... the Yang–Baxter equation, and Hopf–Galois structures

Lorenzo Stefanello, Andrea Caranti

May 25, 2021

- Introduction
- The Yang–Baxter equation
- Hopf–Galois structures

Introduction

Let (G, \cdot) be a group, and $g \in G$.

- If $\psi \in \text{End}(G, \cdot)$, we write ${}^{\psi}g$ for the image of g under ψ .
- We denote by λ the left regular representation, and by ρ the right regular representation.
- We write $\iota: (G, \cdot) \to \operatorname{Aut}(G, \cdot)$ for the homomorphism that sends $g \in G$ to the conjugation-by-g automorphism.
- If $\psi \in \text{End}(G, \cdot)$, we write $[g, \psi] := g \cdot {}^{\psi}g^{-1}$, and $[G, \psi] = \langle [g, \psi] : g \in G \rangle$.
- If (G, ·, ∘) is a skew brace, we denote by g⁻¹ the inverse of g with respect to ·, and by g the inverse of g with respect to ∘.

Theorem ([Guarnieri and Vendramin, 2017])

Let (G, \cdot) be a group. The following data are equivalent.

- An operation \circ such that (G, \cdot, \circ) is a skew brace.
- A regular subgroup $N \leq \text{Perm}(G)$ which normalises $\lambda(G)$.
- A function $\gamma\colon {\sf G} o {\sf Aut}({\sf G},\cdot)$ such that, for every ${\sf g},{\sf h}\in{\sf G}$,

$$\gamma(g \cdot \gamma^{(g)}h) = \gamma(g)\gamma(h).$$

The function γ is called gamma function. Explicitly,

$$egin{aligned} &\gamma(g)h=g^{-1}\cdot(g\circ h),\ &N=\{\lambda(g)\gamma(g):g\in G\}. \end{aligned}$$

Theorem ([Childs, 2019], [Caranti, 2020])

Let (G, \cdot) be a group. The following data are equivalent.

- An operation \circ such that (G, \cdot, \circ) is a bi-skew brace.
- A regular subgroup N ≤ Perm(G) which normalises, and is normalised by, λ(G).
- An antihomomorphism γ: (G, ·) → Aut(G, ·) such that, for every g, h ∈ G,

$$\gamma(g \cdot {}^{\gamma(g)}h) = \gamma(g)\gamma(h).$$

The function γ is called *bi-gamma function*.

Let (G, \cdot) be a group, and $\psi \in \operatorname{End}(G, \cdot)$.

Theorem ([Caranti and LS, 2021])

The following are equivalent.

- ψ satisfies $\psi[[G, \psi], G] \leq Z(G, \cdot)$.
- (G, \cdot, \circ) is a bi-skew brace, for $g \circ h = g \cdot {}^{\psi}g^{-1} \cdot h \cdot {}^{\psi}g$.
- The function γ define by γ(g) = ι(^ψg⁻¹) is a bi-gamma function for (G, ·).

If any of these holds, then $N = \{\lambda(g)\iota(\psi g^{-1}) : g \in G\}$ is a regular subgroup of Perm(G) which normalises, and is normalised by, $\lambda(G)$. This result generalises [Koch, 2021], where the map ψ is abelian.

The Yang-Baxter equation

Definition ([Drinfel'd, 1992])

A set-theoretic solution of the Yang–Baxter equation is a couple (X, r), where $X \neq \emptyset$ is a set, and

$$egin{aligned} \mathsf{r}\colon X imes X & o X imes X\ (x,y)&\mapsto (\sigma_x(y), au_y(x)) \end{aligned}$$

is a bijective map satisfying

 $(r \times \mathrm{id}_X)(\mathrm{id}_X \times r)(r \times \mathrm{id}_X) = (\mathrm{id}_X \times r)(r \times \mathrm{id}_X)(\mathrm{id}_X \times r).$

We say that (X, r) is *non-degenerate* if, for every $x \in X$, σ_x and τ_x are bijective, and *involutive* if $r^2 = id_{X \times X}$. For us, a *solution* is a non-degenerate set-theoretic solution of the Yang–Baxter equation.

Theorem ([Rump, 2007], [Guarnieri and Vendramin, 2017]) Let (G, \cdot, \circ) be a skew brace. Then

$$r\colon (g,h)\mapsto (g^{-1}\cdot (g\circ h),\overline{g^{-1}\cdot (g\circ h)}\circ g\circ h)$$

is a solution for G.

The solution (G, r) is involutive if and only if (G, \cdot, \circ) is a brace, that is, if (G, \cdot) is abelian.

Definition ([Rump, 2019], [Koch and Truman, 2020a])

Let (G, \cdot, \circ) be a skew brace. The opposite skew brace is (G, \cdot', \circ) , where, for every $g, h \in G, g \cdot' h = h \cdot g$.

Given a bi-skew brace (G, \cdot, \circ) , we find (up to) four solutions for G:

$$(G, \cdot, \circ) \rightsquigarrow (g, h) \mapsto (g^{-1} \cdot (g \circ h), \overline{g^{-1} \cdot (g \circ h)} \circ g \circ h),$$

$$(G, \cdot', \circ) \rightsquigarrow (g, h) \mapsto ((g \circ h) \cdot g^{-1}, \overline{(g \circ h)} \cdot g^{-1} \circ g \circ h),$$

$$(G, \circ, \cdot) \rightsquigarrow (g, h) \mapsto (\overline{g} \circ (g \cdot h), (\overline{g} \circ (g \cdot h))^{-1} \cdot g \cdot h),$$

$$(G, \circ', \cdot) \rightsquigarrow (g, h) \mapsto ((g \cdot h) \circ \overline{g}, ((g \cdot h) \circ \overline{g})^{-1} \cdot g \cdot h).$$

Yang–Baxter and (bi)-gamma functions

We may rewrite the solutions so that they depend only on \cdot and γ .

Theorem ([Caranti and LS, 2021])

Let (G, \cdot) be a group, and γ be a gamma function. The we get (up to) two solutions:

$$(g,h) \mapsto ({}^{\gamma(g)}h, {}^{\gamma({}^{\gamma(g)}h)^{-1}}({}^{\gamma(g)}h^{-1} \cdot g \cdot {}^{\gamma(g)}h)), \\(g,h) \mapsto ({}^{\iota(g)\gamma(g)}h, {}^{\gamma({}^{\iota(g)\gamma(g)}h)^{-1}}g).$$

If in addition γ is a bi-gamma function, then we get (up to) other two solutions:

$$(g,h) \mapsto (^{\gamma(g^{-1})}h, ^{\gamma(g^{-1})}h^{-1} \cdot g \cdot h),$$

 $(g,h) \mapsto (g \cdot h \cdot ^{\gamma(h)}g^{-1}, ^{\gamma(h)}g^{-1}).$

Theorem ([Caranti and LS, 2021])

Let (G, \cdot) be a group, and $\psi \in \text{End}(G, \cdot)$. If $\psi[[G, \psi], G] \leq Z(G, \cdot)$, then we get (up to) four solutions:

$$\begin{aligned} (g,h) &\mapsto ({}^{\psi}g^{-1} \cdot h \cdot {}^{\psi}g, {}^{\psi}(g^{-1} \cdot h) \cdot h^{-1} \cdot {}^{\psi}g \cdot g \cdot {}^{\psi}g^{-1} \cdot h \cdot {}^{\psi}(h^{-1} \cdot g)), \\ (g,h) &\mapsto (g \cdot {}^{\psi}g^{-1} \cdot h \cdot {}^{\psi}g \cdot g^{-1}, {}^{\psi}h \cdot g \cdot {}^{\psi}h^{-1}), \\ (g,h) &\mapsto ({}^{\psi}g \cdot h \cdot {}^{\psi}g^{-1}, {}^{\psi}g \cdot h^{-1} \cdot {}^{\psi}g^{-1} \cdot g \cdot h), \\ (g,h) &\mapsto (g \cdot h \cdot {}^{\psi}h^{-1} \cdot g^{-1} \cdot {}^{\psi}h, {}^{\psi}h^{-1} \cdot g \cdot {}^{\psi}h). \end{aligned}$$

These coincide with the solutions found in [Koch, 2021], where ψ is abelian.

Hopf–Galois structures

Fix a finite Galois extension L/K with Galois group (G, \cdot) .

Definition

A Hopf–Galois structure on L/K consists of a cocommutative K-Hopf algebra H, together with an action of H on L satisfying certain technical properties.

Theorem ([Greither and Pareigis, 1987])

The Hopf–Galois structures on L/K are in bijective correspondence with the regular subgroups of Perm(G) normalised by $\lambda(G)$.

The K-Hopf algebra $L[N]^G$ corresponds to the subgroup N.

Moreover, the K-sub-Hopf algebras of $L[N]^G$ are in bijective correspondence with the subgroups of N normalised by $\lambda(G)$.

We would like to use gamma functions to analyse Hopf–Galois structures. Notice that a gamma function for (G, \cdot) yields a regular subgroup which normalises $\lambda(G)$, while we need a regular subgroup normalised by $\lambda(G)$.

Fact

If γ is a bi-gamma function for (G, \cdot) , then

 $N = \{\lambda(g)\gamma(g) : g \in G\}$

is a regular subgroup of Perm(G) which normalises, and is normalised by, $\lambda(G)$. In particular, $L[N]^G$ gives a Hopf–Galois structure on L/K.

Let L/K be a finite Galois extension with Galois group (G, \cdot) , and $\psi \in \operatorname{End}(G, \cdot)$ such that $\psi[[G, \psi], G] \leq Z(G, \cdot)$. Then γ , defined by $\gamma(g) = \iota({}^{\psi}g^{-1})$, is a bi-gamma function, and so $L[N]^G$ gives a Hopf–Galois structure on L/K, where

$$N = \{\lambda(g)\iota({}^{\psi}g^{-1}) : g \in G\}.$$

Question

Can we determine the type of N?

As in [Koch, 2021], we can always find (up to) five subgroups of N normalised by $\lambda(G)$, and these correspond to five K-sub-Hopf algebras of $L[N]^G$.

For example, the λ -points and ρ -points, introduced in [Koch and Truman, 2020b]:

$$\begin{split} \Lambda_N &= N \cap \lambda(G) = \{\lambda(g) : g \in \ker(\gamma)\} \\ &= \{\lambda(g) : g \text{ satisfies } {}^{\psi}g \in Z(G, \cdot)\}, \\ P_N &= N \cap \rho(G) = \{\rho(g) : g \text{ satisfies } \gamma(g) = \iota(g^{-1})\} \\ &= \{\rho(g) : g \text{ satisfies } g \cdot {}^{\psi}g^{-1} \in Z(G, \cdot)\}. \end{split}$$

Some of the five subgroups may coincide, but we can find examples in which they are all distinct.

- If ψ is a fixed point free abelian endomorphism, then N ≃ (G, ·) ([Childs, 2013], [Koch, 2021]).
- If ψ is different from zero and idempotent, then for every n ≥ 1, ψⁿ = ψ, and ^ψG = {g ∈ G : ^ψg = g}. We can use a version of the Fitting's Lemma for groups ([Caranti, 1985]) to deduce that N ≅ (ker(ψ), ·) × (^ψG, ·).

📄 Caranti, A. (1985).

Finite *p*-groups of exponent p^2 in which each element commutes with its endomorphic images. J. Algebra, 97(1):1–13.

📔 Caranti, A. (2020).

Bi-skew braces and regular subgroups of the holomorph. *J. Algebra*, 562:647–665.

📑 Caranti, A. and LS (2021).

From endomorphisms to bi-skew braces, regular subgroups, the Yang-Baxter equation, and Hopf-Galois structures. *J. Algebra*, 587:462–487.

📔 Childs, L. N. (2013).

Fixed-point free endomorphisms and Hopf Galois structures. *Proc. Amer. Math. Soc.*, 141(4):1255–1265.

📄 Childs, L. N. (2019).

Bi-skew braces and Hopf Galois structures. *New York J. Math.*, 25:574–588.

📄 Drinfel'd, V. G. (1992).

On some unsolved problems in quantum group theory. In *Quantum groups (Leningrad, 1990)*, volume 1510 of *Lecture Notes in Math.*, pages 1–8. Springer, Berlin.

Greither, C. and Pareigis, B. (1987).

Hopf Galois theory for separable field extensions. *J. Algebra*, 106(1):239–258.

Guarnieri, L. and Vendramin, L. (2017). Skew braces and the Yang-Baxter equation. Math. Comp., 86(307):2519–2534.

📔 Koch, A. (2021)

Abelian maps, bi-skew braces, and opposite pairs of Hopf-Galois structures.

Proc. Amer. Math. Soc. Ser. B, 8:189–203.

🔋 Koch, A. and Truman, P. J. (2020a).

Opposite skew left braces and applications. *J. Algebra*, 546:218–235.

📑 Koch, A. and Truman, P. J. (2020b).

Skew left braces and isomorphism problems for Hopf-Galois structures on Galois extensions.

arXiv:2005.05809.

📄 Rump, W. (2007).

Braces, radical rings, and the quantum Yang-Baxter equation. *J. Algebra*, 307(1):153–170.

📔 Rump, W. (2019).

A covering theory for non-involutive set-theoretic solutions to the Yang-Baxter equation.

J. Algebra, 520:136–170.