).$$

In [Koch, 2021b], Koch observed that if ψ is an abelian endomorphism of G yielding the bi-skew brace (G, \cdot , \circ), where

$$g \circ h = g \cdot \psi(g)^{-1} \cdot h \cdot \psi(g),$$

then ψ is also an abelian endomorphism of (G, \circ) . Iterating his first construction, he found a brace block $(\circ_n | n \in \mathbb{N})$ on G, with $\circ_0 = \cdot$ and $\circ_1 = \circ$. Let (G, \cdot) be a group.

In [Caranti and LS, 2021b], we characterised the endomorphisms ψ of G such that (G, $\cdot, \circ)$ is a bi-skew brace, where

$$g \circ h = g \cdot \psi(g)^{\varepsilon} \cdot h \cdot \psi(g)^{-\varepsilon}.$$

(Here $\varepsilon = \pm 1$.)

For example, the result holds if $\psi([G, G]) \leq Z(G)$.

We can generalise Koch's second construction assuming that ψ satisfies the weaker condition $\psi([G, G]) \leq Z(G)$.

But we do not have to use that ψ is an endomorphism!

As it appears always inside a conjugation, what is really important is that ψ is an "endomorphism modulo the center", that is,

$$\psi(g \cdot h) \equiv \psi(g) \cdot \psi(h) \pmod{Z(G)}.$$

The setting

Let (G, \cdot) be a group, let K be a subgroup of G contained in Z(G), and let A be a subgroup of G such that A/K is abelian. Consider the ring

$$\mathcal{A} = \{ \psi \in \mathsf{End}(G/K) \mid \psi(G/K) \le A/K \}.$$

For all $\psi \in A$, define ψ^{\uparrow} to be a lifting of ψ , that is, a set-theoretic map $\psi^{\uparrow} \colon G \to A$ such that

$$\psi^{\uparrow}(g)K = \psi(gK).$$

Finally, on the model of [Caranti, 2018], consider the set

 $\mathcal{B} = \{ \alpha \colon \mathcal{G} \times \mathcal{G} \to \mathcal{K} \mid \alpha \text{ is bilinear and } \alpha(\mathcal{K}, \mathcal{G}) = \alpha(\mathcal{G}, \mathcal{K}) = 1 \}.$

The main theorem

Recall: $K \leq Z(G)$, A/K abelian,

 $\begin{aligned} \mathcal{A} &= \{ \psi \in \mathsf{End}(G/K) \mid \psi(G/K) \leq A/K \}, \\ \mathcal{B} &= \{ \alpha \colon G \times G \to K \mid \alpha \text{ is bilinear and } \alpha(K,G) = \alpha(G,K) = 1 \}. \end{aligned}$

For all $(\psi, \alpha) \in \mathcal{A} \times \mathcal{B}$, define

$$\mathsf{g}\circ_{\psi,lpha}\mathsf{h}=\mathsf{g}\cdot\psi^{\uparrow}(\mathsf{g})\cdot\mathsf{h}\cdot(\psi^{\uparrow}(\mathsf{g}))^{-1}\cdotlpha(\mathsf{g},\mathsf{h}).$$

Then $(G, \cdot, \circ_{\psi, \alpha})$ is a bi-skew brace.

Theorem ([Caranti and LS, 2021a])

The family $(\circ_{\psi,\alpha} \mid (\psi, \alpha) \in \mathcal{A} \times \mathcal{B})$ is a brace block on G.

Assume the previous setting, and set \circ_0 to be $\cdot.$

Theorem ([Caranti and LS, 2021a])

Let $((\psi_n, \alpha_n) \mid n \ge 1)$ be a sequence of elements of $\mathcal{A} \times \mathcal{B}$, and for all $n \ge 1$ define

$$g \circ_n h = g \circ_{n-1} \psi_n^{\uparrow}(g) \circ_{n-1} h \circ_{n-1} \psi_n^{\uparrow}(g) \circ_{n-1} \alpha_n(g,h).$$

(Here an overline denotes the inverse with respect to \circ_{n-1} .) Then for all $n \ge 1$, there exists $(q_n, \beta_n) \in \mathcal{A} \times \mathcal{B}$ such that

$$g \circ_n h = g \cdot q_n^{\uparrow}(g) \cdot h \cdot (q_n^{\uparrow}(g))^{-1} \cdot \beta_n(g,h).$$

In particular, $(\circ_n \mid n \in \mathbb{N})$ is a brace block on G.

Examples and applications

We can recover Koch's constructions in the following way. Let (G, \cdot) be a group, let φ be an abelian endomorphism of G, let K = 1, and let A be an abelian subgroup of G with $\varphi(G) \leq A$. Consider

$$\psi = -\varphi \in \mathcal{A} = \{\phi \in \operatorname{End}(G) \mid \phi(G) \leq A\}.$$

Then (G, \cdot, \circ_{ψ}) is a bi-skew brace, where

$$g \circ_{\psi} h = g \cdot \psi(g) \cdot h \cdot \psi(g)^{-1} = g \cdot \varphi(g)^{-1} \cdot h \cdot \varphi(g).$$

We can iterate the construction with $(\psi_n \mid n \geq 1)$, taking

$$\psi_{\mathbf{n}} = \psi = -\varphi$$

for all $n \in \mathbb{N}$, to find that $(\circ_n \mid n \in \mathbb{N})$ is a brace block on G, where

$$g \circ_n h = g \cdot q_n(g) \cdot h \cdot q_n(g)^{-1}.$$

Here

$$q_n = \sum_{i=1}^n \binom{n}{i} \psi^i = \sum_{i=1}^n \binom{n}{i} (-\varphi)^i.$$

Groups of class two

Let (G, \cdot) be a group of nilpotence class two, let $\mathcal{K} = [G, G]$, and let A = G. In this case $\mathcal{A} = \text{End}(G/\mathcal{K})$. For all $n \in \mathbb{N}$ and $g \in G$, write

 $\psi_n(gK)=(gK)^n.$

Then $\psi_n \in \mathcal{A}$ and

$$\psi_n^\uparrow \colon g \to g^n$$

is a lifting of ψ_n .

We derive that $(\circ_{\psi_n} \mid n \in \mathbb{N})$ is a brace block on *G*, where

$$g \circ_{\psi_n} h = g \cdot g^n \cdot h \cdot g^{-n} = g \cdot h \cdot [g, h]^n.$$

A pleasant example

Let *p* be a prime number, and let $G = \{(a, b, c) \mid a, b, c \in \mathbb{Z}_p\}$ be the *p*-adic Heisenberg group, with group operation

$$(a, b, c) \cdot (a', b', c') = (a + a', b + b', c + c' + ab').$$

Then G is a topological group of class two, so $(\circ_{\psi_p^n} | n \in \mathbb{N})$ is a brace block for G, where for all $g = (a, b, c), h = (a', b', c') \in G$,

$$g \circ_{\psi_{p^n}} h = g \cdot h \cdot [g,h]^{p^n} = g \cdot h \cdot (0,0,p^n(ab'-a'b)).$$

In particular, the following facts hold:

- The brace block consists of infinitely many distinct operations.
- The skew braces of the kind $(G, \cdot, \circ_{\psi_{p^n}})$ are not isomorphic.
- The operations $\circ_{\psi_{p^n}}$ converge to the original operation:

$$\lim_{n\to\infty}g\circ_{\psi_{p^n}}h=g\cdot h.$$

Definition ([Drinfel'd, 1992])

A (set-theoretic nondegenerate) solution of the Yang-Baxter equation is a couple (X, r), where X is a nonempty set and

$$r\colon X imes X o X imes X \ (x,y)\mapsto (\sigma_x(y), au_y(x))$$

is a bijective map such that

 $(r \times id_X)(id_X \times r)(r \times id_X) = (id_X \times r)(r \times id_X)(id_X \times r)$ and σ_x and τ_x are bijective for all $x \in X$. By the work in [Rump, 2007], [Guarnieri and Vendramin, 2017], every skew brace yields a solution of the Yang-Baxter equation:

$$(G,\cdot,\circ) \rightsquigarrow r(g,h) = (g^{-1} \cdot (g \circ h), \overline{g^{-1} \cdot (g \circ h)} \circ g \circ h).$$

(Here $^{-1}$ denotes the inverse with respect to \cdot and an overline denotes the inverse with respect to \circ .)

Let (G, \cdot) be a group, and assume our main setting. Theorem ([Caranti and LS, 2021a]) Let $(\psi, \alpha), (\varphi, \beta) \in \mathcal{A} \times \mathcal{B}$. Then the following is a solution for G: $r(g, h) = ((\psi - \varphi)^{\uparrow}(g) \cdot h \cdot ((\psi - \varphi)^{\uparrow}(g))^{-1} \cdot \beta(g^{-1}, h) \cdot \alpha(g, h),$ $(\psi^{\uparrow}(h))^{-1} \cdot (\psi - \varphi)^{\uparrow}(g) \cdot h^{-1} \cdot ((\psi - \varphi)^{\uparrow}(g))^{-1}$ $\cdot g \cdot \psi^{\uparrow}(g) \cdot h \cdot (\psi^{\uparrow}(g))^{-1} \cdot \psi^{\uparrow}(h) \cdot \beta(g, h) \cdot \alpha(h^{-1}, g)).$ Let (G, 1) be a pointed set, and let Perm(G) be the group of permutations on G.

Definition

A subgroup N of Perm(G) is regular if the map

 $egin{array}{l} \mathcal{N}
ightarrow \mathcal{G} \ \eta \mapsto \eta \mathbf{[1]} \end{array}$

is a bijection.

We can write $N = \{\nu(g) \mid g \in G\}$, where $\nu(g)[1] = g$.

Fact

There is a bijective correspondence between operations \circ on G such that (G, \circ) is a group with identity 1 and regular subgroups $N = \{\nu(g) \mid g \in G\}$ of Perm(G), given by

 $g \circ h = \nu(g)[h].$

Theorem ([Guarnieri and Vendramin, 2017], [Caranti, 2020])

Let (G, \circ) and (G, \diamond) be groups with identity 1, and let N_{\circ} and N_{\diamond} the corresponding regular subgroups. Then (G, \circ, \diamond) is a bi-skew brace if and only if N_{\circ} and N_{\diamond} normalise each other.

Definition

The normalising graph of G is the undirected graph whose vertices are the regular subgroups of Perm(G), and where two vertices are joined by an edge if and only if the corresponding subgroups normalise each other.

Fact

Brace blocks on G correspond to complete subgraphs in the normalising graph of G.

Can we explore this correspondence to find information in both settings?

📄 Caranti, A. (2018).

Multiple holomorphs of finite *p*-groups of class two. *J. Algebra*, 516:352–372.

📔 Caranti, A. (2020).

Bi-skew braces and regular subgroups of the holomorph. *J. Algebra*, 562:647–665.

📑 Caranti, A. and LS (2021a).

Brace blocks from bilinear maps and liftings of endomorphisms. *arXiv:2110.11028*.

📑 Caranti, A. and LS (2021b).

From endomorphisms to bi-skew braces, regular subgroups, the Yang-Baxter equation, and Hopf-Galois structures. *J. Algebra*, 587:462–487.

Bibliography II

Childs, L. N. (2019).

Bi-skew braces and Hopf Galois structures. *New York J. Math.*, 25:574–588.

📄 Drinfel'd, V. G. (1992).

On some unsolved problems in quantum group theory. In *Quantum groups (Leningrad, 1990)*, volume 1510 of *Lecture Notes in Math.*, pages 1–8. Springer, Berlin.

Guarnieri, L. and Vendramin, L. (2017). Skew braces and the Yang-Baxter equation.

Math. Comp., 86(307):2519-2534.

Koch, A. (2021a).

Abelian maps, bi-skew braces, and opposite pairs of Hopf-Galois structures. *Proc. Amer. Math. Soc. Ser. B*, 8:189–203.

📔 Koch, A. (2021b).

Abelian maps, brace blocks, and solutions to the Yang-Baxter equation.

arXiv:2102.06104.

📄 Rump, W. (2007).

Braces, radical rings, and the quantum Yang-Baxter equation. J. Algebra, 307(1):153–170.