Lorenzo Stefanello

Insalate di Matematica, 10 March 2022

- *•* Skew braces
- *•* Hopf algebras
- *•* Galois modules

A *skew brace* is a triple (G, \cdot, \circ) , where (G, \cdot) and (G, \circ) are groups and for all $g, h, k \in G$,

$$
g\circ (h\cdot k)=(g\circ h)\cdot g^{-1}\cdot (g\circ k).
$$

(Here [−]¹ denotes the inverse with respect to *·*.)

Let (G, \cdot) be a group.

- (G, \cdot, \cdot) is a skew brace.
- (G, \circ, \cdot) is a skew brace, where $g \circ h = h \cdot g$.

 $(\mathbb{Z}, +, \circ)$ is a skew brace, where $m \circ n = m + (-1)^m n$.

A *solution* of the Yang–Baxter equation is a pair (*X,r*), where *X* is a nonempty set and

$$
r: X \times X \to X \times X
$$

is a bijective map such that

 $(r \times id_X)(id_X \times r)(r \times id_X) = (id_X \times r)(r \times id_X)(id_X \times r)$

on $X \times X \times X$.

Find all the solutions of the Yang–Baxter equation.

Let (*G, ·,* ◦) *be a skew brace. Then* (*G,r*) *is a solution, where*

$$
r(g, h) = (g^{-1} \cdot (g \circ h), \overline{g^{-1} \cdot (g \circ h)} \circ g \circ h).
$$

(Here an overline denotes the inverse with respect to ◦*.)*

Consider (G, \cdot, \cdot) . Then (G, r) is a solution, where

$$
r(g, h) = (h, h^{-1} \cdot g \cdot h).
$$

Find explicit ways to construct skew braces.

Let (*G, ·*) be a finite group, and write Perm(*G*) for the group of permutations on *G*. A subgroup *N* ≤ Perm(*G*) is *regular* if $|N| = |G|$ and *N* acts transitively on *G*.

Define λ and ρ as follows:

$$
\lambda: G \to \text{Perm}(G)
$$

$$
\sigma \mapsto (\tau \mapsto \sigma \cdot \tau)
$$

$$
\rho: G \to \text{Perm}(G)
$$

$$
\sigma \mapsto (\tau \mapsto \tau \cdot \sigma^{-1}).
$$

Then $\lambda(G)$ and $\rho(G)$ are regular.

Let (*G, ·*) *be a group. Then there is a bijective correspondence between skew braces* (*G,* ◦*, ·*) *and regular subgroups N of* Perm(*G*) *normalised by* $\lambda(G)$ *.*

Explicitly, $N = \{ \nu(g) \mid g \in G \}$, where $\nu(g)$: $h \mapsto g \circ h$.

- $\lambda(G)$ corresponds to (G, \cdot, \cdot) .
- $\rho(G)$ corresponds to (G, \circ, \cdot) with $g \circ h = h \cdot g$.

In [[Caranti](#page-23-1) and LS, 2021], we constructed skew braces starting from suitable maps of a given group (*G, ·*).

Let (*G, ·*) *be a group of nilpotency class two, and for all* $\psi \in$ End(*G*), *define*

$$
g\circ_{\psi}h=g\cdot\psi(g)\cdot h\cdot\psi(g)^{-1}.
$$

Then for all $\psi, \varphi \in \text{End}(G)$,

 $(G, \circ_{\psi}, \circ_{\varphi})$

is a skew brace.

Let *K* be a field.

A *K-Hopf algebra* is a *K*-algebra *H* together with *K*-linear maps $\Delta: H \to H \otimes_K H$, $\varepsilon: H \to K$, and $S: H \to H$ such that certain technical conditions are satisfied.

Let *G* be a finite group, and consider the *group algebra*

$$
K[G] = \left\{ \sum_{\sigma \in G} k_{\sigma} \sigma \mid k_{\sigma} \in K \right\}.
$$

Then *K*[*G*] is a *K*-Hopf algebra: $\Delta(\sigma) = \sigma \otimes \sigma$, $\varepsilon(\sigma) = 1$, and $S(\sigma) = \sigma^{-1}$ for all $\sigma \in G$.

Let *L/K* be a finite Galois extension with Galois group *G*. Then *L* is a left *K*[*G*]-module, with action

$$
\left(\sum_{\sigma\in G}k_{\sigma}\sigma\right)\cdot x=\sum_{\sigma\in G}k_{\sigma}\sigma(x).
$$

Moreover, the *K*-linear map

$$
L \otimes_K K[G] \to \mathsf{End}_K(L)
$$

$$
x \otimes h \mapsto (y \mapsto x(h \cdot y))
$$

is bijective.

Let *L/K* be a finite extension, let *H* be a *K*-Hopf algebra, and suppose that *L* is a left *H*-module such that the *H*-action on *L* "mimics" that of *K*[*G*].

We say that *L/K* is an *H-Galois extension*, or that *H* gives a *Hopf–Galois structure* on *L/K*, if the *K*-linear map

> $L \otimes_K H \to \mathsf{End}_K(L)$ $x \otimes h \mapsto (y \mapsto x(h \cdot y))$

is bijective.

L/K is a Galois extension with Galois group *G* if and only if *L/K* is an *K*[*G*]-Galois extension. This structure is called the *classical* Hopf–Galois structure.

There are two main advantages:

- *•* A finite Galois extension *L/K* has only one classical Hopf–Galois structure, but may have more nonclassical Hopf–Galois structures.
- *•* Separable non-Galois finite extensions may admit Hopf–Galois structures!

Take $\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q}$, a separable non-Galois finite extension. Then there exists a \mathbb{Q} -Hopf algebra *H* such that $\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q}$ is *H*-Galois. Let *L/K* be an *H*-Galois extension, and let *H*′ be a *K*-sub Hopf algebra (in the obvious sense). Then

$$
L^{H'} = \{x \in L \mid h \cdot x = \varepsilon(h)x \text{ for all } h \in H'\}
$$

is a field, called the *fixed field* of *H*′ . Here $L^H = K$, and we obtain a correspondence inclusion-reversing and injective, not necessarily surjective.

Find in which cases the correspondence is also surjective.

If $H = K[G]$, then we recover the usual Galois correspondence, because the *K*-sub Hopf algebra of *K*[*G*] are all of the form *K*[*G*′] for $G' < G$.

Let *L/K* be a finite Galois extension with Galois group (*G, ·*).

There is a bijective correspondence between Hopf–Galois structures on L/K *and regular subgroups* N *of* Perm(*G*) *normalised by* $\lambda(G)$ *.*

There is a bijective correspondence between Hopf–Galois structures on L/K *and skew braces* (G, \circ, \cdot) *.*

Classify Hopf–Galois structures and skew braces, given the isomorphism class of (*G, ·*)*.*

Let *L/K* be a finite Galois extension with Galois group *G*. Assume that we are in one of the following cases:

- *• L* and *K* are number fields, that is, finite extensions of Q. Write \mathcal{O}_I and \mathcal{O}_K for the integral closures of $\mathbb Z$ in *L* and *K*, respectively.
- *• L* and *K* are *p*-adic fields, that is, finite extensions of Q*p*. Write \mathcal{O}_L and \mathcal{O}_K for the integral closures of \mathbb{Z}_p in *L* and *K*, respectively.

By the normal basis theorem, *L* is free of rank one over *K*[*G*]. Similarly, O_I is a left $O_K[G]$ -module.

Question

Is O ^{*l*} *free of rank one over* O ^{*K*} $[G]$?

 L/K is *tamely ramified* if for all maximal ideals p of \mathcal{O}_K , the characteristic of the residue field $\mathcal{O}_K/\mathfrak{p}$ does not divide the ramification index *e*^p of p.

- *• If O^L is free over O^K* [*G*]*, then L/K is tamely ramified.*
- *• If L and K are p-adic fields and L/K is tamely ramified, then* O_L *is free of rank one over* O_K *.*

What if L/K is not tamely ramified?

The *associated order* of \mathcal{O}_L in $K[G]$ is

$$
\mathfrak{A}_{L/K}=\{h\in K[G] \mid h\cdot \mathcal{O}_L\subseteq \mathcal{O}_L\}.
$$

Clearly O_L is a left $\mathfrak{A}_{L/K}$ -module, and if O_L is free of rank one over an \mathcal{O}_K -subalgebra A of $K[G]$, then $A = \mathfrak{A}_{L/K}$.

Find in which cases O_L *is free of rank one over* $\mathfrak{A}_{L/K}$ *.*

 O_L is free of rank one over $\mathfrak{A}_{L/K}$ in the following cases:

- $K = \mathbb{Q}$ and *G* is abelian ([[Leopoldt,](#page-24-2) 1959]).
- $K = \mathbb{Q}$ and *G* is dihedral of order 2*p* ([[Bergé,](#page-23-2) 1972]).
- $K = \mathbb{Q}$ and \overline{G} is the quaternion group ([\[Martinet,](#page-25-0) 1972]).
- *• L* and *K* are *p*-adic fields and Gal(*L/*Q*p*) is abelian ([[Lettl,](#page-25-1) 1990]).
- *• L* and *K* are *p*-adic fields and *L/K* satisfies a technical ramification condition ([\[Johnston,](#page-24-3) 2015]).

Question

What if O_L *is not free over* $\mathfrak{A}_{L/K}$?

Suppose that *L/K* is an *H*-Galois extension.

The *associated order* of *O^L* in *H* is

$$
\mathfrak{A}_H = \{ h \in H \mid h \cdot \mathcal{O}_L \subseteq \mathcal{O}_L \}.
$$

Clearly \mathcal{O}_L is a left \mathfrak{A}_H -module, and if \mathcal{O}_L is free of rank one over an \mathcal{O}_K -subalgebra *A* of *H*, then $A = \mathfrak{A}_H$.

Find in which cases O_L is free of rank one over \mathfrak{A}_H .

In [[Byott,](#page-23-3) 1997], it was built an extension of *p*-adic fields *L/K* and a *K*-Hopf algebra *H* such that

- \bullet *L*/*K* is Galois, but \mathcal{O}_L is not free over $\mathfrak{A}_{L/K}$;
- L/K is *H*-Galois, and \mathcal{O}_L is free of rank one over \mathfrak{A}_H .

Question

Which is the correct Hopf–Galois structure?

B Bergé, A.-M. (1972).

Sur l'arithmétique d'une extension diédrale. *Ann. Inst. Fourier (Grenoble)*, 22(2):31–59.

B Byott, N. P. (1997).

Galois structure of ideals in wildly ramified abelian *p*-extensions of a *p*-adic field, and some applications. *J. Théor. Nombres Bordeaux*, 9(1):201–219.

Caranti, A. and LS (2021).

Brace blocks from bilinear maps and liftings of endomorphisms. *arXiv:2110.11028*.

D Drinfel'd, V. G. (1992).

On some unsolved problems in quantum group theory. In *Quantum groups (Leningrad, 1990)*, volume 1510 of *Lecture Notes in Math.*, pages 1–8. Springer, Berlin.

- Greither, C. and Pareigis, B. (1987). Hopf Galois theory for separable field extensions. *J. Algebra*, 106(1):239–258.
- **Guarnieri, L. and Vendramin, L. (2017).** Skew braces and the Yang-Baxter equation. *Math. Comp.*, 86(307):2519–2534.
- **D** Johnston, H. (2015).

Explicit integral Galois module structure of weakly ramified extensions of local fields. *Proc. Amer. Math. Soc.*, 143(12):5059–5071.

 \blacksquare Leopoldt, H.-W. (1959).

Über die Hauptordnung der ganzen Elemente eines abelschen Zahlkörpers.

J. Reine Angew. Math., 201:119–149.

L Lettl, G. (1990).

The ring of integers of an abelian number field. *J. Reine Angew. Math.*, 404:162–170.

Martinet, J. (1972).

Sur les extensions à groupe de Galois quaternionien. *C. R. Acad. Sci. Paris Sér. A-B*, 274:A933–A935.