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Notation and convention

Let (G , ·) be a group, and g ∈ G .
• If ψ ∈ End(G , ·), we write ψg for the image of g under ψ.
• We denote by λ the left regular representation, and by ρ the

right regular representation.
• We write ι : (G , ·) → Aut(G , ·) for the homomorphism that

sends g ∈ G to the conjugation-by-g automorphism.
• If ψ ∈ End(G , ·), we write [g ,ψ] := g · ψg−1, and

[G ,ψ] = 〈[g ,ψ] : g ∈ G 〉.
• If (G , ·, ◦) is a skew brace, we denote by g−1 the inverse of g

with respect to ·, and by g the inverse of g with respect to ◦.
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Gamma functions

Theorem ([Guarnieri and Vendramin, 2017])
Let (G , ·) be a group. The following data are equivalent.

• An operation ◦ such that (G , ·, ◦) is a skew brace.
• A regular subgroup N ≤ Perm(G ) which normalises λ(G ).
• A function γ : G → Aut(G , ·) such that, for every g , h ∈ G ,

γ(g · γ(g)h) = γ(g)γ(h).

The function γ is called gamma function. Explicitly,

γ(g)h = g−1 · (g ◦ h),
N = {λ(g)γ(g) : g ∈ G}.
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Bi-gamma functions

Theorem ([Childs, 2019], [Caranti, 2020])
Let (G , ·) be a group. The following data are equivalent.

• An operation ◦ such that (G , ·, ◦) is a bi-skew brace.
• A regular subgroup N ≤ Perm(G ) which normalises, and is

normalised by, λ(G ).
• An antihomomorphism γ : (G , ·) → Aut(G , ·) such that, for

every g , h ∈ G ,

γ(g · γ(g)h) = γ(g)γ(h).

The function γ is called bi-gamma function.
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Our setting: ε = −1

Let (G , ·) be a group, and ψ ∈ End(G , ·).

Theorem ([Caranti and LS, 2021])
The following are equivalent.

• ψ satisfies ψ[[G ,ψ],G ] ≤ Z (G , ·).
• (G , ·, ◦) is a bi-skew brace, for g ◦ h = g · ψg−1 · h · ψg .
• The function γ define by γ(g) = ι(ψg−1) is a bi-gamma

function for (G , ·).

If any of these holds, then N = {λ(g)ι(ψg−1) : g ∈ G} is a regular
subgroup of Perm(G ) which normalises, and is normalised by, λ(G ).

This result generalises [Koch, 2021], where the map ψ is abelian.
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The Yang–Baxter equation
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Main definitions

Definition ([Drinfel’d, 1992])
A set-theoretic solution of the Yang–Baxter equation is a couple
(X , r), where X ∕= ∅ is a set, and

r : X × X → X × X

(x , y) *→ (σx(y), τy (x))

is a bijective map satisfying

(r × idX )(idX ×r)(r × idX ) = (idX ×r)(r × idX )(idX ×r).

We say that (X , r) is non-degenerate if, for every x ∈ X , σx and τx
are bijective, and involutive if r2 = idX×X . For us, a solution is a
non-degenerate set-theoretic solution of the Yang–Baxter equation.
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Yang–Baxter and (skew) braces

Theorem ([Rump, 2007], [Guarnieri and Vendramin, 2017])
Let (G , ·, ◦) be a skew brace. Then

r : (g , h) *→ (g−1 · (g ◦ h), g−1 · (g ◦ h) ◦ g ◦ h)

is a solution for G .

The solution (G , r) is involutive if and only if (G , ·, ◦) is a brace,
that is, if (G , ·) is abelian.
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Opposite skew brace, bi-skew braces and solutions

Definition ([Rump, 2019], [Koch and Truman, 2020a])
Let (G , ·, ◦) be a skew brace. The opposite skew brace is (G , ·′, ◦),
where, for every g , h ∈ G , g ·′ h = h · g .

Given a bi-skew brace (G , ·, ◦), we find (up to) four solutions for G :

(G , ·, ◦) ⇝ (g , h) *→ (g−1 · (g ◦ h), g−1 · (g ◦ h) ◦ g ◦ h),
(G , ·′, ◦) ⇝ (g , h) *→ ((g ◦ h) · g−1, (g ◦ h) · g−1 ◦ g ◦ h),
(G , ◦, ·) ⇝ (g , h) *→ (g ◦ (g · h), (g ◦ (g · h))−1 · g · h),
(G , ◦′, ·) ⇝ (g , h) *→ ((g · h) ◦ g , ((g · h) ◦ g)−1 · g · h).
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Yang–Baxter and (bi)-gamma functions

We may rewrite the solutions so that they depend only on · and γ.

Theorem ([Caranti and LS, 2021])
Let (G , ·) be a group, and γ be a gamma function.
The we get (up to) two solutions:

(g , h) *→ (γ(g)h, γ(
γ(g)h)−1

(γ(g)h−1 · g · γ(g)h)),

(g , h) *→ (ι(g)γ(g)h, γ(
ι(g)γ(g)h)−1

g).

If in addition γ is a bi-gamma function, then we get (up to) other
two solutions:

(g , h) *→ (γ(g
−1)h, γ(g

−1)h−1 · g · h),
(g , h) *→ (g · h · γ(h)g−1, γ(h)g−1).
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Yang–Baxter in our setting

Theorem ([Caranti and LS, 2021])
Let (G , ·) be a group, and ψ ∈ End(G , ·). If ψ[[G ,ψ],G ] ≤ Z (G , ·),
then we get (up to) four solutions:

(g , h) *→ (ψg−1 · h · ψg , ψ(g−1 · h) · h−1 · ψg · g · ψg−1 · h · ψ(h−1 · g)),
(g , h) *→ (g · ψg−1 · h · ψg · g−1, ψh · g · ψh−1),

(g , h) *→ (ψg · h · ψg−1, ψg · h−1 · ψg−1 · g · h),
(g , h) *→ (g · h · ψh−1 · g−1 · ψh, ψh−1 · g · ψh).

These coincide with the solutions found in [Koch, 2021], where ψ is
abelian.

13 / 23



Hopf–Galois structures
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Main definition and results

Fix a finite Galois extension L/K with Galois group (G , ·).

Definition
A Hopf–Galois structure on L/K consists of a cocommutative
K -Hopf algebra H, together with an action of H on L satisfying
certain technical properties.

Theorem ([Greither and Pareigis, 1987])
The Hopf–Galois structures on L/K are in bijective correspondence
with the regular subgroups of Perm(G ) normalised by λ(G ).

The K -Hopf algebra L[N]G corresponds to the subgroup N.

Moreover, the K -sub-Hopf algebras of L[N]G are in bijective
correspondence with the subgroups of N normalised by λ(G ).
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Hopf–Galois and gamma functions

We would like to use gamma functions to analyse Hopf–Galois
structures. Notice that a gamma function for (G , ·) yields a regular
subgroup which normalises λ(G ), while we need a regular subgroup
normalised by λ(G ).

Fact
If γ is a bi-gamma function for (G , ·), then

N = {λ(g)γ(g) : g ∈ G}

is a regular subgroup of Perm(G ) which normalises, and is
normalised by, λ(G ). In particular, L[N]G gives a Hopf–Galois
structure on L/K .
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Hopf–Galois structures in our setting

Let L/K be a finite Galois extension with Galois group (G , ·), and
ψ ∈ End(G , ·) such that ψ[[G ,ψ],G ] ≤ Z (G , ·).
Then γ, defined by γ(g) = ι(ψg−1), is a bi-gamma function, and so
L[N]G gives a Hopf–Galois structure on L/K , where

N = {λ(g)ι(ψg−1) : g ∈ G}.

Question
Can we determine the type of N?
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Five subgroups of N

As in [Koch, 2021], we can always find (up to) five subgroups of N
normalised by λ(G ), and these correspond to five K -sub-Hopf
algebras of L[N]G .

For example, the λ-points and ρ-points, introduced
in [Koch and Truman, 2020b]:

ΛN = N ∩ λ(G ) = {λ(g) : g ∈ ker(γ)}
= {λ(g) : g satisfies ψg ∈ Z (G , ·)},

PN = N ∩ ρ(G ) = {ρ(g) : g satisfies γ(g) = ι(g−1)}
= {ρ(g) : g satisfies g · ψg−1 ∈ Z (G , ·)}.

Some of the five subgroups may coincide, but we can find examples
in which they are all distinct.
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When we can be explicit

• If ψ is a fixed point free abelian endomorphism, then
N ∼= (G , ·) ([Childs, 2013], [Koch, 2021]).

• If ψ is different from zero and idempotent, then for every
n ≥ 1, ψn = ψ, and ψG = {g ∈ G : ψg = g}. We can use a
version of the Fitting’s Lemma for groups ([Caranti, 1985]) to
deduce that N ∼= (ker(ψ), ·)× (ψG , ·).
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