Skew braces, brace blocks, and the Yang–Baxter equation

Lorenzo Stefanello

Inform on Algebra, 31 March 2022

- Skew braces and connections
- Some recent results

Skew braces and connections

Definition ([Guarnieri and Vendramin, 2017])

A skew brace is a triple (G, \cdot, \circ) , where (G, \cdot) and (G, \circ) are groups and for all $g, h, k \in G$,

$$g \circ (h \cdot k) = (g \circ h) \cdot g^{-1} \cdot (g \circ k).$$

(Here $^{-1}$ denotes the inverse with respect to \cdot .)

Example

Let (G, \cdot) be a group.

- (G, \cdot, \cdot) is a skew brace.
- (G, \cdot, \circ) is a skew brace, where $g \circ h = h \cdot g$ for all $g, h \in G_{\cdot}$

Definition ([Rump, 2007], [Cedó et al., 2014])

A brace is a skew brace (G, \cdot, \circ) such that (G, \cdot) is abelian.

Example

For all $a, b \in (\mathbb{Z}, +)$, define $a \circ b = a + (-1)^a b$. Then $(\mathbb{Z}, +, \circ)$ is a brace.

Definition ([Drinfel'd, 1992])

A (set-theoretic nondegenerate) solution of the Yang-Baxter equation is a couple (X, r), where X is a nonempty set and

$$egin{aligned} r\colon X imes X o X imes X\ (x,y)\mapsto (\sigma_x(y), au_y(x)) \end{aligned}$$

is a bijective map such that

 $(r \times \mathrm{id}_X)(\mathrm{id}_X \times r)(r \times \mathrm{id}_X) = (\mathrm{id}_X \times r)(r \times \mathrm{id}_X)(\mathrm{id}_X \times r)$

and σ_x and τ_x are bijective for all $x \in X$. We say that (X, r) is *involutive* if $r^2 = id_{X \times X}$. Theorem ([Rump, 2007],[Guarnieri and Vendramin, 2017]) Let (G, \cdot, \circ) be a skew brace. Then (G, r) is a solution, where

$$r(g,h) = (g^{-1} \cdot (g \circ h), \overline{g^{-1} \cdot (g \circ h)} \circ g \circ h).$$

(Here an overline denotes the inverse with respect to \circ .) The solution is involutive if and only if (G, \cdot, \circ) is a brace.

Regular subgroups

Let (G, 1) be a pointed set, and let Perm(G) be the group of permutations on G. A subgroup N of Perm(G) is *regular* if the map

 $egin{array}{l} \mathcal{N}
ightarrow \mathcal{G} \ \eta \mapsto \eta \mathbf{[1]} \end{array}$

is a bijection. If (G,\circ) is a group with identity 1, then $\lambda_\circ(G)$ is regular, where

 $egin{aligned} \lambda_\circ\colon G & o \operatorname{Perm}(G) \ &g\mapsto (h\mapsto g\circ h). \end{aligned}$

Fact

Every regular subgroup arises in this way!

Theorem ([Guarnieri and Vendramin, 2017])

Let (G,\diamond) and (G,\circ) be groups with identity 1. Then (G,\diamond,\circ) is a skew brace if and only if $\lambda_{\circ}(G)$ normalises $\lambda_{\diamond}(G)$.

Let (G, \cdot) be a group, and denote by Hol(G) the normaliser of $\lambda(G)$ in Perm(G).

Corollary

There is a bijective correspondence between operations \circ such that (G, \cdot, \circ) is a skew brace and regular subgroups of Hol(G).

Let L/K be a finite field extension.

Definition

A Hopf–Galois structure on L/K consists of the following data:

- a K-Hopf algebra H;
- an action of *H* on *L* such that certain technical properties are satisfied.

Example

If L/K is Galois with Galois group G, then K[G] with the usual action is the *classical* Hopf–Galois structure on L/K.

Let L/K be a finite Galois extension with Galois group (G, \cdot) .

Theorem ([Greither and Pareigis, 1987])

There is a bijective correspondence between Hopf–Galois structures on L/K and regular subgroups N of Perm(G) normalised by $\lambda(G)$.

Corollary

There is a bijective correspondence between Hopf–Galois structures on L/K and operations \circ on G such that (G, \circ, \cdot) is a skew brace.

Definition ([Childs, 2019])

We say that a skew brace (G, \cdot, \circ) is a *bi-skew brace* if also (G, \circ, \cdot) is a skew brace.

Definition ([Koch, 2022], [Caranti and LS, 2022a])

Let G be a set. A brace block on G is a family $(\circ_i | i \in I)$ of operations on G, where I is an index set, such that (G, \circ_i, \circ_j) is a (bi-)skew brace for all $i, j \in I$.

Let (G, \cdot) be a finite group, and let ψ be an abelian endomorphism of (G, \cdot) . Then (G, \cdot, \circ) is a bi-skew brace, where for all $g, h \in G$,

$$g \circ h = g \cdot \psi(g)^{-1} \cdot h \cdot \psi(g).$$

As ψ is also an abelian endomorphism of (G, \circ) , the construction can be iterated, to obtain a brace block $(\circ_n | n \in \mathbb{N})$ on G, where $\circ_0 = \cdot$ and $\circ_1 = \circ$.

Some new results

Let (G, \cdot) be a group.

In [Caranti and LS, 2021], we characterised the endomorphisms ψ of *G* such that (G, \cdot, \circ) is a bi-skew brace, where for all $g, h \in G$,

$$g \circ h = g \cdot \psi(g)^{\varepsilon} \cdot h \cdot \psi(g)^{-\varepsilon}.$$

(Here $\varepsilon = \pm 1$.)

For example, the result holds if $\psi([G, G]) \leq Z(G)$.

Question

- Can we obtain a brace block from this construction?
- Do we have to assume that $\psi \in \text{End}(G, \cdot)$?

The setting

Let (G, \cdot) be a group, let K be a subgroup of G contained in Z(G), and let A be a subgroup of G such that A/K is abelian. Consider the ring

$$\mathcal{A} = \{ \psi \in \mathsf{End}(G/K) \mid \psi(G/K) \le A/K \}.$$

For all $\psi \in A$, define ψ^{\uparrow} to be a lifting of ψ , that is, a set-theoretic map $\psi^{\uparrow} \colon G \to A$ such that

$$\psi^{\uparrow}(g)K = \psi(gK).$$

Note that for all $g, h \in G$,

$$\psi^{\uparrow}(g \cdot h) \equiv \psi^{\uparrow}(g) \cdot \psi^{\uparrow}(h) \pmod{K}.$$

Recall: $K \leq Z(G)$, A/K abelian,

 $\mathcal{A} = \{ \psi \in \mathsf{End}(G/K) \mid \psi(G/K) \le A/K \}.$

For all $\psi \in \mathcal{A}$, define

$$g \circ_{\psi} h = g \cdot \psi^{\uparrow}(g) \cdot h \cdot (\psi^{\uparrow}(g))^{-1}.$$

Then (G, \cdot, \circ_{ψ}) is a bi-skew brace.

The family $(\circ_{\psi} \mid \psi \in \mathcal{A})$ is a brace block on *G*.

Let (G, \cdot) be a group, and assume our main setting. Theorem ([Caranti and LS, 2022a]) Let $\psi, \varphi \in A$. Then (G, r) is a solution, where

$$egin{aligned} r(g,h) &= ((\psi-arphi)^{\uparrow}(g) \cdot h \cdot ((\psi-arphi)^{\uparrow}(g))^{-1}, \ (\psi^{\uparrow}(h))^{-1} \cdot (\psi-arphi)^{\uparrow}(g) \cdot h^{-1} \cdot ((\psi-arphi)^{\uparrow}(g))^{-1} \ \cdot g \cdot \psi^{\uparrow}(g) \cdot h \cdot (\psi^{\uparrow}(g))^{-1} \cdot \psi^{\uparrow}(h)). \end{aligned}$$

Let (G, \cdot) be a group of nilpotence class two, let K = [G, G], and let A = G. In this case $\mathcal{A} = \text{End}(G/K)$.

• For all $n \in \mathbb{Z}$, take

$$g \circ_n h = g \cdot g^n \cdot h \cdot g^{-n} = g \cdot h \cdot [g, h]^n.$$

Then $(\circ_n \mid n \in \mathbb{Z})$ is a brace block on *G*.

• For all $\psi \in \text{End}(G)$, take

$$g \circ_{\psi} h = g \cdot \psi(g) \cdot h \cdot \psi(g)^{-1}.$$

Then $(\circ_{\psi} \mid \psi \in \text{End}(G))$ is a brace block on G.

Let p be a prime number, and let $G = \{(a, b, c) \mid a, b, c \in \mathbb{Z}_p\}$ be the p-adic Heisenberg group, with group operation

$$(a, b, c) \cdot (a', b', c') = (a + a', b + b', c + c' + ab').$$

Then G is a topological group of nilpotence class two. For all $x \in \mathbb{Z}_p$, define $\psi_x \colon G \to G$ by

$$\psi_x(a,b,c) = (xa,xb,x^2c).$$

Then $\psi_x \in \text{End}(G)$, and we obtain a brace block $(\circ_{\psi_x} | x \in \mathbb{Z}_p)$ on G.

Some pleasant facts

Explicitly, for all $g = (a, b, c), h = (a', b', c') \in G$,

$$g \circ_{\psi_x} h = g \cdot h \cdot (0, 0, x(ab' - a'b)).$$

In particular, the following facts hold:

- The brace block consists of infinitely many distinct operations.
- The skew braces of the kind $(G, \cdot, \circ_{\psi_z})$, $z \in \mathbb{Z}$, are not isomorphic.
- The operations $\circ_{\psi_{p^n}}$, $n \in \mathbb{N}$, converge to the original operation:

$$\lim_{n\to\infty}g\circ_{\psi_{p^n}}h=g\cdot h.$$

Let (G, \cdot) be a group.

Definition ([Guo et al., 2021])

A *Rota–Baxter* operator on (G, \cdot) is a map $B: G \to G$ such that

$$B(g \cdot B(g) \cdot h \cdot B(g)^{-1}) = B(g) \cdot B(h)$$

for all $g, h \in G$.

Proposition ([Guo et al., 2021], [Bardakov and Gubarev, 2022]) Let B be a Rota–Baxter operator on (G, \cdot) , and write

 $g\circ h=g\cdot B(\overline{g)\cdot h\cdot B(g)^{-1}}$

for all $g, h \in G$. Then (G, \cdot, \circ) is a skew brace.

Theorem ([Guarnieri and Vendramin, 2017])

Let (G, \cdot) be a group. The following data are equivalent:

- an operation \circ such that (G, \cdot, \circ) is a skew brace.
- a gamma function: a function $\gamma \colon \mathcal{G}
 ightarrow \mathsf{Aut}(\mathcal{G}, \cdot)$ such that

$$\gamma(g \cdot {}^{\gamma(g)}h) = \gamma(g)\gamma(h).$$

for all $g, h \in G$. Explicitly, $g \circ h = g \cdot \gamma^{(g)}h$. In particular, given $C: G \to G$ and $g \circ h = g \cdot C(g) \cdot h \cdot C(g)^{-1}$, (G, \cdot, \circ) is a skew brace if and only if for all $g, h \in G$,

 $C(g \cdot C(g) \cdot h \cdot C(g)^{-1}) \equiv C(g) \cdot C(h) \pmod{Z(G)}.$

Let (G, \cdot, \circ) be a skew brace.

Definition

We say that (G, \cdot, \circ) comes from a Rota–Baxter operator if there exists a Rota–Baxter operator B on (G, \cdot) such that

$$g \circ h = g \cdot B(g) \cdot h \cdot B(g)^{-1}$$

for all $g, h \in G$.

Question

Do all the skew braces such that the associated gamma function has values in the inner automorphisms come from a Rota-Baxter operator?

The answer

Let (G, \cdot, \circ) be such a skew brace. Then

$$g \circ h = g \cdot C(g) \cdot h \cdot C(g)^{-1},$$

where $C: G \rightarrow G$ satisfies

$$C(g) \cdot C(h) = \kappa(g, h) \cdot C(g \circ h)$$

for some $\kappa \colon G \times G \to Z(G)$.

Theorem ([Caranti and LS, 2022b])

- κ is a 2-cocycle for the trivial (G, ◦)-module Z(G), whose cohomology class in H²((G, ◦), Z(G)) does not depend on the choice of C.
- (G, ·, ∘) comes from a Rota–Baxter operator if and only if the cohomology class of κ is trivial.

An example

Let p be an odd prime, and let $G = \{(a, b, c) \mid a, b, c \in \mathbb{Z}/p\mathbb{Z}\}$ be the Heisenberg group of order p^3 , a group of nilpotence class two. For all $\alpha \in \{0, \dots, p-1\}$, consider

$$\mathsf{g}\circ_lpha \mathsf{h}=\mathsf{g}\cdot\mathsf{g}^lpha\cdot\mathsf{h}\cdot\mathsf{g}^{-lpha}=\mathsf{g}\cdot\mathsf{h}\cdot[\mathsf{g},\mathsf{h}]^lpha.$$

Then $(G, \cdot, \circ_{\alpha})$ is a skew brace.

Proposition ([Caranti and LS, 2022b])

- If α ≠ (p − 2)⁻¹, then (G, ·, ∘_α) comes from a Rota–Baxter operator.
- If α = (p − 2)⁻¹, then (G, ·, ∘_α) does not come from a Rota–Baxter operator.

🔋 Bardakov, V. G. and Gubarev, V. (2022).

Rota-Baxter groups, skew left braces, and the Yang-Baxter equation.

J. Algebra, 596:328–351.

📑 Caranti, A. and LS (2021).

From endomorphisms to bi-skew braces, regular subgroups, the Yang-Baxter equation, and Hopf-Galois structures. *J. Algebra*, 587:462–487.

📄 Caranti, A. and LS (2022a).

Brace blocks from bilinear maps and liftings of endomorphisms. *arXiv:2110.11028*.

Bibliography II

📑 Caranti, A. and LS (2022b).

Skew braces from rota-baxter operators: A cohomological characterisation, and some examples. *arXiv:2201.03936*.

📔 Cedó, F., Jespers, E., and Okniński, J. (2014).

Braces and the Yang-Baxter equation. *Comm. Math. Phys.*, 327(1):101–116.

📔 Childs, L. N. (2019).

Bi-skew braces and Hopf Galois structures. *New York J. Math.*, 25:574–588.

📄 Drinfel'd, V. G. (1992).

On some unsolved problems in quantum group theory. In *Quantum groups (Leningrad, 1990)*, volume 1510 of *Lecture Notes in Math.*, pages 1–8. Springer, Berlin.

Bibliography III

Greither, C. and Pareigis, B. (1987).
 Hopf Galois theory for separable field extensions.
 J. Algebra, 106(1):239–258.

- Guarnieri, L. and Vendramin, L. (2017). Skew braces and the Yang-Baxter equation. Math. Comp., 86(307):2519–2534.
- Guo, L., Lang, H., and Sheng, Y. (2021).
 Integration and geometrization of Rota-Baxter Lie algebras.
 Adv. Math., 387:Paper No. 107834, 34.

📔 Koch, A. (2021).

Abelian maps, bi-skew braces, and opposite pairs of Hopf-Galois structures.

Proc. Amer. Math. Soc. Ser. B, 8:189–203.

Koch, A. (2022)

Abelian maps, brace blocks, and solutions to the Yang-Baxter equation.

J. Pure Appl. Algebra, 226(9):Paper No. 107047.

📔 Rump, W. (2007).

Braces, radical rings, and the quantum Yang-Baxter equation. *J. Algebra*, 307(1):153–170.