Hopf algebras, Galois modules, and skew braces

Lorenzo Stefanello

Insalate di Matematica, 10 March 2022

- Skew braces
- Hopf algebras
- Galois modules

Skew braces

Definition ([Guarnieri and Vendramin, 2017])

A skew brace is a triple (G, \cdot, \circ) , where (G, \cdot) and (G, \circ) are groups and for all $g, h, k \in G$,

$$g \circ (h \cdot k) = (g \circ h) \cdot g^{-1} \cdot (g \circ k).$$

(Here $^{-1}$ denotes the inverse with respect to \cdot .)

Example

Let (G, \cdot) be a group.

- (G, \cdot, \cdot) is a skew brace.
- (G, \circ, \cdot) is a skew brace, where $g \circ h = h \cdot g$.

Example

 $(\mathbb{Z},+,\circ)$ is a skew brace, where $m\circ n=m+(-1)^m n$.

Definition ([Drinfel'd, 1992])

A solution of the Yang–Baxter equation is a pair (X, r), where X is a nonempty set and

$$r: X \times X \to X \times X$$

is a bijective map such that

 $(r \times \mathrm{id}_X)(\mathrm{id}_X \times r)(r \times \mathrm{id}_X) = (\mathrm{id}_X \times r)(r \times \mathrm{id}_X)(\mathrm{id}_X \times r)$

on $X \times X \times X$.

Problem

Find all the solutions of the Yang-Baxter equation.

Theorem ([Guarnieri and Vendramin, 2017]) Let (G, \cdot, \circ) be a skew brace. Then (G, r) is a solution, where

$$r(g,h) = (g^{-1} \cdot (g \circ h), \overline{g^{-1} \cdot (g \circ h)} \circ g \circ h).$$

(Here an overline denotes the inverse with respect to \circ .)

Example

Consider (G, \cdot, \cdot) . Then (G, r) is a solution, where

$$r(g,h)=(h,h^{-1}\cdot g\cdot h).$$

Problem

Find explicit ways to construct skew braces.

Regular subgroups

Let (G, \cdot) be a finite group, and write Perm(G) for the group of permutations on G. A subgroup $N \leq Perm(G)$ is *regular* if |N| = |G| and N acts transitively on G.

Example

Define λ and ρ as follows:

$$\lambda \colon G \to \mathsf{Perm}(G)$$
$$\sigma \mapsto (\tau \mapsto \sigma \cdot \tau)$$
$$\rho \colon G \to \mathsf{Perm}(G)$$
$$\sigma \mapsto (\tau \mapsto \tau \cdot \sigma^{-1}).$$

Then $\lambda(G)$ and $\rho(G)$ are regular.

Theorem ([Guarnieri and Vendramin, 2017])

Let (G, \cdot) be a group. Then there is a bijective correspondence between skew braces (G, \circ, \cdot) and regular subgroups N of Perm(G)normalised by $\lambda(G)$.

Explicitly, $N = \{\nu(g) \mid g \in G\}$, where $\nu(g) \colon h \mapsto g \circ h$.

Example

- $\lambda(G)$ corresponds to (G, \cdot, \cdot) .
- $\rho(G)$ corresponds to (G, \circ, \cdot) with $g \circ h = h \cdot g$.

In [Caranti and LS, 2021], we constructed skew braces starting from suitable maps of a given group (G, \cdot) .

Corollary

Let (G, \cdot) be a group of nilpotency class two, and for all $\psi \in \text{End}(G)$, define

$$g \circ_{\psi} h = g \cdot \psi(g) \cdot h \cdot \psi(g)^{-1}.$$

Then for all $\psi, \varphi \in \text{End}(G)$,

 $(G,\circ_\psi,\circ_\varphi)$

is a skew brace.

Hopf algebras

Let K be a field.

Definition

A *K*-Hopf algebra is a *K*-algebra *H* together with *K*-linear maps $\Delta : H \to H \otimes_K H$, $\varepsilon : H \to K$, and $S : H \to H$ such that certain technical conditions are satisfied.

Example

Let G be a finite group, and consider the group algebra

$$\mathcal{K}[G] = \left\{ \sum_{\sigma \in G} k_{\sigma} \sigma \mid k_{\sigma} \in \mathcal{K}
ight\}.$$

Then K[G] is a K-Hopf algebra: $\Delta(\sigma) = \sigma \otimes \sigma$, $\varepsilon(\sigma) = 1$, and $S(\sigma) = \sigma^{-1}$ for all $\sigma \in G$.

Let L/K be a finite Galois extension with Galois group G. Then L is a left K[G]-module, with action

$$\left(\sum_{\sigma\in \mathcal{G}}k_{\sigma}\sigma
ight)\cdot x=\sum_{\sigma\in \mathcal{G}}k_{\sigma}\sigma(x).$$

Moreover, the K-linear map

$$L \otimes_{\mathcal{K}} \mathcal{K}[G]
ightarrow \mathsf{End}_{\mathcal{K}}(L) \ x \otimes h \mapsto (y \mapsto x(h \cdot y))$$

is bijective.

Generalising Galois theory: Hopf–Galois theory

Let L/K be a finite extension, let H be a K-Hopf algebra, and suppose that L is a left H-module such that the H-action on L "mimics" that of K[G].

Definition

We say that L/K is an *H*-*Galois extension*, or that *H* gives a *Hopf–Galois structure* on L/K, if the *K*-linear map

 $L \otimes_{\mathcal{K}} H o \operatorname{End}_{\mathcal{K}}(L)$ $x \otimes h \mapsto (y \mapsto x(h \cdot y))$

is bijective.

Example

L/K is a Galois extension with Galois group G if and only if L/K is an K[G]-Galois extension. This structure is called the *classical* Hopf–Galois structure. There are two main advantages:

- A finite Galois extension *L/K* has only one classical Hopf–Galois structure, but may have more nonclassical Hopf–Galois structures.
- Separable non-Galois finite extensions may admit Hopf–Galois structures!

Example ([Greither and Pareigis, 1987])

Take $\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q}$, a separable non-Galois finite extension. Then there exists a \mathbb{Q} -Hopf algebra H such that $\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q}$ is H-Galois.

Let L/K be an *H*-Galois extension, and let H' be a *K*-sub Hopf algebra (in the obvious sense). Then

$$L^{H'} = \{x \in L \mid h \cdot x = \varepsilon(h)x \text{ for all } h \in H'\}$$

is a field, called the *fixed field* of H'. Here $L^H = K$, and we obtain a correspondence inclusion-reversing and injective, not necessarily surjective.

Problem

Find in which cases the correspondence is also surjective.

Example

If H = K[G], then we recover the usual Galois correspondence, because the K-sub Hopf algebra of K[G] are all of the form K[G']for $G' \leq G$.

Hopf–Galois structures and skew braces

Let L/K be a finite Galois extension with Galois group (G, \cdot) .

Theorem ([Greither and Pareigis, 1987])

There is a bijective correspondence between Hopf–Galois structures on L/K and regular subgroups N of Perm(G) normalised by $\lambda(G)$.

Corollary

There is a bijective correspondence between Hopf–Galois structures on L/K and skew braces (G, \circ, \cdot) .

Problem

Classify Hopf–Galois structures and skew braces, given the isomorphism class of (G, \cdot) .

Galois modules

Let L/K be a finite Galois extension with Galois group G. Assume that we are in one of the following cases:

- *L* and *K* are number fields, that is, finite extensions of \mathbb{Q} . Write \mathcal{O}_L and \mathcal{O}_K for the integral closures of \mathbb{Z} in *L* and *K*, respectively.
- *L* and *K* are *p*-adic fields, that is, finite extensions of \mathbb{Q}_p . Write \mathcal{O}_L and \mathcal{O}_K for the integral closures of \mathbb{Z}_p in *L* and *K*, respectively.

By the normal basis theorem, *L* is free of rank one over K[G]. Similarly, \mathcal{O}_L is a left $\mathcal{O}_K[G]$ -module.

Question

Is \mathcal{O}_L free of rank one over $\mathcal{O}_K[G]$?

Definition

L/K is tamely ramified if for all maximal ideals \mathfrak{p} of \mathcal{O}_K , the characteristic of the residue field $\mathcal{O}_K/\mathfrak{p}$ does not divide the ramification index $e_\mathfrak{p}$ of \mathfrak{p} .

Theorem (Noether's theorem)

- If \mathcal{O}_L is free over $\mathcal{O}_K[G]$, then L/K is tamely ramified.
- If L and K are p-adic fields and L/K is tamely ramified, then \mathcal{O}_L is free of rank one over \mathcal{O}_K .

Question What if L/K is not tamely ramified?

Definition ([Leopoldt, 1959]) The *associated order* of \mathcal{O}_L in K[G] is

$$\mathfrak{A}_{L/K} = \{h \in K[G] \mid h \cdot \mathcal{O}_L \subseteq \mathcal{O}_L\}.$$

Clearly \mathcal{O}_L is a left $\mathfrak{A}_{L/K}$ -module, and if \mathcal{O}_L is free of rank one over an \mathcal{O}_K -subalgebra A of K[G], then $A = \mathfrak{A}_{L/K}$.

Problem

Find in which cases \mathcal{O}_L is free of rank one over $\mathfrak{A}_{L/K}$.

Some known results

 \mathcal{O}_L is free of rank one over $\mathfrak{A}_{L/K}$ in the following cases:

- $K = \mathbb{Q}$ and G is abelian ([Leopoldt, 1959]).
- $K = \mathbb{Q}$ and G is dihedral of order 2p ([Bergé, 1972]).
- $K = \mathbb{Q}$ and G is the quaternion group ([Martinet, 1972]).
- L and K are p-adic fields and Gal(L/Q_p) is abelian ([Lettl, 1990]).
- *L* and *K* are *p*-adic fields and *L*/*K* satisfies a technical ramification condition ([Johnston, 2015]).

Question

What if \mathcal{O}_L is not free over $\mathfrak{A}_{L/K}$?

Suppose that L/K is an *H*-Galois extension.

Definition

The associated order of \mathcal{O}_L in H is

$$\mathfrak{A}_{H} = \{h \in H \mid h \cdot \mathcal{O}_{L} \subseteq \mathcal{O}_{L}\}.$$

Clearly \mathcal{O}_L is a left \mathfrak{A}_H -module, and if \mathcal{O}_L is free of rank one over an \mathcal{O}_K -subalgebra A of H, then $A = \mathfrak{A}_H$.

Problem

Find in which cases \mathcal{O}_L is free of rank one over \mathfrak{A}_H .

In [Byott, 1997], it was built an extension of *p*-adic fields L/K and a K-Hopf algebra H such that

- L/K is Galois, but \mathcal{O}_L is not free over $\mathfrak{A}_{L/K}$;
- L/K is *H*-Galois, and \mathcal{O}_L is free of rank one over \mathfrak{A}_H .

Question

Which is the correct Hopf-Galois structure?

📄 Bergé, A.-M. (1972).

Sur l'arithmétique d'une extension diédrale. *Ann. Inst. Fourier (Grenoble)*, 22(2):31–59.

📔 Byott, N. P. (1997).

Galois structure of ideals in wildly ramified abelian *p*-extensions of a *p*-adic field, and some applications. *J. Théor. Nombres Bordeaux*, 9(1):201–219.

📄 Caranti, A. and LS (2021).

Brace blocks from bilinear maps and liftings of endomorphisms. *arXiv:2110.11028*.

📄 Drinfel'd, V. G. (1992).

On some unsolved problems in quantum group theory. In *Quantum groups (Leningrad, 1990)*, volume 1510 of *Lecture Notes in Math.*, pages 1–8. Springer, Berlin.

Bibliography II

- Greither, C. and Pareigis, B. (1987).
 Hopf Galois theory for separable field extensions.
 J. Algebra, 106(1):239–258.
- Guarnieri, L. and Vendramin, L. (2017). Skew braces and the Yang-Baxter equation. Math. Comp., 86(307):2519–2534.
- 📔 Johnston, H. (2015).

Explicit integral Galois module structure of weakly ramified extensions of local fields. *Proc. Amer. Math. Soc.*, 143(12):5059–5071.

📔 Leopoldt, H.-W. (1959).

Über die Hauptordnung der ganzen Elemente eines abelschen Zahlkörpers.

J. Reine Angew. Math., 201:119-149.

📄 Lettl, G. (1990).

The ring of integers of an abelian number field. *J. Reine Angew. Math.*, 404:162–170.

📄 Martinet, J. (1972).

Sur les extensions à groupe de Galois quaternionien. *C. R. Acad. Sci. Paris Sér. A-B*, 274:A933–A935.