Lorenzo Stefanello

Inform on Algebra, 31 March 2022

- *•* Skew braces and connections
- *•* Some recent results

A *skew brace* is a triple (G, \cdot, \circ) , where (G, \cdot) and (G, \circ) are groups and for all $g, h, k \in G$,

$$
g\circ (h\cdot k)=(g\circ h)\cdot g^{-1}\cdot (g\circ k).
$$

(Here [−]¹ denotes the inverse with respect to *·*.)

Let (G, \cdot) be a group.

- (G, \cdot, \cdot) is a skew brace.
- (G, \cdot, \circ) is a skew brace, where $g \circ h = h \cdot g$ for all $g, h \in G$.

A *brace* is a skew brace (G, \cdot, \circ) such that (G, \cdot) is abelian.

For all $a, b \in (\mathbb{Z}, +)$, define $a \circ b = a + (-1)^a b$. Then $(\mathbb{Z}, +, \circ)$ is a brace.

A *(set-theoretic nondegenerate) solution* of the Yang–Baxter equation is a couple (X, r) , where X is a nonempty set and

$$
r: X \times X \to X \times X
$$

$$
(x, y) \mapsto (\sigma_x(y), \tau_y(x))
$$

is a bijective map such that

 $(r \times id_X)(id_X \times r)(r \times id_X) = (id_X \times r)(r \times id_X)(id_X \times r)$

and σ_x and τ_x are bijective for all $x \in X$. We say that (X, r) is *involutive* if $r^2 = id_{X \times X}$. *Let* (G, \cdot, \circ) *be a skew brace. Then* (G, r) *is a solution, where*

$$
r(g, h) = (g^{-1} \cdot (g \circ h), \overline{g^{-1} \cdot (g \circ h)} \circ g \circ h).
$$

(Here an overline denotes the inverse with respect to ◦*.) The solution is involutive if and only if* (*G, ·,* ◦) *is a brace.*

Let (*G,* 1) be a pointed set, and let Perm(*G*) be the group of permutations on *G*. A subgroup *N* of Perm(*G*) is *regular* if the map

> $N \rightarrow G$ $\eta \mapsto \eta[1]$

is a bijection. If (G, \circ) is a group with identity 1, then $\lambda_{\circ}(G)$ is regular, where

> λ_{\circ} : $G \rightarrow \text{Perm}(G)$ $g \mapsto (h \mapsto g \circ h).$

Every regular subgroup arises in this way!

Let (G, \diamond) *and* (G, \circ) *be groups with identity* 1. Then (G, \diamond, \circ) *is a skew brace if and only if* $\lambda_0(G)$ *normalises* $\lambda_0(G)$ *.*

Let (G, \cdot) be a group, and denote by Hol(G) the normaliser of $\lambda(G)$ in Perm(*G*).

There is a bijective correspondence between operations ◦ *such that* (G, \cdot, \circ) *is a skew brace and regular subgroups of Hol(G).*

Let *L/K* be a finite field extension.

A *Hopf–Galois structure* on *L/K* consists of the following data:

- *•* a *K*-Hopf algebra *H*;
- *•* an action of *H* on *L* such that certain technical properties are satisfied.

If *L/K* is Galois with Galois group *G*, then *K*[*G*] with the usual action is the *classical* Hopf–Galois structure on *L/K*.

Let *L/K* be a finite Galois extension with Galois group (*G, ·*).

There is a bijective correspondence between Hopf–Galois structures on L/K *and regular subgroups* N *of* Perm(*G*) *normalised by* $\lambda(G)$ *.*

There is a bijective correspondence between Hopf–Galois structures on L/K and operations \circ *on* G *such that* (G, \circ, \cdot) *is a skew brace.*

We say that a skew brace (G, \cdot, \circ) is a *bi-skew brace* if also (G, \circ, \cdot) is a skew brace.

Let *G* be a set. A *brace block* on *G* is a family $(o_i | i \in I)$ of operations on *G*, where *I* is an index set, such that (G, \circ_i, \circ_j) is a (bi-)skew brace for all $i, j \in I$.

Let (G, \cdot) be a finite group, and let ψ be an abelian endomorphism of (G, \cdot) . Then (G, \cdot, \circ) is a bi-skew brace, where for all $g, h \in G$,

$$
g\circ h=g\cdot\psi(g)^{-1}\cdot h\cdot\psi(g).
$$

As ψ is also an abelian endomorphism of (G, \circ) , the construction can be iterated, to obtain a brace block $(\circ_n | n \in \mathbb{N})$ on *G*, where $\circ_0 = \cdot$ and $\circ_1 = \circ$.

Let (G, \cdot) be a group.

In [[Caranti](#page-26-1) and LS, 2021], we characterised the endomorphisms ψ of *G* such that (G, \cdot, \circ) is a bi-skew brace, where for all $g, h \in G$,

$$
g\circ h=g\cdot\psi(g)^{\varepsilon}\cdot h\cdot\psi(g)^{-\varepsilon}.
$$

(Here $\varepsilon = \pm 1$.) For example, the result holds if $\psi([G, G]) \leq Z(G)$.

Question

- *• Can we obtain a brace block from this construction?*
- *• Do we have to assume that* ψ ∈ End(*G, ·*)*?*

Let (G, \cdot) be a group, let *K* be a subgroup of *G* contained in $Z(G)$, and let *A* be a subgroup of *G* such that *A/K* is abelian. Consider the ring

$$
\mathcal{A} = \{ \psi \in \mathsf{End}(\mathsf{G/K}) \mid \psi(\mathsf{G/K}) \leq \mathsf{A/K} \}.
$$

For all $\psi \in A$, define ψ^{\uparrow} to be a lifting of ψ , that is, a set-theoretic map ψ^{\uparrow} : $G \rightarrow A$ such that

$$
\psi^{\uparrow}(g)K=\psi(gK).
$$

Note that for all $g, h \in G$,

$$
\psi^{\uparrow}(g \cdot h) \equiv \psi^{\uparrow}(g) \cdot \psi^{\uparrow}(h) \pmod{K}.
$$

Recall: $K \leq Z(G)$, A/K abelian,

 $\mathcal{A} = \{ \psi \in \mathsf{End}(\mathcal{G}/\mathcal{K}) \mid \psi(\mathcal{G}/\mathcal{K}) \leq A/\mathcal{K} \}.$

For all $\psi \in \mathcal{A}$, define

$$
g\circ_{\psi}h=g\cdot\psi^{\uparrow}(g)\cdot h\cdot(\psi^{\uparrow}(g))^{-1}.
$$

Then (G, \cdot, \circ_w) is a bi-skew brace. *The family* $(\circ_{\psi} | \psi \in A)$ *is a brace block on G.* Let (G, \cdot) be a group, and assume our main setting. *Let* $\psi, \varphi \in \overline{\mathcal{A}}$ *. Then* (G, r) *is a solution, where* $r(g, h) = ((\psi - \varphi)^{\uparrow}(g) \cdot h \cdot ((\psi - \varphi)^{\uparrow}(g))^{-1},$ $(\psi^{\uparrow}(h))^{-1} \cdot (\psi - \varphi)^{\uparrow}(g) \cdot h^{-1} \cdot ((\psi - \varphi)^{\uparrow}(g))^{-1}$ \cdot $g \cdot \psi^{\uparrow}(g) \cdot h \cdot (\psi^{\uparrow}(g))^{-1} \cdot \psi^{\uparrow}(h)).$

Let (G, \cdot) be a group of nilpotence class two, let $K = [G, G]$, and let $A = G$. In this case $A = \text{End}(G/K)$.

• For all *n* ∈ Z, take

$$
g\circ_n h=g\cdot g^n\cdot h\cdot g^{-n}=g\cdot h\cdot [g,h]^n.
$$

Then $(\circ_n | n \in \mathbb{Z})$ is a brace block on *G*.

• For all ψ ∈ End(*G*), take

$$
g\circ_{\psi}h=g\cdot\psi(g)\cdot h\cdot\psi(g)^{-1}.
$$

Then $(\circ_{\psi} | \psi \in \text{End}(G))$ is a brace block on *G*.

Let *p* be a prime number, and let $G = \{(a, b, c) | a, b, c \in \mathbb{Z}_p\}$ be the *p*-adic Heisenberg group, with group operation

$$
(a, b, c) \cdot (a', b', c') = (a + a', b + b', c + c' + ab').
$$

Then *G* is a topological group of nilpotence class two. For all $x \in \mathbb{Z}_p$, define $\psi_x: G \to G$ by

$$
\psi_x(a,b,c)=(xa,xb,x^2c).
$$

Then $\psi_x \in \text{End}(G)$, and we obtain a brace block $(\circ_{\psi_x} \mid x \in \mathbb{Z}_p)$ on *G*.

Explicitly, for all $g = (a, b, c), h = (a', b', c') \in G$,

$$
g\circ_{\psi_x}h=g\cdot h\cdot (0,0,x(ab'-a'b)).
$$

In particular, the following facts hold:

- *•* The brace block consists of infinitely many distinct operations.
- The skew braces of the kind $(G, \cdot, \circ_{\psi_z})$, $z \in \mathbb{Z}$, are not isomorphic.
- **•** The operations $\circ_{\psi_{p^n}}$, *n* ∈ N, converge to the original operation:

$$
\lim_{n\to\infty}g\circ_{\psi_{p^n}}h=g\cdot h.
$$

Let (G, \cdot) be a group.

A *Rota–Baxter* operator on (G, \cdot) is a map $B: G \rightarrow G$ such that

$$
B(g \cdot B(g) \cdot h \cdot B(g)^{-1}) = B(g) \cdot B(h)
$$

for all $g, h \in G$.

Let B be a Rota–Baxter operator on (*G, ·*)*, and write*

 $g \circ h = g \cdot B(g) \cdot h \cdot B(g)^{-1}$

for all $g, h \in G$ *. Then* (G, \cdot, \circ) *is a skew brace.*

Let (*G, ·*) *be a group. The following data are equivalent:*

- *• an operation such that* (*G, ·,* ◦) *is a skew brace.*
- *a gamma function: a function* γ : *G* \rightarrow Aut(*G*, *·*) *such that*

$$
\gamma(g \cdot {}^{\gamma(g)}h) = \gamma(g)\gamma(h).
$$

for all $g, h \in G$. *Explicitly,* $g \circ h = g \cdot \gamma(g)h$ *.* In particular, given *C* : *G* → *G* and $g \circ h = g \cdot C(g) \cdot h \cdot C(g)^{-1}$, (G, \cdot, \circ) is a skew brace if and only if for all $g, h \in G$,

 $C(g \cdot C(g) \cdot h \cdot C(g)^{-1}) \equiv C(g) \cdot C(h) \pmod{Z(G)}$.

Let (G, \cdot, \circ) be a skew brace.

We say that (*G, ·,* ◦) *comes* from a Rota–Baxter operator if there exists a Rota–Baxter operator *B* on (*G, ·*) such that

$$
g\circ h=g\cdot B(g)\cdot h\cdot B(g)^{-1}
$$

for all $g, h \in G$.

Question

Do all the skew braces such that the associated gamma function has values in the inner automorphisms come from a Rota–Baxter operator?

Let (G, \cdot, \circ) be such a skew brace. Then

$$
g\circ h=g\cdot C(g)\cdot h\cdot C(g)^{-1},
$$

where $C: G \rightarrow G$ satisfies

$$
C(g)\cdot C(h)=\kappa(g,h)\cdot C(g\circ h)
$$

for some κ : $G \times G \rightarrow Z(G)$.

- *•* κ *is a* 2*-cocycle for the trivial* (*G,* ◦)*-module Z*(*G*)*, whose cohomology class in* $H^2((G, \circ), Z(G))$ *does not depend on the choice of C.*
- *•* (*G, ·,* ◦) *comes from a Rota–Baxter operator if and only if the cohomology class of* κ *is trivial.*

Let *p* be an odd prime, and let $G = \{(a, b, c) | a, b, c \in \mathbb{Z}/p\mathbb{Z}\}$ be the Heisenberg group of order p^3 , a group of nilpotence class two. For all $\alpha \in \{0, \ldots, p-1\}$, consider

$$
g\circ_{\alpha}h=g\cdot g^{\alpha}\cdot h\cdot g^{-\alpha}=g\cdot h\cdot [g,h]^{\alpha}.
$$

Then $(G, \cdot, \circ_{\alpha})$ is a skew brace.

- \bullet *If* $\alpha \neq (p-2)^{-1}$ *, then* $(G, \cdot, \circ_{\alpha})$ *comes from a Rota–Baxter operator.*
- *If* $\alpha = (p-2)^{-1}$, *then* $(G, \cdot, \circ_{\alpha})$ *does not come from a Rota–Baxter operator.*

B Bardakov, V. G. and Gubarev, V. (2022).

Rota-Baxter groups, skew left braces, and the Yang-Baxter equation.

J. Algebra, 596:328–351.

Caranti, A. and LS (2021).

From endomorphisms to bi-skew braces, regular subgroups, the Yang-Baxter equation, and Hopf-Galois structures. *J. Algebra*, 587:462–487.

F Caranti, A. and LS (2022a).

Brace blocks from bilinear maps and liftings of endomorphisms. *arXiv:2110.11028*.

Caranti, A. and LS (2022b).

Skew braces from rota-baxter operators: A cohomological characterisation, and some examples. *arXiv:2201.03936*.

F Cedó, F., Jespers, E., and Okniński, J. (2014). Braces and the Yang-Baxter equation.

Comm. Math. Phys., 327(1):101–116.

F Childs, L. N. (2019).

Bi-skew braces and Hopf Galois structures. *New York J. Math.*, 25:574–588.

h Drinfel'd, V. G. (1992).

On some unsolved problems in quantum group theory. In *Quantum groups (Leningrad, 1990)*, volume 1510 of *Lecture Notes in Math.*, pages 1–8. Springer, Berlin.

- Greither, C. and Pareigis, B. (1987). Hopf Galois theory for separable field extensions. *J. Algebra*, 106(1):239–258.
- **Guarnieri, L. and Vendramin, L. (2017).** Skew braces and the Yang-Baxter equation. *Math. Comp.*, 86(307):2519–2534.
- **Guo, L., Lang, H., and Sheng, Y. (2021).** Integration and geometrization of Rota-Baxter Lie algebras. *Adv. Math.*, 387:Paper No. 107834, 34.
- \blacksquare Koch, A. (2021).

Abelian maps, bi-skew braces, and opposite pairs of Hopf-Galois structures.

Proc. Amer. Math. Soc. Ser. B, 8:189–203.

Koch, A. (2022).

Abelian maps, brace blocks, and solutions to the Yang-Baxter equation.

J. Pure Appl. Algebra, 226(9):Paper No. 107047.

R Rump, W. (2007).

Braces, radical rings, and the quantum Yang-Baxter equation. *J. Algebra*, 307(1):153–170.