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Introduction

This dissertation deals with (the connection between) two active areas of alge-
bra: Hopf–Galois theory and skew brace theory.

Overview of the literature

Hopf–Galois structures. The idea behind Hopf–Galois theory lies in the
following observation: If L/K is a finite Galois extension of fields with Galois
group G, then we can think as its “Galois structure” as consisting of the group
algebra K[G], which is a K-Hopf algebra, together with an action of K[G] on
L that satisfies well-known and nice properties. With this in mind, given a
finite extension of fields L/K, we can define a Hopf–Galois structure on L/K to
consist of a K-Hopf algebra H together with an action of H on L that mimics
the properties of the group ring action in the Galois setting. In particular, when
L/K is Galois with Galois group G, then the classical structure consists of K[G]
with the usual Galois action on L.

As suggested by the definition, Hopf–Galois structures provide a generalisa-
tion of classical Galois theory. In fact, Hopf–Galois structures may exist also
for extensions of fields that are not necessarily Galois. For example, the main
goal of [CS69], where this notion was introduced by Chase and Sweedler, was
the study of certain extensions that are not even separable. The idea is that we
can reproduce typical results of Galois theory in this more general setting, and
to look for similar consequences, even for extensions that are not Galois. One
important example is the following: Let L/K be a finite extension of fields, and
consider a Hopf–Galois structure on L/K with K-Hopf algebra H. Then we can
attach to each K-Hopf subalgebra of H an intermediate field of L/K, mimicking
the usual Galois theoretic idea of taking fixed fields. The correspondence we
obtain, called the Hopf–Galois correspondence, is injective but not necessarily
surjective. It is of interest to find examples of Hopf–Galois structure with a
bijective Hopf–Galois correspondence; as to be expected, this happens when we
consider the classical structures.

In the particular case in which the extension is also Galois, Hopf–Galois
structures have been shown to be extremely useful in dealing with problems of
arithmetic nature. For example, as discussed by Byott in [Byo97], there are
situations in which the Galois module structure of an extension of p-adic fields
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can be better described in a Hopf–Galois structure different from the classical
structure; see [Chi00, CGK+21] for a detailed analysis on the role of Hopf–Galois
theory in local Galois module theory.

As a consequence of all these facts, the need of an effective way to describe
Hopf–Galois extensions feels natural. A result in this direction was proved by
Greither and Pareigis [GP87], who described explicitly Hopf–Galois structures
for separable (not necessarily Galois) extensions in a group-theoretic terms.
When applied to extensions that are also Galois, this description attaches to a
Hopf–Galois structure a suitable regular subgroup of a permutation group, in
a bijective way. This remarkable correspondence is transparent; given such a
subgroup, corresponding to a Hopf–Galois structure on L/K, both the K-Hopf
algebra and its action on L are explicitly described. In particular, the action on
L is obtained by “twisting” that of the Galois group G.

The Greither–Pareigis theorem had a huge impact in Hopf–Galois theory.
The possibility to describe concretely the Hopf–Galois structures opened sev-
eral new directions. As a first implication, some of the main results of Hopf–
Galois theory can be recast in a familiar way; the Hopf subalgebras of the Hopf
algebras appearing in this theory can be detected in group-theoretic terms,
and also the Hopf–Galois correspondence may be rewritten in a more manage-
able language [CRV16b, GP87, KKTU19]. As a consequence, some examples
of Hopf–Galois structures on Galois extensions with a bijective Hopf–Galois
correspondence were discussed: Greither and Pareigis found on every Galois
extension a Hopf–Galois structure, the canonical nonclassical structure, with
a bijective Hopf–Galois correspondence when the Galois group is Hamiltonian.
Other examples were found in [KKTU19] computationally, via the computer
software GAP. However, perhaps surprisingly, there are no more examples of
this behaviour found with Greither–Pareigis theory; as explained in [KKTU19],
the Hopf–Galois correspondence, recast thanks to the Greither–Pareigis theo-
rem, can be explicitly described combinatorially, but remains quite mysterious.

One difficulty with Greither–Pareigis theorem is that to describe Hopf–
Galois structure we have to consider Perm(G), whose size is quite large already
for small sizes of G. In particular, the description of the required subgroups
of Perm(G) may be computationally challenging. A solution to this issue was
proposed in [Byo96]. Say that the type of a Hopf–Galois structure is the iso-
morphism class of the associated regular subgroup N . Then Byott translated
the problem of finding the Hopf–Galois structures of type N on a finite Galois
extension with Galois group G, to the problem of finding the regular subgroups
isomorphic to G in the holomorph of N . As the holomorph has in general
sensibly smaller size than a permutation group, it is clear how this translation
motived several results of the following years, regarding classification, counting,
and existence problems [Byo04, Byo07, BC12, Byo13, Byo15, BML22, CCDC20,
CCDC24, Koh98, NZ19]. Nevertheless, a full classification of Hopf–Galois struc-
tures is far from being complete.

Skew braces. Building on previous work of Rump [Rum07a], Guarnieri and
Vendramin introduced in [GV17] the notion of a new algebraic structure: a
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skew (left) brace is a triple (A,+, ◦), where (A,+) and (A, ◦) are (not nec-
essarily abelian) groups related by a compatibility condition similar to a left
distributivity. For example, if (A,+) is a group, then (A,+,+) satisfies this
axiom, and skew braces of this form are called trivial.

The introduction of skew braces is motivated by the study of set-theoretic
solutions of the Yang–Baxter equation [Dri92], an equation that arises from sta-
tistical mechanics with deep applications in mathematics and physics, such as
for quantum groups, Hopf algebras, knot theory, and integrable systems. In par-
ticular, skew braces can be used to construct explicitly certain classes of these
solutions, and given such a solution, one can attach to it a skew brace whose
structure describes some of its properties [GV17]. Furthermore, in the last few
years it has become evident how skew braces are related to many more top-
ics of mathematics, such as radical rings, regular subgroups, and Hopf–Galois
structures. As a consequence, a significant body of literature has been devel-
oped, and the multitude of techniques employed has become a trademark of this
theory [Bac18, CJO14, Ced18, GV17, Rum07a, SV18].

As a consequence of these interactions, a systematic study of the algebraic
structure of skew braces has commenced. Many notions typical of group and ring
theory have been mimicked in the context of skew braces, such as (left) ideals,
nilpotency, and solubility [BBERJSPC23, CSV19, GV17, JKVAV19, JKVAV21,
KSV21]; a special role in this development has been played by the gamma
function of a skew brace (A,+, ◦), a suitable group homomorphism γ : (A, ◦) →
Aut(A,+). Various research directions have been followed in the last few years.
We mention here some, which motivate some of the problems and questions
addressed in this dissertation; given all the interactions of skew braces, it is
not surprising that some of the following results or problems were originally
formulated in different settings, and that in general it is of particular interest
to understand what these statements mean in relation to other topics.

An important area of research consists of defining and studying particular
classes of skew braces. Nilpotent (in various senses) skew braces were the main
focus of [BJ23, CSV19, JVAV23], while soluble skew braces, whose definition
follows the commutator theory for skew braces developed in [BFP23], were con-
sidered in [BBERJSPC23]. In [Chi19], Childs introduced the notion of bi-skew
brace, which is a skew brace (A,+, ◦) such that also (A, ◦,+) is a skew brace.
These objects were also the main focus of in [Car20]. A related class of skew
braces, which we term homomorphic in this dissertation, was introduced by
Bardakov, Neshchadim, and Yadav in [BNY22]. Other examples were studied
in [CCS19, DC23, Rum14, Smo22].

A second possibility lies in the study of results related to the classification of
skew braces of a given cardinality, or skew braces such that one of the underlying
group operations is isomorphic to a given group. Problems of this kind were
approached, for examples, in [AB20, AB21, Bac15, CCDC20, NZ19, Rum07b,
Rum19]

A final direction consists of defining new examples of skew braces, possibly
satisfying certain properties. These can be used as a sample for testing new
conjectures, for disproving them (as in [Bac16]), or more in general, to under-
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stand in a deeper way the connections of the skew braces with other topics. We
just mention two constructions. Koch showed in [Koc21] how to start from a fi-
nite group (A,+) and a group homomorphism ψ : (A,+) → (A,+) with abelian
image to construct explicitly a bi-skew brace (A,+, ◦). Similarly, in [BG22],
Bardakov and Gubarev showed how to use Rota–Baxter operators for groups
(A,+), defined in [GLS21] in a totally different context, to construct skew braces
of the form (A,+, ◦).

Their connection. The idea of a possible connection between Hopf–Galois
structures and skew braces was initially suggested by Bachiller [Bac16], and is
based on the fact that both skew braces and Hopf–Galois structures have their
interpretation by means of regular subgroups of the holomorph of a certain
group. This intuition was formalised precisely in the appendix by Byott and
Vendramin of [SV18], and also appeared in slightly different but equivalent terms
in [NZ19] and [KT20].

So let L/K be a finite Galois extension of fields with Galois group G, and
consider a Hopf–Galois structure on L/K. By the Greither–Pareigis theory, this
structure corresponds to a certain regular subgroup N of Perm(G). The fact
that N is regular naturally yields by transport of structure a group structure
(N, ◦) isomorphic to G and the additional condition that N needs to satisfy
translates precisely to the skew brace axiom for (N,+, ◦), where + is the origi-
nal group structure of N . Every (isomorphism class of) skew brace of the form
(N,+, ◦), with (N, ◦) isomorphic to G, can be obtained in this way, but the con-
nection we get is not bijective, as more Hopf–Galois structures may correspond
to the same skew brace (up to isomorphism).

This surprising connection motivated even more both the topics, because it
showed that quantitative problems, like counting and classifying, are essentially
the same in the two settings. Nevertheless, this connection appeared less trans-
parent for explicit results. It was not clear how the qualitative description of a
skew brace and the knowledge of its structure yielded concrete information in
Hopf–Galois theory, and very few results in the literature explored structural
statements. In [Chi17, Chi18], Childs showed that given a Hopf–Galois struc-
ture with Hopf algebra H on a finite Galois extension L/K with Galois group G,
then the K-Hopf subalgebras of H are in bijective correspondence with certain
substructures of the associated skew brace. In this way, he managed to translate
the Hopf–Galois correspondence into a skew brace setting, and showed that if
G is cyclic of order pn, for p odd prime, then all the Hopf–Galois structures on
L/K have a bijective Hopf–Galois correspondence.

Despite this promising start, no new examples of this behaviour were found.
Considering also the examples mentioned above, there were just four classes
of examples of Galois extensions in which we may find surjective Hopf–Galois
correspondences, as claimed for example in the introduction of [Chi21]. A pos-
sible explanation for the lack of new examples could be given by the fact that
the substructures of skew braces studied by Childs, which seem to arise natu-
rally from Hopf–Galois theory, are not the usual substructures considered in the
theory of the skew braces, for example the left ideals. This issue was initially
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addressed by Koch and Truman [KT20], who introduced the concept of opposite
skew brace and realised that the substructures studied by Childs coincide with
the left ideals of the opposite skew brace. They moved the problem to a more
familiar setting, and this intuition seems to suggest a deeper role of opposite
skew braces in Hopf–Galois theory.

What is in this dissertation

The main goal of this dissertation is to propose a new version of the connection
between Hopf–Galois structures and skew braces [ST23b], with the goal to make
the connection bijective, explicit, and more structural. As already hinted at the
end of the previous section, the known connection between these topics presents
some issues. Specifically, the connection is not particularly transparent; it is
not bijective, it requires us to pass through regular subgroups, and usually the
classification and existence results of skew braces are not immediate to trans-
late effectively in the setting of Hopf–Galois theory. While there are several
quantitative results that are consequence of the connection, there are very few
statements that explain how the knowledge of the structure of a skew brace
can be translated in Hopf–Galois theory, and this implies that various proper-
ties of skew braces have no particular interpretation in relation to Hopf–Galois
structures. The attempt of Childs to describe the Hopf subalgebras of the Hopf
algebras appearing in Hopf–Galois theory in terms of certain substructures of
the connected skew brace has been an important step in this direction, but
the unfamiliarity of these structures in the context of skew braces limited the
examples of bijective Hopf–Galois correspondence to just one class.

As already mentioned, in [KT20], it was shown how Childs’s substructures
are precisely the left ideals of the opposite skew brace. This fact motivated the
work [ST23b] with Trappeniers. The basic structures of skew braces, left ideals,
have a meaning in Hopf–Galois theory as soon as the skew brace considered is
opposite to the usual one. So we wondered whether rethinking the connection
using opposite skew braces could lead to new insights on both theories, fixing
the issues mentioned above. We tried to approach the matter in two ways:

• “Straighten out” the connection, attaching to a Hopf–Galois structure a
skew brace that, in the previous connection, would have been the opposite.

• Describe entirely the Hopf–Galois structures in terms of the associated
skew braces, thinking of this connection in a bijective way.

With these points in mind, we proved the following theorem, which is The-
orem 3.2.3 in this dissertation.

Theorem (). Let L/K be a finite Galois extension with Galois group (G, ◦).
Then there exists a bijective correspondence between

• the operations + such that (G,+, ◦) is a skew brace;

• the Hopf–Galois structures on L/K.
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Specifically, an operation + such that (G,+, ◦) is a skew brace corresponds to
the Hopf–Galois structure (H, ·) described as follows:

• H = L[(G,+)](G,◦), where (G, ◦) acts on L via Galois action and on (G,+)
via the gamma function γ of the skew brace (G,+, ◦); in particular,

H =




τ∈G

ℓτ τ ∈ L[(G,+)] | σ(ℓτ ) = ℓ(γ(σ)τ) for all σ, τ ∈ G


.

• Given


τ∈G ℓτ τ ∈ H and x ∈ L,




τ∈G

ℓτ τ


· x =



τ∈G

ℓτ τ(x).

The dissertation, as the title suggests, consists of three chapters, and it
is structured in order to introduce, state, motivate, and discuss Theorem ().
Specifically, the chapters are organised as follows.

An overview of Hopf–Galois structures. In Chapter 1 we introduce prelim-
inary results in Hopf–Galois theory. In section 1.1, we recall some notions and
properties of Hopf algebras, which are employed in section 1.2 to give the defini-
tion of Hopf–Galois structures. In order to deal with Theorem (), we need some
results concerning Galois descent, which are stated and proved in section 1.3 in
a form suitable to our needs, and also the known group-theoretic descriptions
of Hopf–Galois structures via regular subgroups developed by Greither–Pareigis
and Byott, which we recall in section 1.4.

New results on skew braces. In Chapter 2 we study skew braces. As
mentioned, the goal of this dissertation is to discuss Theorem (), and thus to
consider skew braces in relation to Hopf–Galois structures, mimicking in some
sense the role of groups in classical Galois theory; however, in this chapter we
opt to give a more general picture, by introducing new results we found in the
collaborations [CS21, CS22, CS23, ST23a] with Caranti and with Trappeniers,
even if they do not find immediate applications in Hopf–Galois theory.

After section 2.1, devoted to preliminaries, we propose in section 2.2 a sys-
tematic analysis of homomorphic skew braces and bi-skew braces, underlining
various similarities of these classes and presenting results related to various no-
tions of nilpotency and solubility. We also study their role in the study of
solutions of the Yang–Baxter equation. Some of these results are applied in
section 2.3, where we give a complete resolution of [Ven19, Problem 2.27], by
showing in Theorem 2.3.10 that there are exactly three isomorphism classes of
the skew braces (A,+, ◦) with (A, ◦) cyclic infinite, and describing them explic-
itly. These two sections are based on [ST23a].

After, in section 2.4, we study a class of skew braces, that we term inner and
that have been already considered in literature in some instances. After some

6



immediate structural results, we introduce a characterisation of such skew braces
in cohomological term, following in [CS23], in order to clarify their relation with
Rota–Baxter operators; specifically, we show in Theorem 2.4.17 that we can
attach the cohomology class of a suitable 2-cocycle to every inner skew brace,
and that the inner skew brace can be obtained via a Rota–Baxter operator (as
showed in [BG22]) if and only if this class is trivial.

Finally, in section 2.5, we propose new constructions to obtain skew braces,
giving a particular focus on inner skew braces, homomorphic skew braces, and
bi-skew braces. These constructions were developed in [CS21, CS22, ST23a],
and various of these examples appear also in Chapter 3, as they provide exam-
ples of Hopf–Galois structures with desirable properties.

A new version of the connection. The final chapter is devoted to the devel-
opment of the main goal of the dissertation, following the discussion of [ST23b].

In section 3.1, we recall the previous connection between Hopf–Galois struc-
tures and skew braces. We also give an overview of the results of Childs [Chi18]
and Koch and Truman [KT20] that are strong motivation for what follows.

In section 3.2, we state and prove Theorem (), which is [ST23b, Theorem
3.1]. We give various examples and immediate applications of this result. As a
first consequence, we show that the classical structure corresponds to the trivial
skew brace; while this may seem unsurprising, it was not true in the previous
description, where the classical structure yielded the opposite of the trivial skew
brace.

It is important to remark that the usual quantitative results that were based
on the previous connection between skew braces and Hopf–Galois structures can
still be derived as a consequence of new perspective; in some specific case, the
proofs are sensibly shorter, and the same also holds for some classical results in
Hopf–Galois theory. We see this fact explicitly in section 3.3.

In section 3.4, we present some key consequences of Theorem (): the sub-
structures and properties of the skew braces assume concrete meaning also in
the theory of Hopf–Galois structures, as these can be used to describe explicitly
the Hopf algebras appearing and their actions, which can be seen to be just
slight variations of the usual Galois action. As a concrete example, we show
in Theorem 3.4.1 that there exists a bijection the between left ideals of a skew
brace and the Hopf subalgebras of a Hopf algebra, when these are connected by
Theorem ().

As a consequence of this alignment, we shed in section 3.5 some light on the
problem of the bijectivity of the Hopf–Galois correspondence, which we trans-
late into a natural problem in skew brace theory. First, in Theorem 3.5.1, we
present an effective method, given an intermediate field, to check whether it
is in the image of the Hopf–Galois correspondence. We derive, in this way,
examples of Hopf–Galois structures for which we can ask, a priori, the prop-
erties that intermediate fields need to satisfy in order to be in the image of
the Hopf–Galois correspondence. Second, we provide an explicit way to obtain,
on any given extension, a Hopf–Galois structure with a bijective Hopf–Galois
correspondence, applying some properties of the norm of a group and some
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constructions developed in section 2.5; see Theorem 3.5.10. While in some sit-
uations we can obtain just the trivial skew brace, in others we can find various
new examples; for a Galois extension with quaternion Galois group, we obtain
16 Hopf–Galois structures with a bijective Hopf–Galois correspondence. Third,
we study the role of bi-skew brace in Hopf–Galois theory, clarifying the relation
between the two Hopf–Galois structures obtained by the two skew braces that
underlie a bi-skew brace in Theorem 3.5.16. This gives an answer to a question
of Childs [Chi21]. Finally, in Theorem 3.5.23, we classify entirely all the Galois
extensions L/K such that every Hopf–Galois structure on L/K has a bijective
Hopf–Galois correspondence, showing that this is the case exactly when the Ga-
lois group is cyclic and p does not divide q − 1 for all primes p and q dividing
the order of the Galois group.

We conclude the dissertation by summarising most of the consequence of
Theorem () developed so far in a final “take-home” theorem presented in sec-
tion 3.6.
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Chapter 1

Hopf–Galois Structures

The goal of this chapter is to summarise preliminary results in the theory of
Hopf–Galois structures. First, we give an overview of some facts about Hopf
algebras, in order to present the main definitions and statements in Hopf–Galois
theory, on the model of classical Galois theory. After, we review some results
related to Galois descent; these play a key role for the study of various Hopf
algebras properties in the final chapter of this work. Finally, we recall some
descriptions of Hopf–Galois structures via group-theoretic tools.

In general, we state these well known results without proof, loosely following
the first two chapters of [Chi00]. The only exception regards some statements
for Galois descent, which are usually proved in literature for more specific cases,
and which we prove for completeness.

In this chapter we fix a field K, and unadorned tensors denote tensors over
K. If A is a K-algebra (always assumed to be associative), then we write

m : A⊗A → A, a⊗ b → ab

for the multiplication map and

i : K → A, k → k1A

for the unit map, which are both linear maps.

1.1 Hopf algebras

We begin with a quick overview of Hopf algebras, referring to classical books
like [Swe69] and [Mon93]. To define Hopf algebras, one needs to talk about
coalgebras and bialgebras. However, as these notions are not explicitly needed
in the following, we just condense everything in a single definition.

Definition 1.1.1. A K-Hopf algebra is a K-algebra H together algebra homo-
morphisms ∆ : H → H ⊗H and ε : H → K, called respectively comultiplication
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and counit, and a linear map S : H → H, called antipode, such that the following
diagrams are commutative:

H ⊗H ⊗H H ⊗H

H ⊗H H
∆

∆

∆⊗id

id⊗∆

K ⊗H H

H ⊗H H

H ⊗K H

ε⊗id

id⊗ε

∆

id

id

H ⊗H H ⊗H

H K H

H ⊗H H ⊗H

ε i

∆

id⊗S

m

m∆

S⊗id

Notation 1.1.2. For the comultiplication of a K-Hopf algebra H, we adopt
Sweedler’s notation: if h ∈ H, then we write

∆(h) =


h1 ⊗ h2 ∈ H ⊗H.

For example, by the definition of Hopf algebra, we obtain


ε(h1)h2 = h =


h1ε(h2).

Remark 1.1.3. As aK-Hopf algebra is also aK-algebra, we shall freely use terms
related to notions typical of K-algebras also for Hopf algebras, tacitly referring
to the underlying K-algebra structure. For example, a K-Hopf algebra H is
commutative if H is so as a K-algebra.

Definition 1.1.4. Let H and J be K-Hopf algebras. An algebra homomor-
phism f : H → J is a (K-)Hopf algebra homomorphism if for all h ∈ H,

(f ⊗ f)(∆(h)) = ∆(f(h)), ε(h) = ε(f(h)), f(S(h)) = S(f(h)).

If in addition f is bijective, then we say that f is a (K-)Hopf algebra isomor-
phism, and we say that H and J are isomorphic (written H ∼= J) as K-Hopf
algebras.

Definition 1.1.5. Let H be a K-Hopf algebra.

10



• A Hopf subalgebra J of H is a subalgebra that satisfies ∆(J) ⊆ J ⊗ J and
S(J) ⊆ J .

• A Hopf ideal I of H is an ideal that satisfies ∆(I) ⊆ I ⊗ H + H ⊗ I,
ε(I) = 0, and S(I) ⊆ I.

Example 1.1.6. As to be expected, the Hopf ideals are exactly the kernels of
the Hopf algebra homomorphisms:

• If H and J are K-Hopf algebras and f : H → J is a Hopf algebra homo-
morphism, then

ker f = {h ∈ H | f(h) = 0}

is a Hopf ideal of H.

• If H is a K-Hopf algebra and I is a Hopf ideal of H, then also H/I is a
K-Hopf algebra, with structure induced by that of H, and the map

π : H → H/I, h → h = h+ I

is a Hopf algebra homomorphism such that ker f = I.

Definition 1.1.7. Let H be a K-Hopf algebra. A Hopf subalgebra J of H is
normal if for all h ∈ H and j ∈ J ,


h1jS(h2) ∈ J.

For all Hopf subalgebras J of a K-Hopf algebra H, we write

J+ = {j ∈ J | ε(j) = 0},

and we denote by HJ+ and J+H, respectively, the left ideal and right ideal of
H generated by J+.

Definition 1.1.8. A K-Hopf algebra H is cocommutative if for all h ∈ H,


h1 ⊗ h2 =


h2 ⊗ h1.

For cocommutative Hopf algebras, normal Hopf subalgebras yield a natu-
ral notion of quotients that may be derived also from a categorical point of
view [GSV19]. A proof of the following theorem can be found in [Mon93, The-
orem 3.4.6].

Theorem 1.1.9. Let H be a cocommutative K-Hopf algebra. Then there exists
a bijective correspondence between

• the normal Hopf subalgebras of H;

• the Hopf ideals of H.

Specifically, a normal Hopf subalgebra J corresponds to the Hopf ideal HJ+.

11



In particular, if H is a cocommutative K-Hopf algebra and J is a normal
Hopf subalgebra, then we can write a quotient K-Hopf algebra H/J , tacitly
meaning H/HJ+. We write

H/J =

h | h ∈ H


,

where h = h + HJ+. The following result is immediate by [AD95b, Lemma
1.1.8]

Corollary 1.1.10. Let H be a cocommutative K-Hopf algebra, and let J be a
normal Hopf subalgebra of H. Then

J+H = HJ+

Example 1.1.13 below motivates the following definition.

Definition 1.1.11. Let H be a K-Hopf algebra. An element h ∈ H is grouplike
if h ∕= 0 and ∆(h) = h⊗ h.

The next useful result is a consequence of the definition of a Hopf algebra
homomorphism.

Lemma 1.1.12. Let H and J be K-Hopf algebras, and let f : H → J be a
Hopf algebra homomorphism. If h is a grouplike element of H, then f(h) is a
grouplike element of J .

We finally present the main source of Hopf algebras we need to study.

Example 1.1.13. Let N be a finite group, and consider the group algebra

K[N ] =







η∈N

kηη | kη ∈ K




 ,

which is a K-algebra with multiplication obtained linearising the group opera-
tion of N . As customary, we identify η ∈ N with 1Kη, so that N ⊆ K[N ]. The
assignments

∆(η) = η ⊗ η, ε(η) = 1, S(η) = η−1

for all η ∈ N extend to linear maps that endow K[N ] with a K-Hopf algebra
structure.

It is well known that the Hopf algebra properties of K[N ] reflect the group
properties of N . First, there exists a bijective correspondence between

• the (normal) subgroups of N ;

• the (normal) Hopf subalgebras of K[N ].

Explicitly, the (normal) subgroup M of N corresponds to the (normal) Hopf
subalgebra K[M ] of K[N ]. If in particular M is normal in N , then the map

K[N ]/K[M ] → K[N/M ],


η∈N

kηη →


η∈N

kηη
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is a Hopf algebra isomorphism.
Second, it is immediate to check that the grouplike elements of K[N ] are

exactly the elements of N .
Third, if f : N → M is a group homomorphism, then

K[N ] → K[M ],


η∈N

kηη →


η∈N

kηf(η)

is a Hopf algebra homomorphism, which we can denote again by f . In addition,
by Lemma 1.1.12, one can check that all the Hopf algebra homomorphisms
K[N ] → K[M ] arise in this way, and that N ∼= M if and only if K[N ] ∼= K[M ]
as K-Hopf algebras.

Finally, if N is isomorphic to the direct product of two subgroups M and
M ′, then K[N ] ∼= K[M ]⊗K[M ′] as K-Hopf algebras.

Remark 1.1.14. Let H be a finite-dimensional K-Hopf algebra. Then the grou-
plike elements of H are linearly independent and form a group, denoted by
GP(H), under the Hopf algebra multiplication; see [Chi00, Propositions 1.6 and
1.7]. In particular, if the order of GP(H) equals dimK H, then one can readily
deduce that H ∼= K[GP(H)] as Hopf algebras. We make this isomorphism an
identification, and thus in the following we say that a finite-dimensional K-Hopf
algebra H is a group algebra exactly when

dimK H = |GP(H)|.

1.2 Hopf–Galois theory

We proceed with the definition of a Hopf–Galois structure and some first im-
portant properties, mainly following [Chi00]. A possible reference for the well
known results in Galois theory we state is [Win74].

1.2.1 From Galois to Hopf–Galois

In order to understand the motivations behind the definitions of Hopf–Galois
structures, it is convenient to start from a reformulation of the definition of a
Galois extension. Recall that a finite extension L/K of fields is Galois if its
degree [L : K] equals the order of the group G of K-algebra automorphisms of
L. If this is the case, then G is called the Galois group of L/K. Note that there
is a natural action of the group algebra K[G] on L, extending linearly the action
of G on L. The following result is a consequence of the linear independence of
characters; see [Chi00, Example 2.6].

Proposition 1.2.1. Let L/K be a finite extension of fields, and let G be the
group of K-algebra automorphisms of L. Then the following are equivalent:

• L/K is Galois (with Galois group G).
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• The L-linear map

L⊗K K[G] → EndK(L), ℓ⊗


τ∈G

kτ τ →

x → ℓ



τ∈G

kτ τ(x)


.

is bijective.

This proposition yields a definition of a Galois extension just in terms of
group algebras; as mentioned, the structure of a group algebra that best captures
the group properties of the underlying group is that of a Hopf algebras. This
suggests the possibility to replace the group algebra with a more general Hopf
algebra, together with an action that mimics the properties of the Galois action.

Definition 1.2.2. Let L/K be a finite extension of fields, and let H be a K-
Hopf algebra. We say that L is a (left) H-module algebra if there exists an
action · of H on L such that L is a left H-module and for all k ∈ K, h ∈ H,
and x, y ∈ L,

k(h ·x) = (kh) ·x = h ·(kh), h ·(xy) =


(h1 ·x)(h2 ·y), h ·1L = ε(h)1L.

The first requirement in Definition 1.2.2 makes the K-linear structures of H
and L compatible in the obvious way; equivalently, the map

H ⊗ L → L, h⊗ x → h · x

needs to be K-linear. The other requirements show that this definition is mod-
elled on the behaviour of Galois extensions, as in the case in which L/K is
Galois with Galois group G and H = K[G], these conditions translate into

σ(xy) = σ(x)σ(y), σ(1L) = 1L.

for all σ ∈ G and x, y ∈ L.
We are now in the right position to give the main definition.

Definition 1.2.3. Let L/K be a finite extension, and let H be a K-Hopf
algebra. We say that L/K is H-Galois if the following hold:

• L is an H-module algebra.

• The linear map

L⊗K H → EndK(L), ℓ⊗ h → (x → ℓ(h · x)).

is bijective.

The pair (H, ·) is a Hopf–Galois structure on L/K.

Remark 1.2.4. Given a finite extension L/K of fields, we make the following
standard identification: two Hopf–Galois structures (H, ·) and (J, ·) on L/K are

14



identified if and only if there exists a Hopf algebra isomorphism ϕ : H → J such
that for all h ∈ H and x ∈ L,

ϕ(h) · x = h · x. (1.1)

In particular, if (H, ·) is a Hopf–Galois structure on L/K and J is a K-Hopf
algebra such that there exists a Hopf algebra isomorphism ϕ : H → J , then we
can employ (1.1) to obtain a Hopf–Galois structure (J, ·) on L/K that equals
(H, ·).

Example 1.2.5. Let L/K be a finite Galois extension with Galois group G.
Then L/K is K[G]-Galois by Proposition 1.2.1, and the Hopf–Galois structure
we obtain in this way is the classical structure.

From Definition 1.2.3, we can derive two properties of a Hopf algebra H such
that there exists an H-Galois extension L/K of fields. First, the bijection

L⊗K H → EndK(L)

immediately implies that
dimK L = dimK H.

In particular, the Hopf algebra H is finite-dimensional. Second, one can check
that H is necessarily cocommutative; see the discussion in [Chi00, 2.19].

1.2.2 The Hopf–Galois correspondence

Once the definition of a Hopf–Galois structure is given, it feels natural to en-
quire whether typical results of Galois theory can be generalised or reinter-
preted. We state here a variation of the fundamental theorem of Galois theory
in Hopf–Galois theory. Recall that given an intermediate field F of a finite Ga-
lois extension L/K, the extension L/F is Galois, and F is normal if also F/K
is Galois.

Theorem 1.2.6 (Fundamental theorem of Galois theory). Let L/K be a finite
Galois extension with Galois group G. Then there exists an inclusion-reversing
bijective correspondence between

• the (normal) subgroups of G;

• the (normal) intermediate fields of L/K.

Specifically, a (normal) subgroup T of G corresponds to the (normal) interme-
diate field

LT = {x ∈ L | τ(x) = x for all τ ∈ T}

of L/K, and L/LT is Galois with Galois group T . In addition, when T is
normal, the Galois group of LT /K is (identified with) G/T .
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We can rewrite this result just in terms of the group algebra and its action.
Take a finite Galois extension L/K with Galois group G, and consider the
classical structure (K[G], ·) on L/K. If J is a (normal) Hopf subalgebra of
K[G], then there exists a (normal) subgroup T of G such that J = K[T ], and a
straightforward calculation shows that

LT = {x ∈ L | j · x = ε(j)x for all j ∈ J}.

With this observation in mind, we can take a finite extension L/K, consider
a Hopf–Galois structure (H, ·) on L/K, and, given a Hopf subalgebra J of H,
define

LJ = {x ∈ L | j · x = ε(j)x for all j ∈ J}.
One can check, as in the classical case, that LJ is an intermediate field of L/K.
For example, if 0 ∕= x ∈ LJ , then also x−1 ∈ LJ : for all j ∈ J , recalling that
j =


ε(j1)j2 and also j1 ∈ J , we get

ε(j)1L = j · 1L = j · (xx−1) =


(j1 · x)(j2 · x−1)

=


(ε(j1)x)(j2 · x−1) = x


ε(j1)j2 · x−1

= x(j · x−1),

that is,
j · x−1 = ε(j)x−1.

In addition, it is straightforward to check that L is an LJ ⊗ J-module algebra,
with action

(ℓ⊗ j) · x = ℓ(j · x).
Similarly, when J is normal in H, then LJ is an H/J-module algebra, with

the following action: for all x ∈ LJ and h ∈ H/J ,

h · x = h · x.

We just check here that this is indeed well-defined. First, if h′ = h +


hiji
with hi ∈ H and ji ∈ J+, then

h · x− h′ · x = (


hiji) · x =


hi · (ε(ji)x) = 0.

Second, we need to check that h · x ∈ LJ . So take j ∈ J , and note that the
equality J+H = HJ+ by Corollary 1.1.10 implies that there exist hi ∈ H and
ji ∈ J+ such that

(j − ε(j)1J)h =


i

hiji,

We conclude that

j · (h · x)− ε(j)(h · x) = (j − ε(j)1J)(h · x) =



i

hiji


· x = 0,

that means h · x ∈ LJ .
The following result, which is a weaker version of Theorem 1.2.6 in the con-

text of Hopf–Galois structures, combines [CS69, Theorem 7.6], [GP87, Theorem
5.1], [Gre92, section II, Lemma 1.6], and [Byo02, Lemma 4.1].
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Theorem 1.2.7. Let L/K be a finite extension of fields, and let H be a K-Hopf
algebra such that L/K is H-Galois. Then the assignment

J → LJ = {x ∈ L | j · x = ε(j)x for all j ∈ J}

gives an inclusion-reversing injective correspondence from the Hopf subalgebras
of H to the intermediate fields of L/K. In addition, if J is a Hopf subalgebra
of H, then L/LJ is LJ ⊗ J-Galois, and if J is also normal in H, then LJ/K is
H/J-Galois.

The correspondence in Theorem 1.2.7 is the Hopf–Galois correspondence.
The following is an immediate corollary.

Corollary 1.2.8. Let L/K be a finite extension, and let H be a K-Hopf algebra
such that L/K is H-Galois. If J is a Hopf subalgebra of H, then

dimK J = [L : LJ ].

Remark 1.2.9. When considered in the classical context, the Hopf–Galois cor-
respondence yields the usual Galois correspondence between subgroups of the
Galois group and intermediate fields, which is bijective. However, in general,
the Hopf–Galois correspondence is injective but not necessarily surjective. One
of the main consequences of the description of Hopf–Galois structures via skew
braces that we present in the final chapter is to propose novel methods to find
and construct examples of Hopf–Galois structures with a bijective Hopf–Galois
correspondence on Galois extensions, increasing a list that before contained only
a few items [Chi17, GP87, KKTU19].

The following definition introduces an invariant capturing some behaviour
of the Hopf–Galois correspondence, as it is the ratio of the intermediate fields
in the image of the Hopf–Galois correspondence to all the intermediate fields.

Definition 1.2.10. Let L/K be a finite extension, and let H be a K-Hopf
algebra such that L/K is H-Galois. The Hopf–Galois correspondence ratio is

HGC(L/K,H) =
|{Hopf subalgebras of H}|

|{intermediate fields of L/K}| .

It is clear that the Hopf–Galois correspondence ratio measure how far the
Hopf–Galois correspondence is to be bijective, and it equals 1 exactly when
all the intermediate fields are in the image of the Hopf–Galois correspondence.
This invariant, in the context of Galois extensions, has been mainly considered
in recent works of Childs [Chi17, Chi18, Chi21].

1.3 Galois descent

The theory of Galois descent for Hopf algebras is well-known. A sketch of the
proof of the main result can be found, for example, in [Chi00, 2.12], based on
Morita equivalences [CR81, section 3D]. We proceed here with a more direct and
elementary treatment, which arises from the analogous result for vector spaces,
given for example in [Win74, section 3.2].
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1.3.1 From vector spaces to Hopf algebras

Galois descent is in some sense the inverse of extension of scalars. Let L/K be
a finite Galois extension with Galois group G. If V is a K-vector space, then
it is well-known that L ⊗ V is an L-vector space. In the same way, if H is a
K-Hopf algebra, then L⊗H is a L-Hopf algebra, with operations inherited by
those of H. In addition, a K-Hopf algebra homomorphism

f : H → J

yields an L-Hopf algebra homomorphism

id⊗f : L⊗H → L⊗ J, ℓ⊗ h → ℓ⊗ f(h),

and f is injective (respectively surjective) if and only if id⊗f is injective (re-
spectively surjective).

Galois descent asks about the opposite situation, inquiring whether a given
L-Hopf algebra H can be obtained as L ⊗ J for some K-Hopf algebra J . It is
convenient to start from the case of vector spaces.

Definition 1.3.1. Let V be an L-vector space. A group action of G on V is
semilinear if for all σ ∈ G, v, w ∈ V , and ℓ ∈ L,

σ(v + w) = σ(v) + σ(w), σ(ℓv) = σ(ℓ)σ(v).

The requirement for an action of G on an L-vector space V to be semilinear
implies that

V G = {v ∈ V | σ(v) = v for all σ ∈ G}

is a K-vector space. Similarly, if V and W are L-vector spaces with a semilinear
action of G and an L-linear map f : V → W is a G-equivariant, that is,

f(σ(v)) = σ(f(v))

for all v ∈ V and σ ∈ G, then

fG : V G → WG, v → f(v)

is a K-linear map.
As V G is a K-vector space, it follows that L ⊗ V G is an L-vector space,

with a natural semilinear action of G obtained by the action of G on L. The
following result is due to Speiser; see [Win74, Theorem 3.2.5].

Theorem 1.3.2 (Speiser’s theorem). Let V be an L-vector space with a semi-
linear action of G. Then the map

L⊗ V G → V, ℓ⊗ v → ℓv

is a G-equivariant L-linear bijection.
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As a consequence, we derive that if V and W are L-vector spaces with a
semilinear action of G, then a G-equivariant L-linear map f : V → W is injective
(respectively surjective) if and only if fG : V G → WG is injective (respectively
surjective). In addition, we obtain that the diagonal action of G on V ⊗L W is
semilinear and the K-linear map

V G ⊗WG → (V ⊗L W )G, v ⊗ w → v ⊗ w

is bijective.
We consider now the case of Hopf algebras.

Definition 1.3.3. Let H be an L-Hopf algebra. A semilinear action of G on
H is Hopf semilinear if for all σ ∈ G and h, j ∈ H,

σ(hj) = σ(h)σ(j),

σ(1H) = 1H


σ(h1)⊗ σ(h2) =


σ(h)1 ⊗ σ(h)2

σ(ε(h)) = ε(σ(h))

σ(S(h)) = S(σ(h)).

In other words, in Definition 1.3.3 we require that the action of G on a
K-Hopf algebra H respects the Hopf algebra structure of H, meaning that the
maps m, i,∆, ε, S of H are G-equivariant (where the action of G on H ⊗H is
diagonal). In particular, this implies that HG is not just a K-vector space, but
also a K-Hopf algebra with structure induced by that of H.

For the algebra structure, this is particularly easy to see; if h, j ∈ HG and
σ ∈ G, then

σ(hj) = σ(h)σ(j) = hj,

which shows that hj ∈ HG. Similarly, σ(1H) = 1H implies that 1H ∈ HG.
For the Hopf algebra, the situation is slightly more delicate. The condition

relating the action and the comultiplication implies if h ∈ HG, then ∆(h) ∈
(H ⊗L H)G; to obtain a map HG → HG ⊗ HG, we may employ the L-linear
isomorphism

HG ⊗HG → (H ⊗L H)G, h⊗ j → h⊗ j,

which follows by Theorem 1.3.2. In other words, if h ∈ HG, then we can assume
that ∆(h) =


h1 ⊗ h2 with h1, h2 ∈ HG, and define

∆G : HG → HG ⊗HG, h →


h1 ⊗ h2.

Once this map is defined, we can use again the properties of the Hopf algebra
H to deduce analogue properties for HG, which is then a K-Hopf algebra. In
particular, if H is cocommutative, then also HG is cocommutative.

At this point, one can note that the isomorphism described in Speiser’s
theorem respects also the Hopf algebra structure, in order to derive the following
result.
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Theorem 1.3.4 (Speiser’s theorem for Hopf algebras). Let H be an L-Hopf
algebra with a Hopf semilinear action of G. Then the map

L⊗HG → H, ℓ⊗ h → ℓh

is a G-equivariant L-Hopf algebra isomorphism.

We list here some known results we can derive from this theorem. For
convenience, we also provide some quick proofs. First, we consider substructures
and quotients. Given a Hopf semilinear action of G on a K-Hopf algebra H,
we say that a Hopf subalgebra J of H is G-invariant if the action of G on H
restricts to an action on J . (The same definition can also be given for subgroups
of a group N with an action of G via automorphisms).

Proposition 1.3.5. Let H be an L-Hopf algebra with a Hopf semilinear action
of G. Then there exists a bijective correspondence between

• the G-invariant (normal) Hopf subalgebras of H;

• the (normal) Hopf subalgebras of HG.

Specifically, a G-invariant (normal) Hopf subalgebra J of H corresponds to the
(normal) Hopf subalgebra JG of HG.

Proof. If J is a G-invariant Hopf subalgebra of H, then the inclusion

J ↩→ H, j → j

is an injective G-equivariant L-Hopf algebra homomorphism, which yields an
injective K-Hopf algebra homomorphism

JG ↩→ HG, j → j.

This immediately implies that JG is a Hopf subalgebra of HG. Now note that
J is normal in H if and only if for all h ∈ H and j ∈ J ,


h1jS(h2) ∈ J.

If h ∈ HG, then h1, h2 ∈ HG, so that given j ∈ JG, we obtain


h1jS(h2) ∈ J ∩HG = JG.

Conversely, let P be a K-Hopf subalgebra of HG. If we denote by ϕ the
L-Hopf algebra isomorphism

ϕ : L⊗HG → H,

then we find that ϕ(L⊗P ) = J is an L-Hopf subalgebra of H. But the equality
ϕ(L⊗ JG) = J and the fact that ϕ is a bijection imply that P = JG. An easy
computation shows that if P = JG is normal in HG, then L ⊗ P is normal in
L⊗HG. We conclude that J = ϕ(L⊗ P ) is normal in H = ϕ(L⊗HG).
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Proposition 1.3.6. Let H be an L-Hopf algebra with a Hopf semilinear action
of G, and let J be a G-invariant normal Hopf subalgebra of H. Then there exists
a Hopf semilinear action of G on H/J and the map

HG/JG → (H/J)G, h+HG(JG)+ = h → h = h+HJ+

is a K-Hopf algebra isomorphism.

Proof. It is immediate to check that σ(j) ∈ J+ for all σ ∈ G and j ∈ J+; this
implies that the action of G on H/J given by

σ(h) = σ(h)

is a well-defined Hopf semilinear action. We deduce that the natural surjective
L-Hopf algebra homomorphism

π : H → H/J,

with kernel HJ+, is also G-equivariant. We obtain a surjective K-Hopf algebra
homomorphism

πG : HG → (H/J)G.

We need to check that the kernel of πG, which clearly is (kerπ)G, equals
HG(JG)+, or equivalently, that the obvious linear map

HG ⊗ (JG)+ → kerπG

is surjective. This follows from the surjectivity of the composition

HG ⊗ (JG)+ = HG ⊗ (J+)G → (H ⊗L J+)G → kerπG,

where in the first equality we have used the fact that the action of G respects
the counit, the map in the middle is a bijection as mentioned before, and the
surjectivity of the last map follows by Galois descent and surjectivity of

H ⊗ J+ → kerπ.

We see now how we can control the grouplike elements.

Proposition 1.3.7. Let H be an L-Hopf algebra with a Hopf semilinear action
of G. Then the grouplike elements of HG are the grouplike elements of H that
are fixed by the action of G.

Proof. This easily follows by the description of the comultiplication of HG.

Finally, we can extend some results from the setting of vector spaces to that
of Hopf algebras. In these formulations, they do not need the full power of
Theorem 1.3.4, but just the observation that the Hopf algebra structures are
preserved.
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Proposition 1.3.8. Let H and J be L-Hopf algebras with a Hopf semilinear
action of G. If

ϕ : H → J

is a G-equivariant L-Hopf algebra isomorphism, then

ϕG : HG → JG

is a K-Hopf algebra isomorphism.

Proof. We have already mentioned the first part of the result in the context of
vector spaces. It is just a matter of checking that if ϕ respects the Hopf algebra
structure of H and J , then ϕG respect the Hopf algebra structure of HG and
JG, as these are induced by those of H and J , respectively.

Proposition 1.3.9. Let H and J be L-Hopf algebras with a Hopf semilinear
action of G. Then the map

HG ⊗ JG → (H ⊗L J)G, h⊗ j → h⊗ j

is a K-Hopf algebra isomorphism.

Proof. We have already mentioned that this map is a K-linear bijection. It
is just a matter of computation to check that this respects the Hopf algebra
structures of the objects involved.

1.3.2 Descent of group algebras

As an application, we derive some results for descent of group algebras. Let us
take a finite Galois extension L/K with Galois group G and a finite group N ,
and consider the group algebra L[N ]. If G acts on N via automorphisms, then
we can define an action of G on L[N ] as follows:

σ






η∈N

ℓηη



 =


η∈N

σ(ℓη)σ(η).

It is straightforward to check that this action of G on L[N ] is Hopf semilinear.
In addition, every Hopf semilinear action of G on L[N ] arises in this way, as
such an action needs to preserve the grouplike elements of L[N ] (precisely as in
Lemma 1.1.12).

In particular, exactly as the group properties of N reflects the Hopf algebra
properties of L[N ], we obtain that the behaviour of an action of G on N via
automorphisms captures the behaviour of the associated Hopf semilinear action
of G on L[N ]. This means that if G acts on N via automorphisms, so on L[N ]
Hopf semilinearly, then we can rewrite Example 1.1.13 exactly as it is, just
adding the appropriate words related to the actions of G. For example, there
exists a bijective correspondence between
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• the G-invariant (normal) subgroups of N ;

• the G-invariant (normal) Hopf subalgebras of L[N ].

So let N be a finite group with an action of G via automorphism, and consider
the group algebra L[N ]. We obtain a K-Hopf algebra

L[N ]G =







η∈N

ℓηη ∈ L[N ] | σ(ℓη) = ℓσ(η) for all σ ∈ G and η ∈ N






such that

L⊗ L[N ]G → L[N ],



ℓ⊗


η∈N

ℓηη



 → ℓ


η∈N

ℓηη

is an L-Hopf algebra isomorphism. If we combine these observations with the
consequences of Galois descent mentioned in the previous section, we can de-
scribe the Hopf algebra structure of L[N ]G.

Corollary 1.3.10. Let N be a finite group with an action of G via automor-
phisms. Then there exist a bijective correspondence between

• the G-invariant (normal) subgroups of N ;

• the (normal) Hopf subalgebras of L[N ]G.

Specifically, a (normal) subgroup M of N corresponds to the (normal) Hopf
subalgebra L[M ]G of L[N ]G.

Corollary 1.3.11. Let N be a finite group with an action of G via automor-
phisms, and let M be a G-invariant normal subgroup of N . Then the map

L[N ]G/L[M ]G → L[N/M ]G,


η∈N

ℓηη →


η∈N

ℓηη.

is a K-Hopf algebra isomorphism.

For the next result, recall also Remark 1.1.14.

Corollary 1.3.12. Let N be a finite group with an action of G via automor-
phisms. Then the grouplike elements of L[N ]G are the elements of N that are
fixed by G. In particular, L[N ]G is a group algebra if and only if G acts on N
trivially, and if this is the case, then L[N ]G = K[N ].

Corollary 1.3.13. Let N and M be finite groups with an action of G via
automorphisms. If

ϕ : N → M

is a G-equivariant group isomorphism, then

L[N ]G → L[M ]G,


η∈N

ℓηη →


η∈N

ℓηϕ(η)

is a K-Hopf algebra isomorphism. In addition, all the K-Hopf algebra isomor-
phisms between L[N ]G and L[M ]G arise in this way.
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Corollary 1.3.14. Let N be a finite group with an action of G via automor-
phisms, and suppose that N is the direct product of two G-invariant subgroups
M and M ′. Then

L[N ]G ∼= L[M ]G ⊗ L[M ′]G

as K-Hopf algebras.

1.4 Hopf–Galois structures and regular subgroups

We conclude this chapter by mentioning two main results describing Hopf–Galois
structures in group-theoretic terms: the Greither–Pareigis theorem [GP87] and
Byott’s translation [Byo96]. While both can be stated for finite separable ex-
tensions, we focus our attention on the Galois case. We mainly follow [Chi00,
Chapter 2], where an overview on regular subgroups is also given.

1.4.1 Regular subgroups

We begin with a quick reminder on regular subgroups, a standard notion in
group theory. Let G be a finite group, and denote by Perm(G) the group of
bijective maps G → G.

Definition 1.4.1. A subgroup N of Perm(G) is regular if the map

N → G, η → η[1G]

is bijective.

Example 1.4.2 (Cayley’s theorem). We denote by λ the left regular represen-
tation of G:

λ : G → Perm(G), σ → λ(σ) : τ → στ.

Similarly, we denote by ρ the right regular representation of G:

ρ : G → Perm(G), σ → ρ(σ) : τ → τσ−1.

Then λ(G) and ρ(G) are regular subgroup of Perm(G), which coincide if and
only if G is abelian.

Definition 1.4.3. The holomorph Hol(G) of G is the normaliser of λ(G) in
Perm(G).

A well-known result in group theory shows that Hol(G) is isomorphic to the
semidirect product of λ(G) and Aut(G) in Perm(G), so that there exists an
isomorphism

G⋊Aut(G) → Hol(G), (σ,α) → λ(σ)α.

The natural semidirect product G⋊Aut(G), for this reason, is usually referred
to as the abstract holomorph of G.
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1.4.2 The Greither–Pareigis theorem

We state here the main theorem of [GP87], specialised to the case in which the
extensions considered are Galois.

Let L/K be a finite Galois extension with Galois group G, and let N be a
regular subgroup of Perm(G). Suppose that N is normalised by λ(G). Then
λ(G) acts on N via conjugation, and thus we obtain an action of G on N via
automorphisms. This action extends to a Hopf semilinear action of G on L[N ],
and by Galois descent, the L-Hopf algebra L[N ] descends to the K-Hopf algebra

L[N ]G =







η∈N

ℓηη ∈ L[N ] | σ(ℓη) = ℓλ(σ)ηλ(σ)−1 for all σ ∈ G and η ∈ N




 .

Theorem 1.4.4 (Greither–Pareigis). Let L/K be a finite Galois extension with
Galois group G. Then there exists a bijective correspondence between

• the regular subgroups of Perm(G) normalised by λ(G);

• the Hopf–Galois structures on L/K.

Specifically, a regular subgroup N of Perm(G) normalised by λ(G) corresponds
to the Hopf–Galois structure (L[N ]G, ·) on L/K, where






η∈N

ℓηη



 · x =


η∈N

ℓηη
−1[1G](x).

Definition 1.4.5. Let L/K be a finite Galois extension with Galois group G,
and consider a Hopf–Galois structure on L/K, corresponding to a regular sub-
group N of Perm(G). The type of the Hopf–Galois structure is the isomorphism
class of N .

There are always two standard Hopf–Galois structures of type G on a fi-
nite Galois extension with Galois group G, corresponding to ρ(G) and λ(G);
see [Chi00, Example 6.9]

Example 1.4.6. Let L/K be a finite Galois extension with Galois group G,
and consider N = ρ(G). As ρ(G) and λ(G) commute, meaning that the action
of λ(G) on ρ(G) is trivial, we easily derive that

H = L[ρ(G)]G = LG[ρ(G)] = K[ρ(G)],

with action on L given by



τ∈G

kτρ(τ)


· x =



τ∈G

kτ τ(x).

In particular, the group isomorphism

G → ρ(G), σ → ρ(σ)
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yields a Hopf algebra isomorphism

K[G] → K[ρ(G)]

which respects the actions on L, and thus we conclude that ρ(G) corresponds
to the classical structure on L/K.

Example 1.4.7. Let L/K be a finite Galois extension with Galois group G,
and consider N = λ(G). This yields a Hopf–Galois structure on L/K, called
the canonical nonclassical structure. Note that G acts on G via conjugation,
and the map

G → λ(G), g → λ(g)

is a G-equivariant group isomorphism that yields aK-Hopf algebra isomorphism

L[G]G → L[λ(G)]G

by Corollary 1.3.13. As L[λ(G)]G acts on L via




σ∈G

kσλ(σ)


· x =



σ∈G

kσσ
−1(x),

we conclude that the canonical nonclassical structure is (L[G]G, ·), where G acts
on G via conjugation, so that

L[G]G =




τ∈G

ℓτ τ ∈ L[G] | σ(ℓτ ) = ℓστσ−1 for all σ, τ ∈ G


,

and the action on L is given by




σ∈G

kσσ


· x =



σ∈G

kσσ
−1(x).

The results developed in the previous section can be employed to describe
the structures of these Hopf algebras. For example, the following result can be
obtained.

Theorem 1.4.8. Let L/K be a finite Galois extension with Galois group G,
and let N be a regular subgroup of Perm(G) normalised by λ(G). Then there
exists a bijective correspondence between

• the subgroups of N normalised by λ(G);

• the Hopf subalgebras of L[N ]G.

This result appeared explicitly first in [CRV16a], but it was also implicitly
used in [GP87, Theorem 5.3] to present the following interesting behaviour of
the canonical nonclassical structure.
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Theorem 1.4.9. Let L/K be a finite Galois extension with Galois group G.
Then the image of the Hopf–Galois correspondence for the canonical nonclassical
structure on L/K consists exactly of the normal intermediate fields of L/K.

As immediate corollary, one finds an instance of bijective Hopf–Galois cor-
respondence. Recall that a group is Hamiltonian if it is not abelian and each of
its subgroups is normal.

Corollary 1.4.10. Let L/K be a finite Galois extension with Hamiltoninan Ga-
lois group G. Then the canonical nonclassical structure on L/K has a bijective
Hopf–Galois correspondence.

1.4.3 Byott’s translation

As initially mentioned by Childs [Chi89] and then made precise by Byott [Byo96],
there exists a way translate the Greither–Pareigis result in order to work in
holomorphs of groups instead of more general permutation groups. This has
the advantage that in general the holomorph is sensibly smaller than the full
permutation group. Again, we state the result in the case of Galois extensions.

Definition 1.4.11. Let G and N be finite groups. A group homomorphism

α : N → Perm(G)

is a regular embedding if α is injective and α(N) is a regular subgroup of
Perm(G).

Note that given a regular embedding α : G → Perm(N), we can define the
map

α∗ : N → G, α∗(η) = α(η)[1G],

which is a bijection by definition of regular subgroups. The following result is
contained in [Byo96, section 2]; see also the appendix of [SV18].

Theorem 1.4.12 (Byott’s translation). Let G and N be finite groups of the
same order. Then there exists a bijective correspondence between

• the regular embeddings α : N → Perm(G) such that α(N) is normalised by
λ(G);

• the regular embeddings β : G → Hol(N).

Specifically, a regular embedding α : N → Perm(G) such that α(N) is normalised
by λ(G) corresponds to the regular embedding

β : G → Hol(N), β(σ) = α−1
∗ λ(σ)α∗.

Conversely, a regular embedding β : G → Hol(N) corresponds to the regular
embedding

α : N → Perm(G), α(η) = β−1
∗ λ(η)β∗.
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In particular, if L/K is a finite Galois extension with Galois group G and N
is a group of the same order of G, then we can obtain a Hopf–Galois structure
of type N starting from every regular subgroup of Hol(N) isomorphic to G.
Explicitly, if T is such a subgroup, then the composition

β : G → T ↩→ Hol(N)

is a regular embedding, so it yields a map

α : N → Perm(G)

such that α(N) is a regular subgroup of Perm(G) normalised by λ(G) and
isomorphic to N . Via the Greither–Pareigis theory, we derive a Hopf–Galois
structure of type N on L/K.

A main consequence of this result is a quantitative result that simplifies
the problem of counting the Hopf–Galois structure of a given type on a Galois
extension. Given finite groups N and G of the same order, we denote by e(G,N)
the number of Hopf–Galois structures of type N on a Galois extension with
Galois group G, and by f(G,N) the number of regular subgroups of Hol(N)
isomorphic to G. Byott obtained the following result [Byo96, Corollary], which
simplifies the task of finding the number of Hopf–Galois structures of a given
type, as Hol(G) is smaller than Perm(G) and often easier to describe.

Corollary 1.4.13 (Byott). Let G and N be finite groups of the same order.
Then the following equality holds:

e(G,N) =
|Aut(G)|
|Aut(N)|f(G,N).
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Chapter 2

Skew Braces

This chapter is devoted to skew braces, algebraic structures introduced by
Guarnieri and Vendramin [GV17], building on previous work of Rump [Rum07a]
and Cedó, Jespers, and Okniński [CJO14]. Skew braces have received particu-
lar attention lately due to their various connections with radical rings, regular
subgroups of the holomorph, solutions of the Yang–Baxter equation, and Hopf–
Galois structures. While our main goal in the thesis is to present a new version
of the connection with Hopf–Galois structures, we try to give a more general
description in this chapter, presenting new results related to (construction of)
certain classes of skew braces and some structural properties. In the first sec-
tion, we present some preliminaries, following mainly [CSV19, GV17, SV18].
After the first section, we state and prove some results contained in our pa-
pers [CS21, CS22, CS23, ST23a], sometimes adding a new point of view or
some slight generalisations.

2.1 Preliminaries

2.1.1 First definitions and properties

Definition 2.1.1. A skew (left) brace is a triple (A,+, ◦), where (A,+) and
(A, ◦) are groups such that, for all a, b, c ∈ A,

a ◦ (b+ c) = (a ◦ b)− a+ (a ◦ c).

Notation 2.1.2. In general, we denote a skew brace by the same symbol of the
underlying set: when we say that A is a skew brace, we are tacitly meaning
a skew brace (A,+, ◦). The group (A,+), which is not necessarily abelian, is
called the additive group and written in additive notation; for example, −a is
the inverse and na is the nth power of a in (A,+). Similarly, the group (A, ◦)
is called the multiplicative group and written in multiplicative notation; for
example, a−1 is the inverse and an is the nth power of a in (A, ◦).
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By an easy application of the defining property, the identities of the groups
(A,+) and (A, ◦) coincide; we may refer to this common element by 0 or 1,
depending on the context.

As in what follows various different group structures on the same set may be
considered, we specify the group structure when well-known notations concern-
ing groups are used, in order to avoid confusion. For example, given a group
(A, ), we write

• Z(A, ) for the centre;

• [−,−] for the commutator;

• 〈−〉 for the subgroup generated by subsets or elements;

• Aut(A, ) for the automorphism group, and Inn(A, ) = {ι(a) | a ∈ A} for
the subgroup of inner automorphisms, where ι(a) denotes conjugation-
by-a in (A, ).

Definition 2.1.3. A skew brace A is

• trivial if a ◦ b = a+ b for all a, b ∈ A;

• almost trivial if a ◦ b = b+ a for all a, b ∈ A.

This definition is motivated by the following example. Recall that, given a
group (A,+), we write (A,+op) for the opposite group of (A,+), where

a+op b = b+ a.

Example 2.1.4. Let (A,+) be a group.

• The triple (A,+,+) is a trivial skew brace, denoted by Triv(A) when the
group operation of (A,+) is understood. It is clear that all the trivial
skew braces can be obtained in this way.

• The triple (A,+,+op) is an almost trivial skew brace. It is clear that all
the almost trivial skew braces can be obtained in this way.

Definition 2.1.5. Given a class X of groups, we say that a skew brace is of X
type if the additive group belongs to X.

Example 2.1.6. The skew braces of abelian type are exactly the braces in
the sense of Rump [Rum07a]. The original definition was later reformulated in
terms more similar to Definition 2.1.1 in [CJO14, Definition 1].

Definition 2.1.7. A skew brace A is two-sided if for all a, b, c ∈ A,

(a+ b) ◦ c = (a ◦ c)− c+ (b ◦ c).

Example 2.1.8. A skew brace A such that (A, ◦) is abelian is two-sided.
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Example 2.1.9. Let R be a radical ring, that is, a ring that coincides with its
Jacobson radical. By [Hun80, Chapter IX, Theorem 2.3], this is equivalent to
asking that (R, ◦) is a group, where

r ◦ s = r + rs+ s.

As showed in [Rum07a], the triple (R,+, ◦) is a two-sided brace of abelian type,
and every two-sided skew brace of abelian type arises in this way.

Definition 2.1.10. Let A and B be skew braces. A map f : A → B is a skew
brace homomorphism if for all a, b ∈ A,

f(a+ b) = f(a) + f(b), f(a ◦ b) = f(a) ◦ f(b).

The kernel of f is
ker f = {a ∈ A | f(a) = 0}.

When f : A → B is bijective, we say that f is a skew brace isomorphism, or
a skew brace automorphism of A when B = A. The automorphisms of a skew
brace A form a group, which is denoted by Aut(A) or Aut(A,+, ◦).

Definition 2.1.11. Let A be a skew brace. A subskew brace B of A is a subset
that is a subgroup of both (A,+) and (A, ◦).

Clearly, if B is a subskew brace of a skew brace A, then also (B,+, ◦) is a
skew brace, denoted again by B.

To define additional substructures, we need to consider a suitable map for
skew braces, usually denoted by λ in the literature. Take a skew brace A, and
for all a ∈ A, write

γ(a) : A → A, b → γ(a)b = −a+ (a ◦ b).

The map γ obtained in this way is called the gamma function of A; as showed
in [GV17, Proposition 1.9], this is a group homomorphism

γ : (A, ◦) → Aut(A,+).

It follows that given a skew brace A, for all a, b ∈ A,

a ◦ b = a+ γ(a)b, a+ b = a ◦ γ(a−1)b, a−1 = γ(a−1)(−a).

These equalities are used without reference in the following.
Note that gamma functions can be used to construct or characterise skew

braces, in the following way; see [CCDC20, Theorem 2.2].

Theorem 2.1.12. Let (A,+) be a group. Then there exists a bijective corre-
spondence between

• the functions γ : A → Aut(A,+) such that for all a, b ∈ A,

γ(a+ γ(a)b) = γ(a)γ(b);
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• the operations ◦ such that (A,+, ◦) is a skew brace.

Specifically, a function γ corresponds to the operation ◦ given by a◦b = a+γ(a)b.

With the gamma functions, we can define some important substructures of
skew braces.

Definition 2.1.13. Let A be a skew brace. A subskew brace I of A is

• a left ideal if γ(a)i ∈ I for all a ∈ A and i ∈ I;

• a strong left ideal if I is a left ideal and is normal in (A,+);

• an ideal if I is a strong left ideal and is normal in (A, ◦).

Remark 2.1.14. It is clear that, by the definition of the function γ of a skew
brace A, in order to define a left ideal B is enough to suppose that B is a
subgroup of one of the group structures that is invariant under the action of
(A, ◦) via γ.

Note also that the ideals I are precisely the structures over which is possible
to take quotients, as the definition implies that a + I = a ◦ I for all a ∈ A. In
particular, it follows that the sets (A,+)/(I,+) and (A, ◦)/(I, ◦) are equal, and
we obtain in this way a skew brace (A/I,+, ◦), denoted again by A/I.

Example 2.1.15. As to be expected, the ideals are exactly the kernels of the
skew brace homomorphisms:

• If A and B are skew braces and f : A → B is a skew brace homomorphism,
then ker f is an ideal of A.

• If A is a skew brace and I is an ideal of A, then

π : A → A/I, a → a = a+ I = a ◦ I

is a skew brace homomorphism such that ker f = I.

Remark 2.1.16. If I is a left ideal of a skew brace A, then we say that I is trivial
if I is trivial as skew brace. The same idea works for all the notions introduced
in the next subsection.

Remark 2.1.17. Mimicking the analogous proofs for groups, or employing the
general description of universal algebra, one can easily derive that the isomor-
phism theorems hold for skew braces.

Example 2.1.18. Let A be a skew brace, and write

Fix(A) = {a ∈ A | γ(b)a = a for all b ∈ A}.

Then Fix(A) is a left ideal of A; see Proposition [CSV19, Proposition 1.6].
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Example 2.1.19. Let A be a skew brace. Define the socle of A as

Soc(A) = {a ∈ A | a+ b = b+ a = a ◦ b for all b ∈ A}.

It is clear that
Soc(A) = ker γ ∩ Z(A,+).

Then Soc(A) is an ideal of A; see [GV17, Lemma 2.5].

Example 2.1.20. Let A be a skew brace. Define the annihilator of A as

Ann(A) = {a ∈ A | a+ b = b+ a = a ◦ b = b ◦ a for all b ∈ B}.

It is clear that
Ann(A) = Soc(A) ∩ Z(A, ◦).

The annihilator was introduced in [CCS19], where it is mentioned that Ann(A)
is an ideal of A.

Motivated by the multiplication of radical rings, we can give the following
definition.

Definition 2.1.21. Let A be a skew brace. The star operation of A is given by

a ∗ b = −a+ (a ◦ b)− b = γ(a)b− b.

The star operation of a skew brace A measures how far apart the operations
are, as a ∗ b = 0 if and only if a + b = a ◦ b, and it coincides with the ring
multiplication when A can be obtained by a radical ring. For all subsets X and
Y of A, we write

X ∗ Y = 〈x ∗ y | x ∈ X and y ∈ Y 〉+

and A2 = A ∗ A, so that A2 = 0 if and only if A is trivial. More precisely, it is
clear that A2 is the smallest ideal of A such that A/A2 is trivial; see [CSV19,
Proposition 2.3].

On the model of groups, we can talk about direct and semidirect products
of skew braces; for the second notion, we take the definition of [SV18, Corollary
2.36], but we remark that a more general concept appeared recently in [BFP23].

Definition 2.1.22. Let A and B be skew braces, and consider the set

A×B = {(a, b) | a ∈ A and b ∈ B}.

• The direct product of A and B, denoted again by A×B, is the skew brace
(A×B,+, ◦), where

(a, b) + (a′, b′) = (a+ a′, b+ b′), (a, b) ◦ (a′, b′) = (a ◦ a′, b ◦ b′).

• Let α : (B, ◦) → Aut(A) be a group homomorphism. The semidirect prod-
uct of A and B, denoted by A⋊B, is the skew brace (A×B,+, ◦), where

(a, b) + (a′, b′) = (a+ a′, b+ b′), (a, b) ◦ (a′, b′) = (a ◦ αb(a
′), b ◦ b′).

33



A routine calculation shows that indeed the (semi)direct product of skew
braces is actually a skew brace. Note that the definition of direct product of
skew brace can be easily extended to any finite number of skew braces, and the
direct product of two skew braces is the semidirect product with respect to the
trivial action. We also remark that the gamma function of the direct product
A of skew braces Ai is given by the gamma functions of the skew braces Ai

in the obvious way, so that if the skew braces Ai are finite and have coprime
cardinality, then the left ideals of A are exactly the direct product of the left
ideals of the Ai.

To conclude this part, we introduce opposite skew braces, following [KT20].

Definition 2.1.23. Let A be a skew brace. The opposite skew brace of A is the
skew brace (A,+op, ◦), denoted by Aop.

As showed in [KT20, Proposition 3.1], the opposite skew brace Aop of a skew
brace A is actually a skew brace. In general, we use the subscript op to refer to
typical notions of skew brace related to Aop. For example, the gamma function
γop of Aop is given by

γop(a)b = −a+op (a ◦ b) = (a ◦ b)− a = a− a+ (a ◦ b)− a,

which means that γop(a) = ι+(a)γ(a). As immediate consequence, the strong
left ideals of A are exactly the left ideals of A that are also left ideals of Aop.

Similarly,
a ∗op b = −b+ (a ◦ b)− a.

Example 2.1.24. Let (A,+,+) be a trivial skew brace, so that γ(a) = id for
all a ∈ A. Then the opposite skew brace (A,+op,+) is an almost trivial skew
brace. For all a, b ∈ A,

γop(a) = ι+(a), a ∗op b = [−b, a]+.

Note that A = Aop if and only if A is a skew brace of abelian type. The
internal structures of A and Aop are strongly related, as the following result,
whose proof is immediate, shows.

Proposition 2.1.25. Let A be a skew brace. Then the ideals of A and Aop

coincide.

As an application, we find that (Aop)
2 is an ideal of A; explicitly,

(Aop)
2 = 〈a ∗op b | a, b ∈ A〉+ ⊆ A.

To lighten the notation, we denote this ideal by A2
op, without any risk of confu-

sion as we never consider the opposite skew brace of A2 in what follows. We also
mention that A2

op is the smallest ideal of A such that A/A2
op is almost trivial.
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2.1.2 Series for skew braces

We summarise here some known results related to notions of skew braces ob-
tained via suitable series of substructures.

Definition 2.1.26. Let A be a skew brace. A subideal series (ideal series,
respectively) {Im}m of A is a chain of subskew braces

0 = In+1 ⊆ In ⊆ · · · ⊆ I2 ⊆ I1 = A

such that Im+1 is an ideal of Im (of A, respectively) for all m.
Given a class X of skew braces, we say that a (sub)ideal series is an X series

if the skew brace Im/Im+1 belongs to X for all m.

To construct some canonical examples of series, we take inspiration from
ring theory, employing the star operation of a skew brace. However, as the star
operation is not necessarily associative, in order to employ it to define, on the
model of rings, subideal series, it is important to “pick a side”.

The first notion we present appeared in [KSV21] under the name of solubility
for skew brace. However, we reserve the term soluble for a more particular class
of skew braces, introduced in [BBERJSPC23], which we consider below.

Definition 2.1.27. Let A be a skew brace. Define A1 = A and for all m ≥ 1,

Am+1 = Am ∗Am.

We say that A is polytrivial (of class n) if there exists n such that An+1 = 0
(and n is minimal with this property).

The fact that given a skew brace A, the ideal A2 is the smallest such that
A/A2 is trivial, immediately shows that the series {Am}m is a trivial subideal
series of A and that the following result holds.

Proposition 2.1.28. Let A be a skew brace. Then the following are equivalent:

• There exists a trivial subideal series of A.

• There exists n such that An = 0.

This easily yields the following well-known result.

Lemma 2.1.29. Let A be a skew brace, and let I be an ideal of A. Then A is
polytrivial if and only if I and A/I are polytrivial.

Definition 2.1.30. A skew brace A is metatrivial if A is polytrivial of class at
most two.

It is clear that a skew brace A is metatrivial if and only if A2 is trivial, if
and only if there exists an ideal I such that A/I and I are trivial skew braces.

We list now some classes of polytrivial skew braces. The first two were
introduced in [CSV19].
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Definition 2.1.31. Let A be a skew brace. Define A(1) = A and for all n ≥ 1,

A(m+1) = A(m) ∗A.

We say that A is right nilpotent (of class n) if there exists n such that A(n+1) = 0
(and n is minimal with this property).

As shown in [CSV19, Proposition 2.1], the series of the {A(n)}n is a trivial
ideal series of a skew brace A. The following result is a consequence of [CSV19,
Lemma 2.5].

Lemma 2.1.32. Let A be a skew brace, and let I be an ideal of A. Then for
all m ≥ 1,

(A/I)(m) = (A(m) + I)/I.

Definition 2.1.33. Let A be a skew brace. Define A1 = A and for all n ≥ 1,

Am+1 = A ∗Am.

We say that A is left nilpotent (of class n) if there exists n such that An+1 = 0
(and n is minimal with this property).

As showed in [CSV19, Proposition 2.2], the series of the {An}n is a triv-
ial subideal series of a skew brace A. The following result is a consequence
of [CSV19, Lemma 2.23].

Lemma 2.1.34. Let A be a left nilpotent skew brace, and let I be an ideal of
A. Then A/I is left nilpotent.

Example 2.1.35. Let A be a skew brace with cardinality pn, where p is a
prime. Then A is left nilpotent of class at most n; see [Rum07a, Corollary of
Proposition 8] and [CSV19, Proposition 4.4].

Given a skew brace A, an easy induction shows that Am is contained in A(m)

and Am for all m ≥ 1. In particular, skew braces that are left or right nilpotent
of class at most n are also polytrivial of class at most n.

The following result is [CSV19, Theorem 4.8].

Theorem 2.1.36. Let A be a finite skew brace of nilpotent type. Then A is left
nilpotent if and only if (A, ◦) is nilpotent.

Example 2.1.37. Let R be a radical ring. Then r ∗ s = rs is the ring multi-
plication, so that R, viewed as a skew brace, is right nilpotent or left nilpotent
if and only if R is a nilpotent ring.

The notions introduced so far are in some sense modelled on nilpotency of
rings. In [BJ23], Bonatto and Jedlicka employed the perspective of universal
algebra to define commutators in the context of skew braces, with the aim to
mimic concepts typical of groups in this setting. The result was later generalised
by Bourn, Facchini, and Pompili [BFP23], via the point of view of semiabelian
categories.
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Definition 2.1.38. Let A be a skew brace, and let I, J be ideals of A. The
commutator [I, J ] of I and J is the smallest ideal of A containing

[I, J ]+, [I, J ]◦, I ∗ J.

Note that if A is a skew brace, then [A,A] = 0 if and only if A is a trivial
skew brace of abelian type. This motivates the following definition.

Definition 2.1.39. A skew brace A is abelian if A is a trivial skew brace of
abelian type.

By construction, therefore, we derive that [A,A] is the smallest ideal of a
skew brace A such that A/[A,A] is abelian. It is quite easy to check that

[A,A] = 〈[A,A], A ∗A〉+.

Once this commutator is defined, we have natural notions of solubility and
nilpotency. The first appeared in [BBERJSPC23], while the second in [BJ23].

Definition 2.1.40. Let A be a skew brace. Define ∂1(A) = A and for all n ≥ 1,

∂m+1(A) = [∂m(A), ∂m(A)].

We say that A is soluble (of class n) if there exists n such that ∂n+1(A) = 0
(and n is minimal with this property).

The fact that given a skew brace A, the ideal [A,A] is the smallest such that
A/[A,A] is abelian, immediately shows that the series {∂m(A)}m is an abelian
ideal series of A and that the following result holds.

Proposition 2.1.41. Let A be a skew brace. Then the following are equivalent:

• There exists an abelian ideal series of A.

• There exists n such that ∂n(A) = 0.

Note that, in particular, if a skew brace A is soluble, then also (A,+) and
(A, ◦) are soluble.

Definition 2.1.42. A skew brace A is metabelian if A is soluble of class at
most two.

It is clear that a skew brace A is metabelian if and only if [A,A] is abelian, if
and only if there exists an ideal I such that A/I and I are abelian skew braces.

Finally, we can deal also with a different notion of nilpotency for skew braces.

Definition 2.1.43. Let A be a skew brace. Define Γ1(A) = A and for all
m ≥ 2,

Γm+1(A) = [Γm(A), A].

We say that A is nilpotent (of class n) if there exists n such that Γn+1(A) = 0
(and n is minimal with this property).
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This notion was introduced in [BJ23] under the name of central nilpotency,
and later in [JVAV23] under the name of annihilator nilpotency, because of its
relation with the annihilator of a skew brace [BJ23, Theorem 2.7]. An easy
induction shows that given a skew brace A, there is an inclusion ∂m(A) ⊆
Γm(A), so that if A is nilpotent of class at most n, then A is soluble of class at
most n.

The following result relates various notions of nilpotency; see [BJ23, Corol-
lary 2.9] and [JVAV23, Corollary 2.15].

Theorem 2.1.44. Let A be a skew brace. Then the following are equivalent:

• A is nilpotent.

• A is left and right nilpotent of nilpotent type.

If this is the case, then also (A, ◦) is nilpotent.

Example 2.1.45. Let A be a trivial skew brace. Then A ∗A = 0 and [A,A] =
[A,A]+, so that A is

• polytrivial, left nilpotent, and right nilpotent of class at most one;

• soluble (respectively nilpotent) of class n if and only if (A,+) is soluble
(respectively nilpotent) of class n.

Example 2.1.46. Let A be an almost trivial skew brace. Then A ∗ A =
[A,A]+ = [A,A], so that A is

• polytrivial of class n if and only if A is soluble of class n, if and only if
(A,+) is soluble of class n;

• right nilpotent of class n if and only if A is left nilpotent of class n, if and
only if A is nilpotent of class n, if and only if (A,+) is nilpotent of class
n.

2.1.3 Skew braces and the Yang–Baxter equation

The interest in set-theoretic solutions of the Yang–Baxter equation, as a simpli-
fication of its linear solutions, goes back to Drinfel’d [Dri92]. Compared to the
linear version, set-theoretic solutions are easier to study and classify. Nonethe-
less, set-theoretic solutions can be linearised and are also omnipresent in the
study of link and knot invariants. Here we quickly review the well-known con-
nection between skew braces and the Yang–Baxter equation.

Definition 2.1.47. A set-theoretic solution of the Yang–Baxter equation is a
pair (X, r), where X is a nonempty set and r : X×X → X×X a bijective map
that satisfies

(r × idX)(idX ×r)(r × idX) = (idX ×r)(r × idX)(idX ×r).

The solution (X, r) is nondegenerate if for all x ∈ X, the maps σx, τx : X → X
defined by r(x, y) = (σx(y), τy(x)) are bijective.
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As customary, we shortly refer to a nondegenerate set-theoretic solution of
the Yang–Baxter equation as a solution.

Definition 2.1.48. Let (X, r) and (Y, s) be solutions. A solution homomor-
phism f : (X, r) → (Y, s) is a map f : X → Y such that (f × f)r = s(f × f).

Given a solution (X, r), it is easily checked that also (X, r−1) is again a
solution. For all x ∈ X, we define σ̂x, τ̂x : X → X by r−1(x, y) = (σ̂x(y), τ̂y(x)).

The following definition was introduced in [ESS99].

Definition 2.1.49. Let (X, r) be a solution. The structure group of (X, r) is
the group

(G(X, r), ◦) = 〈X | x ◦ y = σx(y) ◦ τy(x) for all x, y ∈ X〉.

There are two main ways to relate skew braces and solutions. We present
here two theorems that combine many fundamental results in the literature
and are used freely later. Most of the first result is due to Guarnieri and
Vendramim [GV17, Theorem 3.1], as generalisation of previous work of Rump
[Rum07a]; the part on opposite skew brace is [KT20, Theorem 4.1].

Theorem 2.1.50. Let A be a skew brace. Then (A, rA) is a solution, where

r(a, b) = (γ(a)b, (γ(a)b)−1 ◦ a ◦ b),

with inverse solution (Aop, rAop
). In addition, every skew brace homomorphism

f : A → B induces a solution homomorphism f : (A, rA) → (B, rB).

For the second, we refer to [GV17] and the recent survey [Ven23].

Theorem 2.1.51. Let (X, r) be a solution. Then there exists an operation +
such that (G(X, r),+, ◦) is a skew brace, denoted by G(X, r), with the following
properties:

• The map
ι : (X, r) → (G(X, r), rG(X,r)), x → x

is a solution homomorphism.

• Both the additive and multiplicative group of G(X, r) are generated by
ι(X).

Definition 2.1.52. A solution is injective if ι is an injective map.

Example 2.1.53. If (X, r) is a solution, then (ι(X), r) is a solution, where

r(ι(x), ι(y)) = (ι× ι)r(x, y).

In addition, the skew braces G(X, r) and G(ι(X), r) are isomorphic, so that
(ι(X), r) is injective; see [LV19, Proposition 7.6].

39



2.2 Homomorphic skew braces and bi-skew braces

In this section we propose a systematic analysis of two related classes of skew
braces, following the discussion of paper [ST23a].

2.2.1 Some structural results

The first class was introduced under a slightly different name in [BNY22].

Definition 2.2.1. A skew brace A is homomorphic if γ : (A,+) → Aut(A,+)
is a group homomorphism.

We begin by showing a characterisation of these skew braces in term of
nilpotency; see [ST23a, Theorem 3.13].

Theorem 2.2.2. Let A be a skew brace. Then the following are equivalent:

• A is homomorphic.

• γ(a+ b) = γ(a ◦ b) for all a, b ∈ A.

• γ(γ(a)b) = γ(b) for all a, b ∈ A.

• A2 is contained in ker γ.

Proof. Let a, b ∈ A. The equality

γ(a ◦ b) = γ(a)γ(b)

implies that A is homomorphic if and only if γ(a+ b) = γ(a ◦ b).
Suppose that A is homomorphic. Then

γ(a)γ(b) = γ(a ◦ b) = γ(a+ γ(a)b) = γ(a)γ(γ(a)b),

that is, γ(γ(a)b) = γ(b). In addition,

γ(a ∗ b) = γ(a)−1γ(a)γ(b)γ(b)−1 = 1,

that is, A2 ⊆ ker γ.
Conversely, suppose first that γ(γ(a

−1)b) = γ(b). Then

γ(a+ b) = γ(a ◦ γ(a−1)b) = γ(a)γ(γ(a
−1)b) = γ(a)γ(b).

Suppose now that ker γ contains A2. As A/A2 is a trivial skew brace, we
obtain (a + b) ∈ (a ◦ b) ◦ A2, meaning that there exists c ∈ A2 such that
a+ b = a ◦ b ◦ c. We derive

γ(a+ b) = γ(a ◦ b ◦ c) = γ(a)γ(b)γ(c) = γ(a)γ(b).

Remark 2.2.3. Let A be a skew brace. Then A2 ⊆ ker γ if and only if A(3) = 0.
This means that the homomorphic skew braces are exactly the right nilpotent
skew braces of class at most two. As a consequence, homomorphic skew braces
are metatrivial, as already shown in [BNY22, Theorem 2.12].
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Note also the following easy fact.

Lemma 2.2.4. Let A be a homomorphic skew brace. Then ker γ is an ideal of
A and A/ ker γ is a trivial skew brace.

Proof. The first claim follows from the fact that

γ : A → Triv(Aut(A,+))

is a skew brace homomorphism. The second from the fact that A2 ⊆ ker γ.

The second class of skew braces we consider was introduced by Childs [Chi19].

Definition 2.2.5. A skew brace A is a bi-skew brace if also (A, ◦,+) is a skew
brace.

While at first sight the two classes are defined in ways that do not appear
similar, in [Car20, Theorem 3.1], Caranti showed the following result, giving the
first analogy between bi-skew braces and homomorphic skew braces.

Theorem 2.2.6. Let A be a skew brace. Then A is a bi-skew brace if and only

γ : (A,+) → Aut(A,+)

is a group antihomomorphism.

As a consequence, we can derive the analogous theorem of Theorem 2.2.2;
see [ST23a, Theorem 2.6].

Theorem 2.2.7. Let A be a skew brace. Then the following are equivalent:

• A is a bi-skew brace.

• γ(a+ b) = γ(b ◦ a) for all a, b ∈ A.

• γ(γop(a)b) = γ(b) for all a, b ∈ A.

• A2
op is contained in ker γ.

Proof. Let a, b ∈ A. The equality

γ(a ◦ b) = γ(a)γ(b)

implies that A is a bi-skew brace if and only if γ(a+ b) = γ(b ◦ a).
Suppose that A is a bi-skew brace. Then

γ(a)γ(b) = γ(a ◦ b) = γ(a+ γ(a)b) = γ(γ(a)b)γ(a),

that is, γ(γop(a)b) = γ(a)−1γ(γ(a)b)γ(a) = γ(b). In addition,

γ(a ∗op b) = γ(a)−1γ(a)γ(b)γ(b)−1 = 1,

that is, A2
op ⊆ ker γ.

41



Conversely, suppose first that γ(γop(a
−1)b) = γ(b). Then

γ(b+ a) = γ(a+op b) = γ(a ◦ γop(a
−1)b) = γ(a)γ(γop(a

−1)b) = γ(a)γ(b).

Suppose now that ker γ contains A2
op. As A/A2

op is an almost trivial skew
brace, we obtain (a + b) ∈ (b ◦ a) ◦ A2, meaning that there exists c ∈ A2 such
that a+ b = b ◦ a ◦ c. The assumption then implies

γ(a+ b) = γ(b ◦ a ◦ c) = γ(b)γ(a)γ(c) = γ(b)γ(a).

As a slight variation of the analogous result for homomorphic skew braces,
we obtain the following result.

Lemma 2.2.8. Let A be a bi-skew brace. Then ker γ is an ideal of A and
A/ ker γ is an almost trivial skew brace.

Proof. The first claim follows from the fact that

γ : A → Triv(Aut(A,+))op

is a skew brace homomorphism. The second from the fact that A2
op ⊆ ker γ.

The connection between the two classes is evident from these formulations,
and the following result can be easily derived; see also [Car20, Lemma 3.7].

Lemma 2.2.9. Let A be a skew brace. Then any two of the following statements
imply the third:

• A is homomorphic.

• A is a bi-skew brace.

• γ(A) is abelian.

Remark 2.2.10. Note that in the case that A is a homomorphic skew brace or
a bi-skew brace, then γ(A) is abelian if one of (A,+) and (A, ◦) is abelian.

Example 2.2.11. Trivial skew braces and almost trivial skew braces are ho-
momorphic bi-skew braces.

Example 2.2.12. Recall that every radical ring can be thought of as a skew
brace of abelian type. As the star operation of R coincides with the ring multi-
plication, we can apply Theorem 2.2.2 (or better, Remark 2.2.3) to deduce that
R is homomorphic (or equivalently a bi-skew brace) if and only if R3 = 0. This
generalises [Chi19, Proposition 4.1], in which R is assumed to be finite.

In the last section of this chapter we propose various examples of these
classes of skew braces. We focus now on some of their structural properties.
First, while homomorphic skew braces are always right nilpotent, the same does
not hold for bi-skew braces. This can be easily controlled by the nilpotency of
a suitable group; see [ST23a, Theorem 3.6].
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Theorem 2.2.13. Let A ∕= 0 be a bi-skew brace. Then A is right nilpotent of
class n if and only if γ(A) is a nilpotent group of class n− 1.

Proof. By Lemma 2.1.32, for all m ≥ 2,

(A/ ker γ)(m) = (A(m) + ker γ)/ ker γ,

so that (A/ ker γ)(n) = 0 if and only if A(n) ⊆ ker γ, which is equivalent to
A(n+1) = 0. We obtain that A is right nilpotent of class n if and only if
A/ ker(γ) is right nilpotent of class n− 1, in the case A ∕= 0.

Now, the almost trivial skew brace A/ ker(γ) is right nilpotent of class n if
and only if the group (A/ ker(γ), ◦) is nilpotent of class n, and (A/ ker(γ), ◦) is
clearly isomorphic to γ(A).

We state now two corollaries; see [ST23a, Corollaries 3.7 and 3.8].

Corollary 2.2.14. Let A be a bi-skew brace such that one of (A,+) and (A, ◦)
is nilpotent. Then A is right nilpotent.

Proof. It suffices to note that γ(A) is a quotient of both (A,+) and (A, ◦), and
then to apply Theorem 2.2.13.

Corollary 2.2.15. Let A be a left nilpotent bi-skew brace. Then A is right
nilpotent.

Proof. If A is left nilpotent, then also the skew brace A/ ker γ is left nilpo-
tent by Lemma 2.1.34. As A/ ker γ is almost trivial, this is equivalent to the
group (A/ ker γ, ◦) ∼= γ(A) being nilpotent. The result then follows from Theo-
rem 2.2.13.

In a similar way, the same group controls the polytriviality of a bi-skew
brace; see [ST23a, Proposition 3.9].

Proposition 2.2.16. Let A be a bi-skew brace. Then A is a polytrivial skew
brace if and only if γ(A) is a soluble group.

Proof. We apply Lemma 2.1.29 with I = ker γ, which is a trivial ideal such that
A/ ker γ is almost trivial by Lemma 2.2.8. In particular, the quotient A/ ker(γ)
is polytrivial if and only if the group (A/ ker(γ), ◦) is soluble. We conclude again
via the group isomorphism (A/ ker(γ), ◦) ∼= γ(A).

We deal with the categorical notions of solubility and nilpotency. First, we
present a generalisation of [ST23a]. In order to do this, we need a technical
lemma, which gives a result of transitivity regarding solubility for skew braces.

Lemma 2.2.17. Let A be a skew brace, and let I be an ideal of A. If I is a
trivial skew brace of soluble type and A/I is soluble, then A is soluble.
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Proof. As A/I is soluble, we can employ an abelian series of A/I to obtain a
series of ideals

I = Bn+1 ⊆ Bn ⊆ · · · ⊆ B2 ⊆ B1 = A

of A such that Bm/Bm+1 is abelian for all m. Take now the derived series
{Im}m of the group (I,+) = (I, ◦), in the usual group-theoretic sense. Every
Im defined in this way is characteristic in (I,+) = (I, ◦), which is normal in
both (A,+) and (A, ◦), hence Ii is also normal in both. Moreover, for all a ∈ A,
the function γ(a), when restricted to I, yields an automorphism of I, and hence
every In is an ideal of A with the property that Im/Im+1 is abelian. We conclude
that

0 = In′+1 ⊆ In′ ⊆ · · · ⊆ I2 ⊆ I ⊆ Bn ⊆ · · · ⊆ B2 ⊆ B1 = A

is an abelian series for A.

Theorem 2.2.18. Let A be a skew brace that is homomorphic or a bi-skew
brace. Then the following are equivalent:

• A is a soluble skew brace.

• (A,+) is a soluble group.

• (A, ◦) is a soluble group.

Proof. Clearly, if A is soluble, then also (A,+) and (A, ◦) are soluble.
Conversely, suppose that (A,+) or (A, ◦) is soluble. By Lemma 2.2.4 or

Lemma 2.2.8, the skew brace A/ ker γ is trivial or almost trivial (and thus
soluble) and ker γ is a trivial ideal. Therefore we can conclude by applying
Lemma 2.2.17.

Remark 2.2.19. In particular, Theorem 2.2.18 implies that homomorphic skew
braces and bi-skew braces satisfy Byott’s conjecture; see [Byo15], [Ven19, Prob-
lem 2.46], and [ST23a, Theorem 3.11].

Remark 2.2.20. In section 2.5, we propose various constructions of skew braces
(A,+, ◦) that are both homomorphic skew braces and bi-skew braces, starting
from a group (A,+). In particular, every time we start from a soluble group,
we always obtain soluble skew braces from these constructions.

A similar, but weaker, result can be derived for nilpotency

Theorem 2.2.21. Let A be a skew brace that is homomorphic or a bi-skew
brace. Suppose that A is finite. Then the following are equivalent:

• A is a nilpotent skew brace.

• (A,+) and (A, ◦) are nilpotent groups.

Proof. If A is nilpotent, then also (A,+) and (A, ◦) are nilpotent by Theo-
rem 2.1.44.

Conversely, if (A,+) and (A, ◦) are nilpotent and A is finite, then A is left
nilpotent by Theorem 2.1.36, so right nilpotent by Corollary 2.2.15 in the bi-skew
brace case (or by Theorem 2.2.2 and Remark 2.2.3 in the case of homomorphic
skew braces). We conclude that A is nilpotent again by Theorem 2.1.44.
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We conclude these analogies by showing that one can use the semidirect
product of skew braces to obtain two slightly different known constructions, one
yielding homomorphic skew braces and one yielding bi-skew braces; see [ST23a,
Examples 3.17 and 3.18].

Example 2.2.22. Let G and T be groups, and let T act by automorphisms on
G, via an action denoted by α. This yields a group homomorphism

α : (B, ◦) → Aut(A), t → αt,

where A = Triv(G) and B = Triv(T ). We obtain a skew brace A⋊B, with

(g, t) + (g′, t′) = (gg′, tt′),

(g, t) ◦ (g′, t′) = (gαt(g
′), tt′).

We have recovered in this way [GV17, Example 1.4]. Note that for the skew
brace A⋊B,

γ(g, t) = (αt, id).

In particular, A⋊ B is a homomorphic skew brace, and it is a bi-skew brace if
and only if [T, T ] ⊆ kerα, as an immediate computation shows.

Example 2.2.23. Let G and T be groups, and let T act by automorphisms on
G, via an action denoted by α. This yields a group homomorphism

α : (B, ◦) → Aut(A),

where A = Triv(G) and B = Triv(T )op. We obtain a skew brace A⋊B, with

(g, t) + (g′, t′) = (gg′, t′t),

(g, t) ◦ (g′, t′) = (gαt(g
′), tt′).

We have recovered in this way [Chi19, Proposition 7.1]. Note that for the skew
brace A⋊B,

γ(g, t) = (αt, ι(t)),

where ι(t) denotes conjugation-by-t in T . In particular, A ⋊ B is a bi-skew
brace, and it is homomorphic if and only if [T, T ] ⊆ ker(α) ∩ Z(T ). Note that
when T is abelian, this construction coincides with the one in Example 2.2.22.

2.2.2 Two skew braces in a bi-skew brace

Let A be a bi-skew brace. We use the symbol A↔ to denote the skew brace
(A, ◦,+), and we use the same subscript to denote skew brace notions related
to the skew brace A↔. For example, the gamma function γ↔ of A↔ is given by

γ↔(a)b = a−1 ◦ (a+ b) = −(a−1) + (a−1 ◦ b),

meaning that γ↔(a) = γ(a)−1 = γ(a−1). We see here that the skew braces A
and A↔ share various properties. For the next result, see [ST23a, Lemma 3.1].
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Lemma 2.2.24. Let A be a bi-skew brace. Then the (left) ideals of A and A↔
coincide.

Proof. Let I be a subskew brace of A (and thus also of A↔). As γ↔(a) =
γ(a)−1 = γ(a−1), it is clear that γ(a)i ∈ I for all a ∈ A and i ∈ I if and only if
γ↔(b)i ∈ I for all b ∈ A and i ∈ I. We derive that I is a left ideal of A if and
only if I is a left ideal of A↔, and I is an ideal of both A and Aop when I is
also a normal subgroup of both (A,+) and (A, ◦).

Lemma 2.2.25. Let A be a bi-skew brace, and let I be a subskew brace of A.
Then A ∗ I = A ∗↔ I. If furthermore I is an ideal, then I ∗A = I ∗↔ A.

Proof. Suppose that I is a subskew brace of A. Take a ∈ A and i ∈ I. We note
that

a−1 ∗↔ i = γ↔(a−1)i ◦ i−1 = γ(a)i ◦ i−1,

from which we derive that

a ∗ i = γ(a)i− i = (γ(a)i ◦ i−1 ◦ i)− i

= (γ(a)i ◦ i−1) + γ(γ(a)i◦i−1)i− i

= (a−1 ∗↔ i) + ((a−1 ∗↔ i) ∗ i).

Hence a−1 ∗↔ i = (a ∗ i)− ((a−1 ∗↔ i) ∗ i) ∈ A ∗ I, and thus A ∗↔ I ⊆ A ∗ I. By
a symmetric argument, we also obtain A ∗ I ⊆ A ∗↔ I.

Suppose now that I is also an ideal. As I is also in ideal of A↔ by
Lemma 2.2.24, we derive

(i−1 ∗↔ a) ∗ a ∈ (I ∗↔ A) ∗A ⊆ I ∗A,

which implies, with the same argument as before but swapping the role of a and
i, that i−1∗↔a ∈ I ∗A. Again by a symmetric argument, the results follows.

As a consequence, we derive the following theorem, which completes [ST23a,
Propositions 3.3 and 3.4].

Theorem 2.2.26. Let A be a bi-skew brace. Then A is  of class n if and only
if A↔ is  of class n. Here  is one of the following: polytrivial; left nilpotent;
right nilpotent; nilpotent; soluble.

Proof. Lemmas 2.2.24 and Lemma 2.2.25 shows that the series defining the
property  of A coincide with the series defining the property  of A↔.

2.2.3 Applications to the Yang–Baxter equation

The goal of this subsection is to explore the meaning of homomorphic skew
braces and bi-skew braces in relation to solutions of the Yang–Baxter equation.
We follow here [ST23a, section 5].

As consequences of the description of these classes of skew braces via the
gamma function, we immediately see that the information for a skew brace to
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be bi-skew or homomorphic is not lost in the associated solution. Recall that
given a solution (X, r), we write

r(x, y) = (σx(y), τy(x))

for all x, y ∈ X.

Proposition 2.2.27. Let A be a skew brace.

• A is homomorphic if and only if the solution (A, rA) satisfies, for all a, b ∈
A,

σσa(b) = σb.

• A is a bi-skew brace if and only if the solution (A, rA) satisfies, for all
a, b ∈ A,

σσ̂a(b) = σb.

Proof. The result follows by applying the characterisations presented in Theo-
rems 2.2.2 and 2.2.7, together with the fact that for all a, b ∈ A,

σa(b) =
γ(a)b, σ̂a(b) =

γop(a)b.

We approach now the opposite situation, characterising the solutions (X, r)
such that G(X, r) is a homomorphic skew brace or a bi-skew brace, under the
additional assumption that (X, r) is injective. In [ST23a, Theorem 5.4], the
result is given and proved in the context of bi-skew braces. For completeness,
we state also the result in the context of homomorphic skew braces. We just
provide the proof in this case, as it is a slight modification of the proof of [ST23a,
Theorem 5.4].

Theorem 2.2.28. Let (X, r) be an injective solution.

• The skew brace G(X, r) is homomorphic if and only if σσx(y) = σy for all
x, y ∈ X.

• The skew brace G(X, r) is a bi-skew brace if and only if σσ̂x(y) = σy for
all x, y ∈ X.

Proof. As mentioned, we just prove the first claim. The implication from left to
right is a consequence of the fact that (X, r) is injective and Proposition 2.2.27.

Now assume that for all x, y ∈ X, we have that σσx(y) = σy. Write G =
G(X, r). As the map

i : (X, r) ↩→ (G, rG), x → x

is a solution homomorphism, we obtain that for all x, y ∈ X, considered as
generators of G,

γ(γ(x)y) = γ(y).
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In particular, as X generates the multiplicative group (G, ◦), it follows that

γ(γ(g)y) = γ(y).

for all g ∈ G. For a word

w = 1x1 + · · ·+ nxn

with xi ∈ X and i ∈ {−1, 1}, we claim that

γ(w) = γ(x1)
1 . . . γ(xn)

n .

As also (G,+) is generated by X, this would prove that

γ : (G,+) → Aut(G,+)

is a group homomorphism, and therefore G is a homomorphic brace. We prove
this claim by induction on n. For n = 1 and 1 = 1 the statement is trivial. To
also cover the case where n = 1 and 1 = −1, we have to prove that γ(−x) =
γ(x)−1 for all x ∈ X. For this, writing a = −x, we note

γ(−x)−1 = γ(a)−1 = γ(a−1) = γ

γ(a−1)(−a)


= γ


γ(a−1)(x)


= γ(x).

Now assume that the statement holds for words of length n− 1, and let

w = 1x1 + · · ·+ nxn.

If we write v = 1x1 + · · ·+ n−1xn−1, then

γ(w) = γ(v + nxn) = γ(v ◦ γ(v−1)(nxn)) = γ(v)γ(γ(v
−1)(nxn))

= γ(x1)
1 · · · γ(xn−1)

n−1γ(γ(v
−1)xn)

n

= γ(x1)
1 · · · γ(xn)

n .

Corollary 2.2.29. Let (X, r) be a solution.

• If σσx(y) = σy for all x, y ∈ X, then G(X, r) is homomorphic.

• If σσ̂x(y) = σy for all x, y ∈ X, then G(X, r) is a bi-skew brace

Proof. Apply Theorem 2.2.28 to the injective solution (ι(X), r).

2.3 Skew braces with cyclic infinite multiplica-
tive group

The main goal of this section, which is based on [ST23a, section 4], is to give a
solution to [Ven19, Problem 2.27].
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Notation 2.3.1. For all n, we denote by Zn the direct product of n copies of the
additive group of integers Z, the free abelian group of rank n, and by Z/nZ (or
by Cn) the cyclic group of order n.

Problem 2.3.2. Classify isomorphism classes of skew left braces with multi-
plicative group isomorphic to Z.

While this section concerns infinite skew braces, and thus is not directly
connected to Hopf–Galois structures, it still finds its place after the previous
section, as the resolution of the problem depends on the fact that a suitable
skew brace is a bi-skew brace.

First, when the skew braces in questions are of abelian type, the result is
known by [CSV19, Theorem 5.5].

Theorem 2.3.3. Let A be a skew brace of abelian type with multiplicative group
isomorphic to Z. Then A is a trivial skew brace.

Actually, we can see how this result is part of a more general behaviour. The
next result is [ST23a, Proposition 4.2].

Theorem 2.3.4. Let A be a skew brace of abelian type with multiplicative group
isomorphic to Zn. Then also the additive group of A is isomorphic to Zn, and
A is right nilpotent of class at most n.

Proof. Note that A is also a radical ring, whose multiplication is the star opera-
tion. In particular, as (A, ◦) is finitely generated abelian, we can apply [Wat68,
Theorem 3], that in this setting states that also the abelian group (A,+) is
finitely generated. This forces the ranks of (A,+) and (A, ◦) to coincide, as
showed in [AD95a, Theorem B]. We deduce that (A,+) is finitely generated
abelian of rank n. Let T be the (necessarily finite) torsion subgroup of (A,+).
As T is a characteristic subgroup of (A,+), it is a left ideal of A, so also a finite
subgroup of (A, ◦), and thus T is trivial. It follows that (A,+) ∼= Zn.

Now for a prime p, let Ip ∼= (pZ)n be the characteristic subgroup of (A,+)
generated by all the p-powers of the elements of A, also an ideal of A. Then
A/Ip has order pn, and therefore A/Ip is left nilpotent of class at most n (as
in Example 2.1.35). But A/Ip is a two-sided skew brace of abelian type, so the
star operation, being the multiplication of a ring, is associative. We derive that
A/Ip is also right nilpotent of class at most n, or equivalently, that A(n+1) ⊆ Ip.
We conclude that

A(n+1) ⊆


p prime

Ip = 0.

Note that Theorem 2.3.3 is a consequence of Theorem 2.3.4, applied with
n = 1, and that we can also derive the following result.

Corollary 2.3.5. Let A be a skew brace of abelian type with multiplicative group
isomorphic to Z2. Then A is a homomorphic bi-skew brace.
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Proof. It follows from Theorem 2.3.4 that A is right nilpotent of class at most
two, that is, A is homomorphic by Theorem 2.2.2. As (A, ◦) is abelian, we find
that A is also a bi-skew brace by Lemma 2.2.9.

We go back to the motivating problem, by considering some skew braces
with additive group cyclic infinite. We take the additive group (Z,+), and we
define

n ◦m = n+ (−1)nm.

Note that (Z, ◦) is isomorphic to the infinite dihedral group

〈x, y | y2 = 1, yxy = x−1〉 ∼= Z⋊ Z2,

and as shown in the proof of [Rum07b, Proposition 6], the following result holds.

Proposition 2.3.6. The operation ◦ is the unique one on Z such that (Z,+, ◦)
is a nontrivial skew brace.

A direct computation shows that that (Z,+, ◦) is a (homomorphic) bi-skew
brace, so also (Z, ◦,+) is a skew brace. Moreover, the two group automorphisms
of (Z,+), the identity and the inversion f : a → −a, are easily seen to be also
automorphisms of (Z, ◦), and thus of the skew brace (Z, ◦,+).

Lemma 2.3.7. The skew braces (Z, ◦,+) and (Z, ◦op,+) are not isomorphic.

Proof. A skew brace isomorphism (Z, ◦,+) → (Z, ◦op,+) should also be an iso-
morphism of (Z,+). As (Z, ◦) is not abelian, the only candidate is the inversion
f . But in this case, f would be both a group homomorphism and antihomo-
morphism of (Z, ◦), implying again that (Z, ◦) is abelian.

In this way, we have obtained three nonisomorphic skew braces with multi-
plicative group (Z,+). In the remainder of this section, we prove that we have
already found them all. In order to do this, we need two useful results. The
first is a technical lemma.

Lemma 2.3.8. Let A be a skew brace with abelian multiplicative group. Then
X ∗ Y = Y ∗op X for all X,Y ⊆ A.

Proof. It suffices to note that for all a, b ∈ A,

a ∗ b = −a+ (a ◦ b) +−b = −a+ (b ◦ a) +−b = b ∗op a.

The second is [Nas19, Lemma 4.5], stated with a slightly more strict assump-
tions.

Lemma 2.3.9. Let A be a skew brace with abelian multiplicative group. Then
(A2,+) is abelian.
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Theorem 2.3.10. Let A be a skew brace such that (A, ◦) is an infinite cyclic
group, with generator x ∈ A. Then the additive operation of A is given by one
of the following:

xn + xm = xn+m = xn ◦ xm, (2.1)

xn + xm = xn+(−1)nm, (2.2)

xn + xm = xm+(−1)mn. (2.3)

In particular, there are exactly three isomorphism classes of skew braces with
multiplicative group isomorphic to Z.

Proof. If A is of abelian type, then Theorem 2.3.3 implies that A is trivial, so
the additive operation is given by (2.1).

From now on, we assume that (A,+) is not abelian. We claim that one of
A and Aop is a bi-skew brace. If this is the case, then one of (A, ◦,+) and
(A, ◦,+op) is a nontrivial skew brace of infinite cyclic type, and by Proposi-
tion 2.3.6, this implies that the operation of (A,+) is given by (2.2) or (2.3).

We prove now the claim. As A is nontrivial, A2 ∕= 0. On the other side, as
A is a two-sided skew brace, we can apply Lemma 2.3.9 to deduce that (A2,+)
is abelian, and thus A2 ∕= A. This means that A2 is necessarily a trivial skew
brace by Theorem 2.3.3. We also note that A/A2 is a finite trivial skew brace
of cyclic type, so that both its additive and multiplicative groups are generated
by the class of x.

To show that one of A and Aop is a bi-skew brace, it is sufficient by Lemma
2.2.9 to check that that A or Aop is homomorphic, which by Theorem 2.2.2 and
Lemma 2.3.8 reduces to show that A∗opA2 = 0 or A∗A2 = 0. Given a generator
x of (A, ◦), the map γ(x) restricts to an automorphism of (A2,+), which is an
infinite cyclic group. If γ(x) restricts to the identity, then A ∗A2 = 0. Suppose
now that

γ(x)a = −a

for all a ∈ A2. Note that if y is a generator of (A2,+), then x and y generate the
nonabelian group (A,+). In particular, x and y do not commute, and writing
φ for conjugation-by-x restricted to (A2,+), this implies that φ is the inversion
map. We conclude that

γop(x)a = x+ γ(x)a− x = x− a− x = φ(−a) = a,

which means that A ∗op A2 = 0.

2.4 Inner skew braces

We deal now with a class of skew braces that implicitly has appeared, in some
instances, in the literature, trying to give a more systematic approach to its
analysis. We first give a definition and show how various known skew braces
belong to this class; we also present some properties that easily follow by the
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definition, and that still have to appear. After, we follow the discussion in [CS23]
to give a characterisation of skew braces in this class in cohomological terms, in
order to answer a question that arises from the results in [BG22].

2.4.1 Definition, examples, and some properties

Definition 2.4.1. A skew brace A is inner if γ(a) ∈ Inn(A,+) for all a ∈ A.

Given an inner skew brace A, for all a ∈ A, there exists an element ψ(a) ∈ A
such that γ(a) = ι+(ψ(a)). In particular, we can always find a map ψ : A → A
such that

a ◦ b = a+ ψ(a) + b− ψ(a).

This fact suggests the following notation.

Notation 2.4.2. Given a group (A,+) and a map ψ : A → A, we write

a ◦ψ b = a+ ψ(a) + b− ψ(a).

for all a, b ∈ A. In particular, every time we consider an inner skew brace A,
there exists a suitable map ψ : A → A such that ◦ = ◦ψ. Note that two maps
ψ,φ : A → A satisfy ◦ψ = ◦φ if and only if ψ(a)− φ(a) ∈ Z(A,+) for all a ∈ A,
by Theorem 2.1.12.

Many easy and well-known examples of skew braces are inner. Recall that
a Rota–Baxter operator [GLS21] on a group (A,+) is a map B : A → A such
that for all a, b ∈ A,

B(a+B(a) + b−B(a)) = B(a) +B(b).

The following result is [BG22, Proposition 3.1], and it is based on [GLS21,
Proposition 2.13].

Proposition 2.4.3. Let (A,+) be a group, and let B : A → A be a Rota–Baxter
operator on (A,+). Then (A,+, ◦B) is an inner skew brace.

Example 2.4.4. Let (A,+) be a group.

• The trivial map
A → A, a → 0

is a Rota–Baxter operator on (A,+), which yields the trivial skew brace
(A,+,+).

• The inversion map
A → A, a → −a

is a Rota–Baxter operator on (A,+), which yields the almost trivial skew
brace (A,+,+op).

Example 2.4.5. Let (A,+) be a group, and let ψ : (A,+) → (A,+) be a group
homomorphism such that ψ(A) is abelian. Then ψ is a Rota–Baxter operator
on (A,+), and thus (A,+, ◦ψ) is a skew brace; this construction was initially
considered in [Koc21], where it was shown that (A,+, ◦ψ) is also a bi-skew brace.
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Example 2.4.6. Let (A,+) be a group admitting an exact factorisation

A = B + C,

where B and C are subgroups of (A,+). This means that for all a ∈ A, there
exist unique b ∈ B and c ∈ C such that a = b+ c. Define B : A → A by

B(b+ c) = −c.

Then B is a Rota–Baxter operator on (A,+), as mentioned in [GLS21, Lemma
2.6], and hence (A,+, ◦B) is an inner skew brace. Explicitly,

(b+ c) ◦B (b′ + c′) = b+ b′ + c′ + c.

This skew brace was introduced in [GV17, Example 1.6], where it was also shown
that (A, ◦B) ∼= B × C.

We show that the skew braces obtained via Rota–Baxter operators are not
necessarily bi-skew braces or homomorphic skew braces.

Lemma 2.4.7. Let (A,+) be a nonabelian simple group admitting an exact
factorisation A = B + C with B ∕= A and C ∕= A. Then there exists an inner
skew brace (A,+, ◦) that is not homomorphic nor a bi-skew brace.

Proof. Consider the skew brace (A,+, ◦B) of Example 2.4.6, with

B(b+ c) = −c.

As Z(A,+) = 0, the skew brace (A,+, ◦B) is homomorphic (a bi-skew brace,
respectively) if and only if B : (A,+) → (A,+) is a group homomorphism (an-
tihomomorphism, respectively). Suppose that B is a group homomorphism.
Then for all b ∈ B and c ∈ C, given c+ b = b′ + c′ ∈ B + C, we have

B(c+ b) = B(b′ + c′) = −c′

and
B(c) +B(b) = −c.

We find that c′ = c, that is, c+ b− c = b′ ∈ B. But as (A,+) is simple, we find
a contradiction.

The case in which B is a group antihomomorphism is similar.

Example 2.4.8. The alternating group A5 is simple and admits an exact fac-
torisation via the alternating subgroup 〈(123), (12)(34)〉 ∼= A4 and the cyclic
〈(12345)〉 ∼= C5. The previous lemma yields an inner skew brace A with
(A,+) ∼= A5 and (A, ◦) ∼= A4 × C5 that is not a homomorphic skew brace
nor a bi-skew brace.

Remark 2.4.9. In the literature, particular attention has been devoted to skew
braces of abelian type. We remark that studying inner skew braces, we are in
some sense considering the opposite situation, as an inner brace of abelian type
group is necessarily trivial. More generally, an inner skew brace A with ◦ = ◦ψ
is trivial if and only if ψ(A) ⊆ Z(A,+).
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Let A be an inner skew brace. The fact that there exists ψ : A → A such
that γ(a) = ι+(ψ(a)) for all a ∈ A has some consequences on the structure on
A. First, it is clear that every normal subgroup of (A,+) is a strong left ideal
of A. Second, for all a, b ∈ A,

a ∗ b = γ(a)b− b = [ψ(a), b]+.

This implies that [A,A] = [A,A]+ and yields the following results.

Lemma 2.4.10. Let A be an inner skew brace. Then

Ann(A) = Soc(A) = {a ∈ Z(A,+) | ψ(a) ∈ Z(A,+)}.

Proof. Note that

ker γ = {a ∈ A | ψ(a) + b− ψ(a) = b for all b ∈ A}
= {a ∈ A | ψ(a) ∈ Z(A,+)},

and this implies that

Soc(A) = {a ∈ Z(A,+) | ψ(a) ∈ Z(A,+)}.

In addition, if a ∈ Z(A,+) is such that ψ(a) ∈ Z(A,+), then also a ∈ Z(A, ◦).
In particular, we find that

Ann(A) = Soc(A) ∩ Z(A, ◦) = Soc(A).

Proposition 2.4.11. Let A be an inner skew brace of nilpotent type. Then A
is left nilpotent.

Proof. We show, by induction, that An ⊆ Ln, where Ln denotes the nth term
of the lower central series of (A,+). For n = 2,

A2 = A ∗A ⊆ [ψ(A), A]+ ⊆ [A,A]+ = L2.

Suppose now that the result holds for some n ≥ 2. Then

An+1 = A ∗An ⊆ [ψ(A), An]+ ⊆ [A,Ln]+ = Ln+1.

Remark 2.4.12. While (A,+) being nilpotent is a sufficient condition for (A,+, ◦)
to be left nilpotent, we remark that it is not a necessary condition. The easiest
example to consider is a trivial skew brace (A,+,+) with (A,+) not nilpotent.

As homomorphic skew braces and left nilpotent bi-skew braces are always
right nilpotent (by Remark 2.2.3 and Corollary 2.2.15), we immediately derive
the following result, which is an easy consequence of Theorem 2.1.44.

Corollary 2.4.13. Let A be an inner skew brace that is homomorphic or a
bi-skew brace. Then the following are equivalent:

• A is nilpotent.
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• A is of nilpotent type.

Proof. If A is nilpotent, then (A,+) is nilpotent by Theorem 2.1.44.
Conversely, suppose that (A,+) is nilpotent. Then A is left nilpotent by

Proposition 2.4.11, and thus A is also right nilpotent by Corollary 2.2.15 in
the bi-skew brace case (or by Theorem 2.2.2 in the case of homomorphic skew
braces). We conclude that A is nilpotent again by Theorem 2.1.44

Remark 2.4.14. In section 2.5, we propose various constructions of inner skew
braces (A,+, ◦) that are both homomorphic and bi-skew braces, starting from
a group (A,+). In particular, every time we start from a nilpotent group, we
always obtain nilpotent skew braces from these constructions.

2.4.2 A cohomological characterisation

As mentioned in Proposition 2.4.3, every Rota–Baxter operator yields an inner
skew brace. We address here the question whether the converse holds.

Definition 2.4.15. An inner skew brace A is Rota–Baxter if there exists a
Rota–Baxter operator B on (A,+) such that ◦ = ◦B.

Question 2.4.16. Is every inner skew brace a Rota–Baxter skew brace?

We give an answer to this question by giving a cohomological characterisation
of inner skew braces, following the discussion of [CS23].

Consider an inner skew brace A, so that

γ : A → Inn(A,+), a → ι+(ψ(a)).

for some ψ : A → A. As for all a, b ∈ A,

γ(a ◦ b) = γ(a)γ(b),

we derive that

ψ(a+ ψ(a) + b− ψ(a)) ≡ ψ(a ◦ b) ≡ ψ(a)ψ(b) (mod Z(A,+)).

An easy situation occurs when Z(A,+) = 0. In this case, we find

ψ(a+ ψ(a) + b− ψ(a)) = ψ(a ◦ b) = ψ(a)ψ(b),

which means that ψ is a Rota–Baxter operator; see [BG22, Proposition 3.13].
In order to approach the problem in its generality, we need to recall certain

group-theoretic constructions, following for example [Wei69, Chapter V].
First, take a group G and an abelian group M . Recall that a map

κ : G×G → M

is a 2-cocycle (for the trivial action of G on M) if for all a, b, c ∈ G,

κ(a, bc) + κ(b, c) = κ(ab, c) + κ(a, b),
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and a 2-coboundary is a map of the form

δ(σ) : G×G → M, (a, b) → σ(a) + σ(b)− σ(ab),

where σ : G → M is a map. Every 2-coboundary is a 2-cocycle, and we can
define the second cohomology group as

H2(G,M) =
{2-cocycles G×G → M}

{2-coboundaries G×G → M} .

If κ is a 2-cocycle, then we can endow the set M ×G with a group structure:

(m, g)(m′, g′) = (m+m+ κ(g, g′), gg′).

We denote the group we obtain by M ×κ G. It sits in a short exact sequence

0 → M
ι−→ M ×k G

π−→ G → 0,

of groups, where ι(m) = (m− κ(1, 1), 1) and π(m, g) = g.

Theorem 2.4.17. Let A be an inner skew brace, let ψ : A → A such that
γ(a) = ι+(ψ(a)) for all a ∈ A, and define

κ(a, b) = ψ(a) + ψ(b)− ψ(a ◦ b) ∈ Z(A,+)

for all a, b ∈ A. Then the following hold:

• The map κ : (A, ◦) × (A, ◦) → Z(A,+) is a 2-cocycle, whose class in
H2((A, ◦), Z(A,+)) does not depend on the choice of ψ.

• The following are equivalent:

– A is a Rota–Baxter skew brace.

– The class of κ in H2((A, ◦), Z(A,+)) is trivial.

– The short exact sequence

0 → Z(A,+) → Z(A,+)×κ (A, ◦) → (A, ◦) → 0

splits.

If this is the case, and thus κ = δ(σ) is a 2-coboundary, then a Rota–
Baxter operator B on (A,+) such that ◦ = ◦B is given by

B(a) = ψ(a)− σ(a).

Proof. First, we remark that κ(a, b) ∈ Z(A,+), as

ψ(a ◦ b) ≡ ψ(a)ψ(b) (mod Z(A,+)).

Expanding the equality

ψ((a ◦ b) ◦ c) = ψ(a ◦ (b ◦ c))
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one finds that κ is a 2-cocycle. More explicitly,

ψ((a ◦ b) ◦ c) = −κ(a ◦ b, c) + ψ(a ◦ b) + ψ(c)

= −κ(a ◦ b, c)− κ(a, b) + ψ(a) + ψ(b) + ψ(c)

and

ψ(a ◦ (b ◦ c)) = −κ(a, b ◦ c) + ψ(a) + ψ(b ◦ c)
= −κ(a, b ◦ c) + ψ(a)− κ(b, c) + ψ(b) + ψ(c),

and as the values of κ are central, the claim follows.
If ψ′ : A → A is another map such that ι(ψ′(a)) = γ(a), then

σ(a) = ψ′(a)− ψ(a) ∈ Z(A,+),

and we find that

κ′(a, b) = ψ′(a) + ψ′(b)− ψ′(a ◦ b) = ψ(a) + ψ(b)− ψ(a ◦ b) + δ(σ)(a, b)

= κ(a, b) + δ(σ)(a, b),

which means that κ and κ′ are in the same class.
Now suppose that A is a Rota–Baxter skew brace. This means that there

exists B : A → A such that, for all a, b ∈ A,

B(a) ≡ ψ(a) (mod Z(A,+))

and
B(a ◦ b) = B(a) +B(b).

The first condition implies that the 2-cocycle k′ attached to B is in the same
class of κ, while the second that this class is trivial.

Conversely, suppose that the class of κ is trivial. Then κ = δ(σ) for some
σ : A → Z(A,+). This means that

σ(a) + σ(b)− σ(a ◦ b) = κ(a, b) = ψ(a) + ψ(b)− ψ(a ◦ b),

and we obtain that
B : A → A, a → ψ(a)− σ(a)

is a Rota–Baxter operator on (A,+) such that ◦ = ◦B.
Finally, the fact that the class of κ is trivial if and only if the short exact

sequence
0 → Z(A,+) → Z(A,+)×κ (A, ◦) → (A, ◦) → 0

splits is a standard result in group cohomology; see [Wei69, Chapter V].

We can construct here an explicit example of an inner skew brace A that is
not a Rota–Baxter skew brace; see [CS23, section 5].
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Example 2.4.18. Let p be an odd prime, and let G be the Heisenberg group
of order p3:

G = 〈u, v, k : up, vp, kp, [u, v]k−1, [u, k], [v, k]〉.
Every element of G can be written uniquely as

uivjkq,

with 0 ≤ i, j, q < p.
Let (A,+) = E × G, where E = 〈x, y〉 is an elementary abelian group of

order p2, so that A has order p5. Write Z = Z(A,+) = E × 〈k〉. Consider the
map

ψ : A → A, (xiyj , g) → (1, uivj).

As (A,+)/Z is an elementary abelian group of order p2 generated by the classes
of (1, u) and (1, v), we derive that the composition

(A,+)
ψ−→ A → (A,+)/Z,

is a group homomorphism with abelian image. Thus we can apply Proposi-
tion 2.5.12 below to obtain an inner skew brace (A,+, ◦ψ)

We now compute the class of the 2-cocycle κ associated with this skew brace.
For all 0 ≤ i, j,m, n < p and g, t ∈ G, there exists a ∈ G such that

ψ((xiyj , g) + ψ(xiyj , g) + (xmyn, t)− ψ(xiyj , g)) = ψ(xi+myj+n, a)

= (1, ui+mvj+n).

On the other hand,

ψ(xiyj , g) + ψ(xmyn, t) = (1, uivj) + (1, umvn)

= (1, ui+mvj [v−j , u−m]vn)

= (1, ui+mvj+nk−jm).

So the relevant 2-cocycle here is

κ(xiyjg, xmynt) = (1, k−jm),

with image in 〈k〉 ⊆ Z.
We claim that the class of κ in H2((A, ◦ψ), Z) is nontrivial. This would yield

that A is not a Rota–Baxter skew brace. So let V = Z ×κ (A, ◦ψ), and consider
the central extension

0 → Z
ι−→ V → (A, ◦ψ) → 0 (2.4)

associated with the cocycle κ; here ι(e, kq) = ((e, kq), 0A). Write x̃ = (x, 1) and
ỹ = (y, 1) in A. In V the following hold:

[(0Z , x̃), (0Z , ỹ)] = (0Z , x̃)(0Z , ỹ)((0Z , ỹ)(0Z , x̃))
−1

= (0Z , x̃ỹ)(κ(x̃, ỹ), 0A)((κ(ỹ, x̃), 0A)(0Z , ỹx̃))
−1

= (0Z , x̃ỹ)(0Z , ỹx̃)
−1(κ(ỹ, x̃), 0A)

−1

= (−κ(ỹ, x̃), 0A) = ((1, k), 0A),
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so that ι(1× 〈k〉) is contained in the derived subgroup [V, V ] of V .
Assume by way of contradiction that the sequence (2.4) splits, and let C be

a complement to ι(Z) in V , so that V = ι(Z)C. Then V contains the maximal
subgroup ι(E × 1)C, which needs to contain [V, V ], being a maximal subgroup
in the p-group V . But this is a contradiction, as [V, V ] contains ι(1×〈k〉), which
is not contained in ι(E × 1)C.

This shows that (2.4) does not split, so that (A,+, ◦ψ) is not a Rota–Baxter
skew brace by Theorem 2.4.17.

Remark 2.4.19. Another instance of this behaviour was presented in [CS23,
section 6], where it was also showed in an explicit example how to reconstruct
the Rota–Baxter operator, in the case of a Rota–Baxter skew brace.

2.5 Constructions and examples

This section is devoted to the construction of explicit examples of skew braces
of the form (A,+, ◦), starting from a group (A,+). If the skew brace is also a
bi-skew brace, this gives an immediate construction of a Hopf–Galois structure
on a Galois extension with Galois group isomorphic to (A,+), as we discuss
in the next chapter. The presentation in this section summarises some of the
results of the papers [CS21, CS22, ST23a].

2.5.1 Some characterisations via gamma functions

In principle, given a group (A,+), one should construct a new operation ◦ on A,
then check if this is a group operation and whether the skew brace axiom holds.
But as already mentioned above, there is an alternative route, using gamma
functions. As a consequence of Theorem 2.1.12, we can provide some charac-
terisations of certain classes of skew braces, widely used (usually in an inplicit
way) to produce the constructions of skew braces in [CS21, CS22, ST23a]. First,
we consider homomorphic skew braces, looking at actions of a group on itself.

Proposition 2.5.1. Let (A,+) be a group. Then there exists a bijective corre-
spondence between

• the group homomorphisms γ : (A,+) → Aut(A,+) such that for all a, b ∈
A,

γ(γ(a)b) = γ(b);

• the operations ◦ such that (A,+, ◦) is a homomorphic skew brace.

Specifically, such a function γ corresponds to the operation ◦ given by a ◦ b =
a+ γ(a)b.

Proof. By Theorem 2.1.12, the operations ◦ such that (A,+, ◦) is a skew brace
correspond bijectively to the functions

γ : A → Aut(A,+)

59



such that for all a, b ∈ A,

γ(a+ γ(a)b) = γ(a)γ(b),

which reduces to
γ(γ(a)b) = γ(b);

when γ : (A,+) → Aut(A,+) is a group homomorphism. As by definition
(A,+, ◦) is a homomorphic skew brace if and only if γ : (A,+) → Aut(A,+)
is a group homomorphism, the assertion follows.

For bi-skew braces it is just a slight variation.

Proposition 2.5.2. Let (A,+) be a group. Then there exists a bijective corre-
spondence between

• the group antihomomorphisms γ : (A,+) → Aut(A,+) such that for all
a, b ∈ A,

γ(γ(a)b) = γ(a)γ(b)γ(a)−1

• the operations ◦ such that (A,+, ◦) is a bi-skew brace.

Specifically, such a function γ corresponds to the operation ◦ given by a ◦ b =
a+ γ(a)b.

Proof. By Theorem 2.1.12, the operations ◦ such that (A,+, ◦) is a skew brace
correspond bijectively to the functions

γ : A → Aut(A,+)

such that for all a, b ∈ A,

γ(a+ γ(a)b) = γ(a)γ(b),

which reduces to
γ(γ(a)b) = γ(a)γ(b)γ(a)−1

when γ : (A,+) → Aut(A,+) is a group antihomomorphism. As, by Theo-
rem 2.2.6, (A,+, ◦) is a homomorphic skew brace if and only if γ : (A,+) →
Aut(A,+) is a group homomorphism, the assertion follows.

These two results can be easily combined, as follows, via Lemma 2.2.9.

Corollary 2.5.3. Let (A,+) be a group. Then there exists a bijective corre-
spondence between

• the group homomorphisms γ : (A,+) → Aut(A,+) with abelian image such
that for all a, b ∈ A,

γ(γ(a)b) = γ(b);

• the operations ◦ such that (A,+, ◦) is a homomorphic bi-skew brace.
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Specifically, such a function γ corresponds to the operation ◦ given by a ◦ b =
a+ γ(a)b.

Example 2.5.4. Consider the cyclic group (Z/8Z,+) of order 8, and take the
group homomorphism

γ : (Z/8Z,+) → Aut(Z/8Z,+), a → (b → 3ab).

It is clear that the image of γ is abelian. In addition, the fact that

33
a

= 3

in Z/8Z for all a ∈ Z/8Z immediately implies that γ(γ(a)b) = γ(b) for all a, b ∈ A.
We conclude that (Z/8Z,+, ◦) is a homomorphic bi-skew brace, where

a ◦ b = a+ 3ab.

The skew brace (Z/8Z,+, ◦) was considered in [Bac15, Theorem 3.1], where it
was shown that (Z/8Z, ◦) is isomorphic to the quaternion group of order 8.

In a similar way, also the inner skew braces can be characterised. In the
following, given a group (A,+) and a map φ : A → (A,+)/Z(A,+), we write,
with a little abuse of notion,

a ◦φ b = a+ φ(a) + b− φ(a).

Here with φ(a) we mean φ′(a), where φ′ : A → A is a lifting of φ, that is, a map
φ′ : A → A such that φ′(a) + Z(A,+) = φ(a) for all a ∈ A. Note that, despite
the fact that the choice of the lifting is not unique, this operation is well-defined.
Concretely, we are considering

a ◦φ b = a+ γ(a)b,

where γ is given by the composition

γ : A → (A,+)/Z(A,+) → Inn(A,+).

Proposition 2.5.5. Let (A,+) be a group. Then there exists a bijective corre-
spondence between

• the functions φ : A → (A,+)/Z(A,+) such that for all a, b ∈ A,

φ(a+ φ(a) + b− φ(a)) = φ(a) + φ(b).

• the operations ◦ such that (A,+, ◦) is an inner skew brace.

Specifically, such a function γ corresponds to the operation ◦φ.

Proof. This results follows from Theorem 2.1.12 and the group isomorphism

(A,+)/Z(A,+) ∼= Inn(A,+), a → ι+(a).
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As a final result, we obtain inner skew braces that are homomorphic and
bi-skew braces.

Corollary 2.5.6. Let (A,+) be a group. Then there exists a bijective corre-
spondence between

• the group homomorphisms φ : (A,+) → (A,+)/Z(A,+) with abelian im-
age;

• the inner homomorphic bi-skew braces of the form (A,+, ◦).

Specifically, a function φ corresponds to the operation ◦φ.

Proof. This result follows as a combination of Corollary 2.5.3 and Proposi-
tion 2.5.5.

2.5.2 Some explicit constructions

We employ now these results to obtain new examples of skew braces. We begin
with inner skew braces. We fix a group (A,+) with centre Z, and we write
[B,C] for the commutator subgroup of two subsets B and C of A. As always,
if ψ : A → A is a map, then we write

a ◦ψ b = a+ ψ(a) + b− ψ(a).

One can inquiry under what assumptions on ψ we get a (necessarily inner) skew
brace (A,+, ◦ψ). The following result is implicitly contained and widely used
in [CS21, CS23].

Proposition 2.5.7. Let ψ : A → A be a map. Then the following are equivalent:

• (A,+, ◦ψ) is a skew brace.

• For all a, b ∈ A,

ψ(a+ ψ(a) + b− ψ(a)) ≡ ψ(a) + ψ(b) (mod Z).

Proof. Note that (A,+, ◦ψ) is a skew brace if and only if the composition

φ : A
ψ−→ A → A/Z

satisfies the property stated in Proposition 2.5.5, which translate exactly in the
desired equation.

This result suggests how the defining property of Rota–Baxter operators
interacts so nicely with skew braces. We can immediately derive again Propo-
sition 2.4.3.

Corollary 2.5.8. Let B be a Rota–Baxter operator on (A,+). Then (A,+, ◦B)
is a skew brace.
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Proof. We can readily apply the previous proposition to B, as

B(a+B(a) + b−B(a)) = B(a) +B(b)

for all a, b ∈ A by definition.

The situation is particularly simplified when the map ψ : (A,+) → (A,+) is
a group homomorphism. The next result is [CS21, Theorem 1.2] and generalises
the construction in [Koc21].

Theorem 2.5.9. Let ψ : (A,+) → (A,+) be a group homomorphism.

• The following are equivalent:

– (A,+, ◦ψ) is a skew brace.

– ψ[ψ(A), A] ⊆ Z.

If this is the case, then (A,+, ◦ψ) is homomorphic.

• The following are equivalent:

– (A,+, ◦ψ) is a bi-skew brace.

– ψ[A,A] ⊆ Z.

If this is the case, then (A,+, ◦ψ) is homomorphic.

Proof. By Proposition 2.5.7, to check the first equivalence we need to check
whether for all a, b ∈ A,

ψ(a+ ψ(a) + b− ψ(a)) ≡ ψ(a) + ψ(b) (mod Z).

As ψ is a group homomorphism, we can rewrite this as

ψ[ψ(a), b] = ψ(ψ(a)) + ψ(b)− ψ(ψ(a))− ψ(b) ≡ 0 (mod Z)

which gives the desired condition. Note that this skew brace is always homomor-
phic as ψ : (A,+) → (A,+) is a group homomorphism; see Proposition 2.5.1. In
addition, by Proposition 2.5.2, (A,+, ◦ψ) is a bi-skew brace if and only if γ(A)
is abelian, that is,

ψ(a) + ψ(b) ≡ ψ(b) + ψ(a) (mod Z).

From this, the second equivalence immediately follows.

Example 2.5.10. Let ψ : (A,+) → (A,+) be a group homomorphism with
abelian image. By Theorem 2.5.9, we immediately obtain that (A,+, ◦ψ) is
an inner homomorphic bi-skew brace. We have recovered the construction
of [Koc21].

Corollary 2.5.11. Suppose that (A,+) is nilpotent of class two, and consider
a group homomorphism ψ : (A,+) → (A,+). Then (A,+, ◦ψ) is an inner ho-
momorphic bi-skew brace.
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Proof. The result follows by Theorem 2.5.9 as ψ[A,A] ⊆ [A,A] ⊆ Z.

Note that also the condition of ψ being a group homomorphism can be
relaxed; the following result is mentioned in [ST23a, Example 6.12].

Proposition 2.5.12. Let ψ : A → A be a map such that the composition

(A,+)
ψ−→ A → (A,+)/Z

is a group homomorphism with abelian image. Then (A,+, ◦ψ) is a homomor-
phic bi-skew brace.

Proof. The result easily follows applying Corollary 2.5.6 with

φ : A
ψ−→ A → (A,+)/Z.

Corollary 2.5.13. Suppose that (A,+) is nilpotent of class two, and for all
n ≥ 0 define

ψn : A → A, a → na.

Then (A,+, ◦ψn
) is a homomorphic bi-skew brace for all n ≥ 0

Proof. The result follows by Proposition 2.5.12, as (A,+)/Z is abelian and

(A,+) → (A,+)/Z, a → na

is a group homomorphism.

We remark that not all homomorphic inner skew braces can be obtained by
the construction of Theorem 2.5.9, as [CS21, Example 5.4] shows. We present
here a simplified version of this example, which we have also considered in
relation to Rota–Baxter operators in the previous section.

Example 2.5.14. Let p be an odd prime, and suppose that (A,+) = E × G,
where E = 〈x, y〉 is an elementary abelian group of order p2 and G = 〈u, v, k〉
is the the Heisenberg group of order p3. If we take the map

ψ : A → A, (xiyj , g), → (1, uivj)

then (A,+, ◦ψ) is an inner skew brace, as in Example 2.4.18.
Now suppose that there exists a group homomorphism ϕ : (A,+) → (A,+)

such that ◦ψ = ◦ϕ. This implies, for all h ∈ A,

(x, 1) + ψ(x, 1) + h− ψ(x, 1) = (x, 1) + ϕ(x, 1) + h− ϕ(x, 1).

As ψ(x, 1) = (1, u) and (A,+) is nilpotent of class 2, we derive

0 = [(1, u)− ϕ(x, 1), h],

that this,
(1, u)− ϕ(x, 1) = z1 ∈ Z(A,+).

64



Similarly, one deduces that

(1, v)− ϕ(y, 1) = z2 ∈ Z(A,+).

The contradiction follows from this equality:

0 = ϕ[(x, 1), (y, 1)] = [ϕ(x, 1),ϕ(y, 1)] = [(1, u)− z1, (1, v)− z2]

= [(1, u), (1, v)] ∕= 0.

Note that the same reasoning shows that ϕ is also not a group antihomomor-
phism.

So far, we have focused our attention on inner skew braces. This means that
these constructions just yield trivial skew braces if we start from abelian groups.
We now consider a different construction, involving bilinear maps, that can also
be applied with abelian groups. These result are inspired by [CS22], but with
some slight differences.

Let us denote by B the set of bilinear maps

β : (A,+)× (A,+) → Z

such that for all a, b, c ∈ A,

β(β(a, b), c) = β(a,β(b, c)) = 0.

For all β ∈ B, define
a ◦β b = a+ b+ β(a, b).

Theorem 2.5.15. Let β ∈ B. Then (A,+, ◦β) is a homomorphic bi-skew brace.

Proof. We prove the result via Corollary 2.5.3. For all a ∈ A, consider

γ(a) : b → b+ β(a, b).

We begin by checking that γ(a) is a bijection: for all b ∈ B, note that

γ(a)(b− β(a, b)) = b− β(a, b) + β(a, b)− β(a,β(a, b)) = b,

and if γ(a)b = γ(a)c, then

c− b = β(a, b)− β(a, c) = −β(a, c− b),

which substituting for c− b in the right-hand side implies that

c− b = β(a,β(a, c− b)) = 0.

We can now show that γ(a) is a homomorphism of (A,+): for all a, b, c ∈ A,

γ(a)(b+ c) = b+ c+ β(a, b+ c) = b+ c+ β(a, b) + β(a, c)

= b+ β(a, b) + c+ β(b, c) = γ(a)b+ γ(a)c.
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Similarly

γ(a)γ(b)c = c+ β(b, c) + β(a, c) + β(a,β(b, c))

= c+ β(a+ b, c) = γ(a+b)c

= c+ β(b+ a, c) = γ(b)γ(a)c

where we have used that

β(a+ b, c) = β(a, c) + β(b, c) = β(b, c) + β(a, c) = β(b+ a, c)

because β takes values in Z. This implies that

γ : (A,+) → Aut(A,+)

is a group homomorphism with abelian image. To conclude by Corollary 2.5.3,
we note that for all a, b, c ∈ A,

γ(γ(a)b)c = γ(b+β(a,b))c = c+ β(b, c) + β(β(a, b), c) = c+ β(b, c) = γ(b)c.

Example 2.5.16. Suppose that (A,+) is the additive group of a ring of char-
acteristic pn, with p prime and n even. For all r ∈ A, consider

βr : A×A → A, βr(a, b) = rpn/2ab.

It is just a matter of computation to check that β ∈ B. We find in this way a
skew brace (A,+, ◦βr ), where explicitly

a ◦βr b = a+ b+ rpn/2ab.

We can apply this when (A,+) is the cyclic group Z/p2Z of order p2, where
p is a prime. For r = 0, we clearly obtain the trivial skew brace; for r =
1, . . . , p − 1, instead, we obtain p − 1 isomorphic skew braces. Indeed, a skew
brace isomorphism

(Z/p2Z,+, ◦β1) → (Z/p2Z,+, ◦βr )

is given by
a → r−1a.

Compare this with [Bac15, Proposition 2.4].

Example 2.5.17. Suppose that (A,+) is the additive group of a ring with
unity, and for all r ∈ A, define the following function:

β : (A×A)× (A×A) → (A×A), ((a, b), (x, y)) → (0, rax).

It is just a matter of computation to check that β ∈ B, so that by Theo-
rem 2.5.15, we find a skew brace (A×A,+, ◦βr ), where explicitly

(a, b) ◦βr
(x, y) = (a+ x, b+ y + rax).
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We can apply this when (A,+) is the cyclic group Z/pZ of order p, where
p is a prime. For r = 0, we clearly obtain the trivial skew brace; for r =
1, . . . , p − 1, instead, we obtain p − 1 isomorphic skew braces. Indeed, a skew
brace isomorphism

(Z/pZ2,+, ◦β1) → (Z/pZ2,+, ◦βr )

is given by
(a, b) → (a, rb).

Compare this again with [Bac15, Proposition 2.4].

The previous example suggests the next one, that can be obtained following
the lines of the proof of Theorem 2.5.15.

Example 2.5.18. Let p be a prime, let 0 ≤ m ≤ n be integers, and consider
the ring

R = Z/pnZ× Z/pmZ

Define
β : R×R → R, β((a, b), (x, y)) = (0, ax).

Note that this is well-defined, as n ≥ m. The fact that (R,+, ◦β) is a homo-
morphic bi-skew brace follows exactly as in the proof of Theorem 2.5.15.

We conclude by mentioning how the constructions related to inner skew
braces and bilinear maps can be combined, giving a slight generalisation of the
main construction of [CS22]. Given a map ψ : A → A and a bilinear map β ∈ B,
we define

a ◦ψ,β b = a+ ψ(a) + b− ψ(a) + β(a, b).

We are interested on skew braces of the form (A,+, ◦ψ,β).

Proposition 2.5.19. Let ψ : A → A be a map such that the composition

(A,+)
ψ−→ A → A/Z is a group homomorphism with abelian image, and let

β ∈ B such that for all a, b ∈ A

ψ(β(a, b)) ∈ Z.

Then (A,+, ◦ψ,β) is a homomorphic bi-skew brace.

Proof. We prove the result via Corollary 2.5.3. For all a ∈ A, write

γ(a) = ι(ψ(a))α(a),

where
α(a) : b → b+ β(a, b).

By Proposition 2.5.12 and Theorem 2.5.15, we find that γ(a) ∈ Aut(A,+) for
all a ∈ A. In addition, an easy check shows that ι(ψ(a)) and α(b) commute in
Aut(A,+) for all a, b ∈ A, and this implies that γ is a group homomorphism
from both (A, ◦) and (A,+) to Aut(A,+) with abelian image.
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To conclude, we need a final verification. Note that for all a, b ∈ A,

ι(ψ(γ(a)b)) = ι(ψ(ψ(a) + b+ β(a, b)− ψ(a))) = ι(ψ(b))

by assumptions on ψ and on β. Similarly,

α(γ(a)b) = α(b)

by an easy application of the properties of α (and β). We conclude that
(A,+, ◦ψ,β) is a homomorphic skew brace.

Example 2.5.20. Suppose that (A,+) is nilpotent of class two, and consider
group homomorphisms ψ,φ : (A,+) → (A,+). Define

β : A×A → A, (a, b) = [φ(a),φ(b)].

Clearly β(a, b) ∈ [A,A] ⊆ Z. The fact that β ∈ B follows by the observations
that

β(β(a, b), c)) = [ψ[ψ(a),ψ(b)],ψ(c)] = 0,

as ψ[ψ(a),ψ(b)] ∈ Z, and similarly for the other way around. Then (A,+, ◦ψ,β)
is a homomorphic bi-skew brace by Proposition 2.5.19, as for all a, b ∈ A,

ψ[ϕ(a),ϕ(b)] ∈ [A,A] ⊆ Z.
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Chapter 3

Connecting Hopf–Galois
Structures and Skew Braces

In this final chapter, we deal with the connection between Hopf–Galois struc-
tures and skew braces. After having recalled some known facts and the previ-
ous connection, we introduce a new version, with the goal to make it bijective,
explicit, and more structural. As applications, we derive some of the main the-
orems in Hopf–Galois theory from this new perspective; we describe the Hopf
algebras appearing in terms of skew braces, finding an interpretation of standard
notions and substructures of them; and we discuss the Hopf–Galois correspon-
dence, finding new classes of examples for which it is bijective. We conclude
the chapter with a “take-home” theorem, in which we summarise the results
developed in a general way. The result of these sections are taken from [ST23b],
with some slight generalisations or additions.

3.1 The previous connection

The previous connection between Hopf–Galois structures and skew braces, ini-
tially hinted by Bachiller [Bac16] and then made precise by Byott and Ven-
dramin in the appendix of [SV18], is due to the connections of both topics
with regular subgroups of the holomorph. We begin by recalling a standard
group-theoretic construction: if M is a group, X is a set, and there exists a
bijection

θ : M → X,

then we can obtain, via transport of structure, a group structure on X as follows:

xy = θ(θ−1(x)θ−1(y)).

As a consequence, the map θ is now also a group isomorphism.
Transport of structure appears in the connection between regular subgroups

and skew braces. The next result is [GV17, Theorem 4.2], but with a slight

69



variation; indeed, to simplify the computation in the following, we assume di-
rectly the holomorph to sit inside a permutation group, rather than being an
abstract group (see also [CS21, section 7]). In what follows, we continue to
adopt the same notation of the previous chapter, highlighting explicitly the
group operation where there is risk of confusion.

Theorem 3.1.1. Let (A,+) be a group. Then there exists a bijective correspon-
dence between

• the operations ◦ such that (A,+, ◦) is a skew brace;

• the regular subgroups of Hol(A,+).

Specifically, an operation ◦ such that (A,+, ◦) is a skew brace corresponds to
the regular subgroup λ◦(A) of Hol(A,+). Conversely, a regular subgroup M of
Hol(A,+) corresponds to the operation ◦ on A obtained by the bijection

θ : M → A, µ → µ[0A],

via transport of structure; in addition, the equality M = λ◦(A) holds.

We can now connect skew braces with Hopf–Galois structures, following the
discussion the appendix of [SV18].

Let L/K be a finite Galois extension with Galois group G, and consider a
Hopf–Galois structure on L/K, corresponding to a regular subgroup (N,+) of
Perm(G) normalised by λ(G) by the Greither–Pareigis theorem. The natural
inclusion of N in Perm(G) is regular embedding

α : N → Perm(G),

and as we have the bijection

α∗ : N → G, η → η[1G],

we obtain via Byott’s translation a regular embedding

β : G → Hol(N,+), σ → α−1
∗ λ(σ)α∗.

In particular, the image β(G) of β is a regular subgroup of Hol(N,+), which
yields by Theorem 3.1.1 an operation ◦ such that (N,+, ◦) is a skew brace. To
make this more explicit, we need to specify the map

θ : β(G) → N, β(σ) → β(σ)[0N ].

By the definition of α∗, it follows that

β(σ)[0N ] = (α−1
∗ λ(σ)α∗)[0N ] = α−1

∗ (σ),

so the inverse of θ is exactly βα∗. We conclude that

η ◦ µ = θ(θ−1(η)θ−1(µ)) = α−1
∗ β−1(β(α∗(η)α∗(µ)) = α−1

∗ (α∗(η)α∗(µ)),
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that is, the operation ◦ on N can be obtained directly by transport of structure
via the bijection

α−1
∗ : G → N.

This more direct route is used, for example, in [KT20]. In [NZ19], in a similar
way, the bijection

α∗ : N → G, η → η[1G]

is used to construct directly a group operation + on G such that (G,+, ◦) is a
skew brace, where ◦ denotes the original group operation of the Galois group
G. Clearly, the two procedures give two skew braces that are isomorphic via
the map α∗.

Conversely, let A be a skew brace such that there exists a group isomorphism
ϕ : G → (A, ◦). The composition

G
ϕ−→ (A, ◦) → λ◦(A) → Hol(A,+)

is a regular embedding

β : G → Hol(A,+), σ → λ◦(ϕ(σ))

which yields a Hopf–Galois structure on L/K of type (A,+) by Byott’s trans-
lation. We can explicitly write this in Greither–Pareigis terms, as already men-
tioned for example in [NZ19, Proposition 2.1]. Note indeed that the associated
bijection

β∗ : G → A, σ → β(σ)(0A) = ϕ(σ)

equals ϕ. Therefore, by Byott’s translation, we obtain a regular embedding

α : (A,+) → Perm(G), a → ϕ−1λ+(a)ϕ

such that α(A) is normalised by λ(G). Note that if we transport the structure
of (A,+) on G via the bijection

ϕ−1 : A → G,

we obtain a group (G,+) such that for all a ∈ A and σ ∈ G,

(ϕ−1λ+(a)ϕ)(σ) = ϕ−1(a) + σ,

which means that α(a) = λ+(ϕ
−1(a)), and thus α(A) = λ+(G). We conclude

that if we denote by ◦ the group operation of the Galois group G and we employ
the bijection

ϕ−1 : A → G

to obtain an operation + on G, so that (G,+, ◦) is a skew brace, then the regular
subgroup associated with A via Byott’s translation is exactly λ+(G).

Remark 3.1.2. We underline that the skew brace A (up to isomorphism) can be
used, via this construction, to obtain possibly more than one Hopf–Galois struc-
ture on L/K; this reflects the possibility of changing the choice of ϕ. The precise
number was quantified in [NZ19, Corollary 2.4]; see Corollary 3.3.3 below.
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All the previous discussion, together with the observation that the types of
the skew braces and Hopf–Galois structures considered coincide by construction,
yields the following result.

Theorem 3.1.3. Let N and G be finite groups. Then the following statements
are equivalent:

• There exists a Hopf–Galois structure of type N on every Galois extension
with Galois group G.

• There exists a skew brace A with (A,+) ∼= N and (A, ◦) ∼= G.

The first natural examples already show a peculiar behaviour of this con-
nection.

Example 3.1.4. Let L/K be a finite Galois extension with Galois group G,
and suppose that (N,+) is a regular subgroup of Perm(G) normalised by λ(G).

• Take (N,+) = ρ(G), which corresponds to the classical structure via the
Greither–Pareigis theorem. In this case

α∗ : ρ(G) → G, ρ(σ) = σ−1

so we obtain the almost trivial skew brace (N,+,+op), as

ρ(σ) ◦ ρ(τ) = α−1
∗ (α∗(ρ(σ))α∗(ρ(τ))) = α−1

∗ (σ−1τ−1) = ρ(τ) + ρ(σ).

• Take (N,+) = λ(G), which corresponds to the canonical nonclassical
structure via the Greither–Pareigis theorem. In this case

α∗ : λ(G) → G, λ(σ) = σ

so we obtain the trivial skew brace (N,+,+), as

λ(σ) ◦ λ(τ) = α−1
∗ (α∗(λ(σ))α∗(λ(τ))) = α−1

∗ (στ) = λ(σ) + λ(τ).

With the aim of studying the Hopf–Galois correspondence via skew braces,
Childs [Chi18] introduced a new substructure for skew braces.

Definition 3.1.5. Let A be a skew brace. A subgroup B of (A,+) is ◦-stable
if for all a ∈ A and b ∈ B,

(a ◦ b)− a ∈ B.

The following result is [Chi18, Theorem 4.3] and employs the aforementioned
connection and the definition of ◦-stable subgroups

Theorem 3.1.6. Let A be a skew brace, and let L/K be a finite Galois extension
with Galois group G such that there exists a group isomorphism ϕ : G → (A, ◦).
Consider the Hopf–Galois structure (H, ·) on L/K obtained from this data.
There exists a bijective correspondence between
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• the Hopf subalgebras of H;

• the ◦-stable subgroup of (A,+).

This result was employed to study the Hopf–Galois correspondence ratio
in many examples [Chi18, Chi21], employing the fact that Hopf subalgebras
correspond to intermediate fields via the Hopf–Galois correspondence. One of
the consequences is the following proposition [Chi17, Proposition 4.3], which is
based on a deep result of Kohl [Koh98].

Proposition 3.1.7 (Childs). Let L/K be a finite Galois extension with Galois
group cyclic of odd prime power order. Then all the Hopf–Galois structures on
L/K have a bijective Hopf–Galois correspondence.

Other than this result, which can also be obtained via the Greither–Pareigis
theorem, no new instances of bijective Hopf–Galois correspondences have been
found, as claimed in the introduction of [Chi21]. A possible explanation for
the lack of new examples could be given by the fact that the substrucures of
skew braces studied by Childs, which seem to arise naturally from Hopf–Galois
theory, are not the usual substructures considered in the theory of the skew
braces, namely, left ideals, strong left ideals, and ideals.

In this regard, Koch and Truman introduced the notion of opposite skew
brace [KT20], and observed how given a skew brace A, the ◦-stable subgroups
of (A,+) coincide with the left ideals of Aop. The following result, a slight
reformulation of [KT20, Theorem 5.6], can be obtained via this fact.

Theorem 3.1.8. Let L/K be a finite Galois extension with Galois group G,
and let (H, ·) be a Hopf–Galois structure on L/K, corresponding to a regular
subgroup (N,+) of Perm(G). Consider the skew brace (N,+, ◦) obtained by this
data. Then there exists a bijective correspondence between

• the Hopf subalgebras of H;

• the left ideals of (N,+op, ◦).

This fact, together with the behaviour of the trivial and almost trivial skew
brace, is a key insight about the fact that opposite skew braces may play a
fundamental role in Hopf–Galois theory.

3.2 The new connection

This section contains the main result of the dissertation, which is [ST23b, Theo-
rem 3.1]. In order to prove it, we need to state a proposition which is a variation
of [GV17, Theorem 4.2] in two senses: we consider the right regular representa-
tion instead of the left regular representation, and we fix a multiplicative group
instead of an additive one; see [CS22, section 7].

Proposition 3.2.1. Let (G, ◦) be a group. Then there exists a bijective corre-
spondence between
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• the operations + such that (G,+, ◦) is a skew brace;

• the regular subgroups of Perm(G) normalised by λ◦(G).

Specifically, an operation + such that (G,+, ◦) is a skew brace corresponds to
the regular subgroup ρ+(G) of Perm(G). Conversely, a regular subgroup N of
Perm(G) normalised by λ◦(G) corresponds to the operation + on G obtained by
transport of structure via the bijection

θ : N → G, η → η−1[1G],

and the equality N = ρ+(G) holds.

Proof. Suppose first that + is an operation on (G, ◦) such that (G,+, ◦) is a
skew brace. Clearly ρ+(G) is a regular subgroup of Perm(G) isomorphic to
(G,+). As also (G,+op, ◦) is a skew brace, we get that λ+op

(G) is normalised
by λ◦(G), as seen in Theorem 3.1.1. But as the equality ρ+(G) = λ+op

(G)
holds, we conclude that ρ+(G) is normalised by λ◦(G).

Conversely, if N is a regular subgroup of Perm(G), then the bijection

θ : N → G, η → η−1[1G]

yields, via transport of structure, a group operation + on G. Explicitly, if

ν : G → N

is the inverse of θ, meaning that ν(σ)−1 is the unique element of N that maps
1G to σ, then

σ + τ = θ(ν(σ)ν(τ)) = ν(τ)−1[σ],

meaning N = λ+op(G) = ρ+(G). As N is also normalised by λ◦(G), we obtain
that (G,+op, ◦) is a skew brace by Theorem 3.1.1, and thus also (G,+, ◦) is a
skew brace.

Let now L/K be a finite Galois extension with Galois group (G, ◦), and let +
be an operation such that (G,+, ◦) is a skew brace. Then (G, ◦) acts on (G,+)
via the gamma function of (G,+, ◦). This action extends to a Hopf semilinear
action of G on L[(G,+)], which, by Galois descent, descents to the K-Hopf
algebra

L[(G,+)](G,◦) =




τ∈G

ℓτ τ ∈ L[(G,+)] | σ(ℓτ ) = ℓ(γ(σ)τ) for all σ, τ ∈ G


.

Notation 3.2.2. When there are various operations involved and there is risk of
confusion, in order to lighten the notation, we write the operations appearing
in the descriptions of the Hopf algebras as subscripts. For example, we denote
L[(G,+)](G,◦) simply by L[G+]

G◦ .

Here we give the main result.
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Theorem 3.2.3. Let L/K be a finite Galois extension with Galois group (G, ◦).
Then there exists a bijective correspondence between

• the operations + such that (G,+, ◦) is a skew brace;

• the Hopf–Galois structures on L/K.

Specifically, an operation + such that (G,+, ◦) is a skew brace corresponds to
the Hopf–Galois structure (L[G+]

G◦ , ·), where



τ∈G

ℓτ τ


· x =



τ∈G

ℓτ τ(x).

Proof. The fact that there exists the claimed bijective correspondence is a con-
sequence of Proposition 3.2.1 and the Greither–Pareigis theorem. We just need
to show that the Hopf–Galois structures on L/K can be described in this way,
as per Remark 1.2.4. So take an operation + such that (G,+, ◦) is a skew brace.
Clearly the map

ρ+ : (G,+) → ρ+(G), σ → ρ+(σ)

is a group isomorphism, and we claim that it is also (G, ◦)-equivariant, where
the action of (G, ◦) on (G,+) is given by the gamma function of the skew brace
(G,+, ◦). It is enough to show that for all σ, τ ∈ G,

ρ+(
γ(σ)τ) = λ◦(σ)ρ+(τ)λ◦(σ)

−1.

The claim follows because the left-hand side element is the unique element of
ρ+(G) which sends 1G to

−(γ(σ)τ) = γ(σ)(−τ) = −σ + (σ ◦ (−τ)),

while the right-hand side element is the unique element of ρ+(G) which sends
1G to

σ ◦ (σ−1 − τ) = (σ ◦ σ−1)− σ + (σ ◦ (−τ)) = −σ + (σ ◦ (−τ)).

By Corollary 1.3.13, we derive that

L[G+]
G◦ → L[ρ+(G)]G◦ ,



τ∈G

ℓτ τ →


τ∈G

ℓτρ+(τ)

is a K-Hopf algebra isomorphism. To conclude, we need to find the action of
L[G+]

G◦ on L that respects this isomorphism:




τ∈G

ℓτ τ


· x =




τ∈G

ℓτρ+(τ)


· x =



τ∈G

ℓτ (ρ+(τ)
−1[1G])(x)

=


τ∈G

ℓτ τ(x).

75



Remark 3.2.4. We remark the similarity between the action of the Hopf algebras
appearing in Theorem 3.2.3 and the classical Galois action of the group algebra.

Remark 3.2.5. Given a Hopf–Galois structure on L/K, we can attach to it a
regular subgroup N of Perm(G) normalised by λ◦(G) (by the Greither–Pareigis
theorem) and an operation + such that (G,+, ◦) is a skew brace (by Theo-
rem 3.2.3). The idea behind the proof of Theorem 3.2.3 is that we realise N as
ρ+(G), and not as λ+(G), which would be the standard choice. In particular,
the skew brace (G,+, ◦) we obtain in this way is the opposite of that we would
have obtained via the previous construction.

Remark 3.2.6. Note that by Theorem 3.2.3, the type of a Hopf–Galois structure
on L/K is exactly the isomorphism class of the additive group of the skew brace
corresponding to it. This feature is shared also by the previous version of the
connection, as already mentioned.

We show here some examples; the first two show that the new connection
solves the peculiar behaviour mentioned in Example 3.1.4.

Example 3.2.7. Let L/K be a finite Galois extension with Galois group G,
and consider the trivial skew brace Triv(G). As the gamma function of this
skew brace is given by

γ : G → Aut(G), σ → id,

we find that the equality

H = L[G]G = LG[G] = K[G]

holds. As the action of H on L is given by the Galois action, we find that the
trivial skew brace structure on the Galois group corresponds to the classical
structure.

Example 3.2.8. Let L/K be a finite Galois extension with Galois group (G, ◦),
and consider the almost trivial skew brace (G, ◦op, ◦). Here for all σ, τ ∈ G,

γ(σ)τ = σ ◦ τ ◦ σ−1,

so we find that

H =




τ∈G

ℓτ τ ∈ L[G◦op ] | σ(ℓτ ) = ℓσ◦τ◦σ−1 for all σ, τ ∈ G


.

As ρ◦op(G) = λ◦(G), we derive in this way the canonical nonclassical structure
on L/K. Concretely, the group isomorphism

(G, ◦op) → (G, ◦), σ → σ−1

yields a K-Hopf algebra isomorphism that identifies this Hopf–Galois structure
with that of Example 1.4.7.
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Example 3.2.9. Let L/K be a finite Galois extension with cyclic Galois group
(G, ◦) of order 2n, where n ≥ 3 is odd, so that (G, ◦) ∼= Cn × C2. Write

G = {gitj | i = 1, . . . , n and j = 0, 1},

which means that g has order n and t has order 2, and define

gitj + gatb = gi+(−1)jatj+b,

so that (G,+) ∼= Cn ⋊ C2 is dihedral. By Example 2.2.23 applied with the
action via inversion of C2 on Cn, we obtain that (G, ◦,+) is a bi-skew brace,
and therefore also (G,+, ◦) is a skew brace. As (G, ◦) is cyclic, it is enough to
compute the values of the gamma function of (G,+, ◦) on the generator σ = gt:
for all τ = gatb ∈ G,

γ(σ)τ = −(gt) + (gt ◦ gatb) = gt+ g1+at1+b = g−atb = τ−1.

We conclude that

H =




τ∈G

ℓτ τ ∈ L[G+] | σ(ℓτ ) = ℓτ−1 for all τ ∈ G


.

Example 3.2.10. Let L/K be a finite Galois extension with Galois group
(G, ◦), and consider an operation + such that (G,+, ◦) is an inner skew brace.
Then there exists a map ψ : G → G such that for all σ, τ ∈ G,

γ(σ)τ = ψ(σ) + τ − ψ(σ).

In particular,

H =




τ∈G

ℓτ τ ∈ L[G+] | σ(ℓτ ) = ℓψ(σ)+τ−ψ(σ) for all σ, τ ∈ G


.

Theorem 3.2.3 allows one to obtain bijectively all Hopf–Galois structures on
a Galois extension, via skew braces constructed in a given “environment”: the
underlying set needs to be the Galois group. However, in some cases, it may be
more convenient to work in a more general setting, considering abstract skew
braces.

So let us take a skew brace A. If L/K is a finite Galois extension with Galois
group G such that there exists a group isomorphism ϕ : (A, ◦) → G, then the
pair (A,ϕ) yields an operation +ϕ on G via transport of structure:

σ +ϕ τ = ϕ(ϕ−1(σ) + ϕ−1(τ)).

In particular, denoting by ◦ the group operation of the Galois group G, we
obtain that (G,+ϕ, ◦) is a skew brace, isomorphic to A via ϕ. This skew brace
corresponds to a Hopf–Galois structure on L/K via Theorem 3.2.3. We obtain
in this way that an abstract skew brace A yields a Hopf–Galois structure on
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every Galois extension with Galois group isomorphic to (A, ◦), once a group
isomorphism is chosen. Note that the Hopf–Galois structure (H, ·) obtained by
a pair (A,ϕ) can be described explicitly, due to the skew brace isomorphism
ϕ : A → (G,+ϕ, ◦). If φ denotes the inverse of ϕ and γ denotes the gamma
function of A, then

H =




a∈A

ℓaa ∈ L[A+] | σ(ℓa) = ℓγ(φ(σ))a for all σ ∈ G and a ∈ A



and 


a∈A

ℓaa


· x =



a∈A

ℓaϕ(a)(x).

We define now a relation on the set of such pairs: given (A,ϕ) and (A′,ϕ′),
we say that

(A,ϕ) ∼ (A′,ϕ′)

if for all σ, τ ∈ G,
σ +ϕ τ = σ +ϕ′ τ

that is, if +ϕ = +ϕ′ . It is straightforward to check that it is an equivalence
relation. Note that in this case A and A′ are isomorphic as skew braces, but
the equivalence relation is actually stronger than just isomorphism.

Theorem 3.2.11. Let L/K be a finite Galois extension with Galois group G.
Then there exists a bijective correspondence between

• the equivalence classes of pairs (A,ϕ) under the equivalence relation ∼,
where A is a skew brace and ϕ : (A, ◦) → G is a group isomorphism;

• the Hopf–Galois structures on L/K.

Proof. Denote by ◦ the group operation of G. By Theorem 3.2.3, it is enough
to construct a suitable bijective correspondence between

• the operations + such that (G,+, ◦) is a skew brace;

• the equivalence classes of pairs (A,ϕ) under the equivalence relation ∼,
where A is a skew brace and ϕ : (A, ◦) → G is a group isomorphism.

Given an operation + such that (G,+, ◦) is a skew brace, we simply take A =
(G,+, ◦) and ϕ to be the identity map.

Conversely, given a representative (A,ϕ) of an equivalence class, where A
is a skew brace and ϕ : (A, ◦) → G is a group isomorphism, we just take the
operation + on G obtained via transport of structure by ϕ.

It is just a matter of standard calculations to show that these maps are
well-defined and one the inverse of the each other.
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Example 3.2.12. Let A be a(n almost) trivial skew brace. It is easy to check
that for all finite Galois extensions L/K with Galois group G ∼= (A, ◦) and for
all choices of isomorphism ϕ : (A, ◦) → G, the Hopf–Galois structure on L/K
we obtain is the (canonical non)classical structure.

Remark 3.2.13. In the final section of the last chapter we have obtained var-
ious explicit ways to start from a group (A,+) and obtain a bi-skew brace A
of the form (A,+, ◦). In particular, if L/K is a finite Galois extension with
Galois group G such that there exists a group isomorphism ϕ : (A,+) → G,
then we can employ the pair (A↔,ϕ) to construct a Hopf–Galois structure on
L/K. This means that all the constructions of this kind mentioned there yield
explicit constructions of Hopf–Galois structures on a Galois extension with a
given Galois group.

3.3 Known results from a new perspective

In this section, we show that from Theorems 3.2.3 and 3.2.11 we can derive
again some known results in Hopf–Galois theory and its connection with skew
brace theory.

First, note that as a consequence of Theorem 3.2.11, it is immediate to
deduce that Theorem 3.1.3 holds.

Second, we can give a short proof of a result of Kohl [Koh19, Theorem 1.8].

Theorem 3.3.1 (Kohl). Let L/K be a finite Galois extension with Galois group
G, and let N be a group of the same order of G. If there exists m such that the
number of characteristic subgroups of order m of N is greater than the number
of subgroups of order m of G, then L/K has no Hopf–Galois structures of type
N .

Proof. If L/K has a Hopf–Galois structure of type N , then, by Theorem 3.2.3,
there exists an operation + such that (G,+, ◦) is a skew brace with (G,+) ∼=
N , where ◦ denotes the original operation of the Galois group G. As every
characteristic subgroup of (G,+) is a left ideal of (G,+, ◦), so also a subgroup
of (G, ◦), we immediately derive a contradiction.

Third, we can give a new proof of Corollary 1.4.13, a consequence of Byott’s
translation, along the lines of the one described in [Chi00, section 7] but without
involving regular subgroups. Let L/K be a finite Galois extension with Galois
group G, and let N be a group of the same order as G. Recall that we denote
by e(G,N) the number of Hopf–Galois structures on L/K of type N and by
f(G,N) the number of regular subgroups of Hol(N) isomorphic to G.

Corollary 3.3.2. The following equality holds:

e(G,N) =
|Aut(G)|
|Aut(N)|f(G,N).
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Proof. Denote by ◦ the group operation of G and by + the group operation on
N . By Theorem 3.2.3, the number e(G,N) equals the number of operations +
such that (G,+, ◦) is a skew brace with (G,+) ∼= (N,+), and by Theorem 3.1.1,
the number f(G,N) equals the number of operations ◦ such that (N,+, ◦) is a
skew brace with (N, ◦) ∼= (G, ◦).

Consider N = {bijections ϕ : N → G} and G = {bijections ψ : G → N}.
Clearly, there exists a bijection

δ : N → G, ϕ → ϕ−1.

For all ϕ ∈ N , consider (G,+ϕ), where as before +ϕ is the operation obtained
by ϕ via transport of structure, so that ϕ : (N,+) → (G,+ϕ) is a group isomor-
phism. Similarly, for all ψ ∈ G, one can define (N, ◦ψ). It is straightforward to
check that δ restricts to a bijection from

N ′ = {ϕ ∈ N | (G,+ϕ, ◦) is a skew brace}

to
G′ = {ψ ∈ G | (N,+, ◦ψ) is a skew brace}.

Note that the right action of Aut(N,+) on N ′ via composition satisfies the
following properties:

• The orbits of N ′ under the action of Aut(N,+) correspond bijectively to
the operations + such that (G,+, ◦) is a skew brace with (N,+) ∼= (G,+).

• The action of Aut(N,+) on N ′ is fixed-point-free.

We deduce that the cardinality of N ′ equals |Aut(N,+)|e(G,N). A similar
argument yields that the cardinality of G′ equals |Aut(G, ◦)|f(G,N), so the
assertion follows.

Then we can compute the number of Hopf–Galois structures with given skew
brace (up to isomorphism); this is [NZ19, Corollary 2.4], and the proof is inspired
by that of [KT23, Corollary 3.1].

Corollary 3.3.3. Let L/K be a finite Galois extension with Galois group G,
and let A be a skew brace with (A, ◦) ∼= G. Then there exist

|Aut(G)|
|Aut(A)|

Hopf–Galois structures on L/K such that the corresponding skew brace is iso-
morphic to A.

Proof. Denote by ◦ the group operation of G. If ϕ : (A, ◦) → (G, ◦) is a group
isomorphism, then we can use ϕ to construct an operation + such that (G,+, ◦)
is a skew brace isomorphic to A, via transport of structure. Denoting by S the
set of the operations +′ such that (G,+′, ◦) is a skew brace, we need to count
how many skew braces in S are isomorphic to (G,+, ◦); by Theorem 3.2.3, this
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is the number we are looking for. There exists an action of Aut(G, ◦) on S, via
transport of structure:

φ : +′ → +′
φ, σ +′

φ τ = φ(φ−1(σ) +′ φ−1(τ)).

Then the orbit of (G,+, ◦) under this action consists precisely of the skew braces
we need to count. As the stabiliser of (G,+, ◦) under this action is exactly
Aut(G,+, ◦), we derive the assertion.

Corollary 3.3.3 can also be employed to construct explicitly the Hopf–Galois
structures it mentions. Let L/K be a finite Galois extension with Galois group
(G, ◦), and for simplicity, consider a skew brace already of the form (G,+, ◦).
To find the Hopf–Galois structures on L/K whose corresponding skew brace is
isomorphic to (G,+, ◦), it is enough to write a set of representatives

{φ1, . . . ,φn} ⊆ Aut(G, ◦)

of the coset space Aut(G, ◦)/Aut(G,+, ◦). For every such φi, we obtain an
operation +i such that (G,+i, ◦) is a skew brace, where

σ +i τ = φi(φ
−1
i (σ) + φ−1

i (τ)).

In this way, we obtain all the skew braces, and thus the Hopf–Galois structures,
we are looking for.

Example 3.3.4. Let L/K be a finite Galois extension with cyclic Galois group
(G, ◦) of order p2, for p an odd prime. Denote by σ a generator of (G, ◦), so
that G = {σi | i = 0, . . . , p2 − 1} and

σi ◦ σj = σi+j .

By the results of [Chi96], there are precisely p Hopf–Galois structures on L/K,
one of which is the trivial structure. We have constructed, in Example 2.5.16,
p− 1 operations + such that (G,+, ◦) is a nontrivial skew brace, and these give
us all the Hopf–Galois structures by Theorem 3.2.3. But suppose that we just
have at our disposal (the isomorphism class of) a single skew brace; for example,
we can take (G,+, ◦) with

σi + σj = σi+j+pij .

To construct all the other additive operations, we take first

Aut(G, ◦) ∼= (Z/p2Z)∗,

a cyclic group of order p(p − 1). Let us take a generic φd ∈ Aut(G, ◦), with
d ∈ (Z/p2Z)∗ and

φd(σ
i) = σid.

We can compute

φd(σ
i + σj) = φd(σ

i+j+pij) = σd(i+j+pij)
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and
φd(σ

i) + φd(σ
j) = σid + σjd = σd(i+j+dpij)

We deduce that φd ∈ Aut(G,+, ◦) if and only if d ≡ 1 (mod p). As expected,
we deduce that the number of Hopf–Galois structures on L/K whose associated
skew brace is isomorphic to (G,+, ◦) is

|Aut(G, ◦)|
|Aut(G,+, ◦)| = p− 1.

We see now how to explicitly find these structures. Consider again a map
φd ∈ Aut(G, ◦), write φf = φ−1

d , and define

σi +d σ
j = φd(φf (σ

i) + φf (σ
j)) = σi+j+fpij .

In this way, we obtain for all k = 1, . . . , p− 1 a skew brace (G,+k, ◦), with

σi +k σj = σi+j+kpij .

To define explicitly the corresponding Hopf–Galois structure, we need the gamma
function of this skew brace: as

−σ = σkp−1,

we find

γ(σ)(σi) = −σ + (σ ◦ σi) = σkp−1 + σ1+i = σkp+i+kp(kp−1)(1+i) = σi(1−kp).

We conclude that

H =






p2−1

i=0

ℓiσ
i ∈ L[G,+] | σ(ℓi) = ℓi(1−kp) for all i




 .

3.4 The description of the Hopf algebras and
their actions

In this section, we explore how we can employ Theorem 3.2.3 to describe explic-
itly properties of the Hopf–Galois structures in terms of skew braces. First, we
just describe the abstract structure of the Hopf algebras appearing; afterwards,
we take in consideration their actions and relation with the classical Galois
structure.

We fix, for the rest of the section, a finite Galois extension L/K with Galois
group (G, ◦), and we consider a Hopf–Galois structure (H, ·) on L/K, corre-
sponding by Theorem 3.2.3 to an operation + such that (G,+, ◦) is a skew
brace, which we denote by G. In particular, we can assume that

H = L[G+]
G◦ =




τ∈G

ℓτ τ ∈ L[G+] | σ(ℓτ ) = ℓ(γ(σ)τ) for all σ, τ ∈ G



82



and that the action of H on L is the given as follows:




τ∈G

ℓτ τ


· x =



τ∈G

ℓτ τ(x).

3.4.1 The Hopf algebras

We begin by aligning the basic substructures of the skew brace and the Hopf
algebra.

Theorem 3.4.1. There exists a bijective correspondence between

• the (strong) left ideals of G;

• the (normal) Hopf subalgebras of H.

Specifically, a (strong) left ideal I of G corresponds to the (normal) Hopf subal-
gebra L[I+]

(G,◦) of H.

Proof. By Corollary 1.3.10, the (normal) Hopf subalgebras of H = L[G+]
G◦

correspond bijectively to the (normal) subgroups of (G,+) invariant under the
action of (G, ◦). As this action is given by the gamma function of the skew
brace (G,+, ◦), we immediately derive the assertion.

If in addition I is a strong left ideal of G, then I is a normal (G, ◦)-invariant
subgroup of (G,+), so (G, ◦) acts on (G,+)/(I,+) via automorphisms. This
yields a K-Hopf algebra that we denote by L[G/I+]

G◦ .

Proposition 3.4.2. Let I be a strong left ideal of G, corresponding to a normal
Hopf subalgebra J of H. Then the map

H/J → L[G/I+]
G◦ ,



τ∈G

ℓτ τ →


τ∈G

ℓτ τ

is a K-Hopf algebra isomorphism.

Proof. This follows by Corollary 1.3.11.

A consequence of Theorem 3.2.3 is that we can easily describe the grouplike
elements of the Hopf algebras appearing.

Proposition 3.4.3. The grouplike elements of H are the elements of Fix(G).

Proof. By Corollary 1.3.12, the grouplike elements of L[G+]
G◦ are the elements

of (G,+) fixed by the action of (G, ◦). As the action is given by the gamma
function of the skew brace (G,+, ◦), the assertion follows.

Inspired by this result, we can characterise the (strong) left ideals corre-
sponding Hopf subalgebras J such that J or H/J are group algebras.
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Proposition 3.4.4. Let I be a left ideal of G, corresponding to the Hopf sub-
algebra J of H.

• I is contained in Fix(G) if and only if J is a group algebra.

• I has abelian type and is contained in Fix(G) if and only if J is a com-
mutative group algebra.

Proof. By Corollary 1.3.12, the Hopf subalgebra L[I,+](G,◦) is a group algebra
if and only if (G, ◦) acts trivially on (I,+), that is, (I,+) is contained in Fix(G).
In this case, J = K[I,+] is commutative if and only if (I,+) is abelian.

Proposition 3.4.5. Let I be a strong left ideal of G, corresponding to the
normal Hopf subalgebra J of H.

• I contains G2 if and only if H/J is a group algebra.

• I contains [G,G] if and only if H/J is a commutative group algebra.

Proof. Recall that H/J ∼= L[G/I+]
G◦ as K-Hopf algebras. In particular, by

Corollary 1.3.12, the Hopf algebra L[G/I+]
G◦ is a group algebra if and only if

(G, ◦) acts trivially on (G/I,+), that is, if for all σ, τ ∈ G,

σ ∗ τ = γ(σ)τ − τ ∈ I,

which means that G2 ⊆ I. In this case, H/J ∼= K[G/I+] is abelian if and only
if [G,G]+ ⊆ I. As [G,G] = 〈[G,G]+, G2〉+, the assertion follows.

Proposition 3.4.6. Suppose that there exist left ideals I and I ′ of G such that
(G,+) is the direct product of (I,+) and (I ′,+). Then

H ∼= L[I+]
G◦ ⊗K L[I ′+]

G◦

as K-Hopf algebras.

Proof. This follows by Corollary 1.3.14.

3.4.2 Their actions

So far, the results seen in this section just describe the structure of the Hopf
algebra H, without mentioning its action on the field L. Here we consider the
Hopf–Galois structure (H, ·) in its entirety.

First, by Theorem 3.4.1, a left ideal I of G identifies an intermediate field
LJ of L/K via the Hopf–Galois correspondence, where J = L[I+]

G◦ . This
in principle could be confusing, because a left ideal is also a subgroup of the
Galois group, so it also identifies an intermediate field LI via Galois theory. The
following result removes ambiguity.

Proposition 3.4.7. Let I be a left ideal of G, corresponding to the Hopf sub-
algebra J of H. Then

LJ = LI .

84



Proof. Recall that J = L[I+]
G◦ . It is clear that if x ∈ LI , then x ∈ LJ . Indeed,

for all


τ∈I ℓτ τ ∈ J ,




τ∈I

ℓτ τ


· x =



τ∈I

ℓτ τ(x) =


τ∈I

ℓτx = ε




τ∈I

ℓτ τ


x.

The assertion then follows by Corollary 1.2.8, which implies that

[L : LI ] = |I| = dimK J = [L : LJ ].

This means that a left ideal I of G identifies uniquely an intermediate field of
L/K, denoted by LI , whatever method we choose. In particular, the extension
L/LI is Galois with Galois group (I, ◦) via Galois theory. On the other side, the
extension is also LI ⊗K J-Galois via Hopf–Galois theory, and by Theorem 3.2.3
this Hopf–Galois structure corresponds to an additive operation +′ such that
(I,+′, ◦) is a skew brace. We see now that this operation coincides with the
operation + of the left ideal I of G.

Proposition 3.4.8. The Hopf–Galois structure on L/LI given by LI ⊗K J
corresponds to the (additive operation of) the skew brace I.

Proof. Recall that J = L[I+]
G◦ . First, we claim that the obvious LI -Hopf

algebra map
φ : LI ⊗K L[I,+](G,◦) → L[I,+](I,◦)

is a bijection. Equivalently, we can show that

idL ⊗LIφ : L⊗LI (LI ⊗K L[I,+](G,◦)) → L⊗LI L[I,+](I,◦)

is a bijection. This follows by considering the commutative diagram

L⊗LI (LI ⊗K L[I+]
G◦) L⊗LI L[I+]

I◦

L⊗K L[I+]
G◦ L[I+]

where we obtain the arrows via associativity of the tensor products and Galois
descent applied to L/LI .

Finally, note that φ respects the action of these Hopf algebras on L, as both
can be obtained by the action of L[G+]

G◦ .

In a slight variation of the proof of this result, we can characterise the trivial
left ideals of G.

Proposition 3.4.9. There exists a bijective correspondence between

• the trivial left ideals of G;

• the Hopf subalgebras J of H such that L⊗K J is a group algebra.

85



Proof. Note that L ⊗K J is a group algebra if and only if L[I+]
I◦ is a group

algebra, if and only if (I, ◦) acts trivially on (I,+), if and only if I is trivial.

We consider now the ideals of the skew brace G.

Proposition 3.4.10. There exists a bijective correspondence between

• the ideals of G;

• the normal Hopf subalgebras J of H such that LJ/K is Galois.

Proof. It is enough to note that given a strong left ideal I of G, corresponding
to the normal Hopf subalgebra J = L[I+]

G◦ of H, then I is an ideal of G if
and only if (I, ◦) is a normal subgroup of (G, ◦), that is, if and only if LI/K is
Galois. As LI = LJ by Proposition 3.4.7, we derive the assertion.

When I is an ideal of G, also LI/K is Galois with Galois group (identi-
fied with) (G/I, ◦), and by Hopf–Galois theory, we can consider a Hopf–Galois
structure on L/K with Hopf algebra H/J ∼= L[G/I+]

G◦ . We show again that
the operation on G/I we obtain via Theorem 3.2.3 is the natural one.

Proposition 3.4.11. The Hopf–Galois structure on LI/K with Hopf algebra
H/J corresponds to the (additive operation of) the skew brace G/I.

Proof. First, a simple double inclusion shows that

L[G/I+]
G◦ = LI [G/I+]

G/I◦ .

As the action of LI [G/I+]
G/I◦ on LI is obtained by the action of L[G+]

G◦ on
L, the assertion follows.

The following diagram represents the situation described so far:

L

LI

K

L[G+]G◦(G,◦)

(I,◦)
L[I+]I◦

L[G/I+]G/I◦

(G/I,◦)

Remark 3.4.12. If I is a strong left ideal but not an ideal of G, then LI/K is
Hopf–Galois but not Galois; see Proposition 3.4.2 above. On the other side, if
I is a strong left ideal of G such that G2 ⊆ I, then reasoning as in the proof
of [CSV19, Lemma 1.9], we can deduce that I is also an ideal. In particular,
we obtain another proof of the fact that if J is a normal Hopf subalgebra of H
such that H/J is a group algebra, then LJ/K is Galois.
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We state now three similar results that characterise Hopf–Galois structures
corresponding to a skew brace with a suitable property. They can be proved in
the same way: the property on the skew brace G identifies an ideal I such that I
and G/I have a certain property, and this translates to an normal intermediate
field F of L/K in the image of the Hopf–Galois correspondence such that the
actions of H on L/F and F/K are controlled by I and G/I, respectively.

Proposition 3.4.13. The following are equivalent:

• G is metatrivial.

• There exists an intermediate field F of L/K with the following properties:

– F/K is Galois.

– F = LJ , where J is a normal Hopf subalgebra of H.

– The Hopf–Galois structures on L/F and F/K obtained by the action
of H on L are the classical structures.

Proof. The skew brace G is metatrivial if and only there exists an ideal I of G
such that I and G/I are trivial, so the result follows translating to information
for the Hopf–Galois structure.

Proposition 3.4.14. The following are equivalent:

• G is left nilpotent of class at most two.

• There exists an intermediate field F of L/K with the following properties:

– F/K is Galois.

– F = LJ , where J is a normal Hopf subalgebra of H and also a group
algebra.

– The Hopf–Galois structures on L/F and F/K obtained by the action
of H on L are the classical structures.

Proof. The skew brace G is left nilpotent of class at most two if and only if
G ∗ G2 = 0, and this is equivalent to asking that there exists an ideal I of G
such that I ⊆ Fix(G) and G/I is trivial. Indeed, for one direction one can take
I = G2. For the other, if I ⊆ Fix(G) is an ideal of G such that G/I is trivial,
then G2 ⊆ I ⊆ Fix(G), that is G ∗G2 = 0.

The result then follows translating this information to the Hopf–Galois struc-
ture.

Proposition 3.4.15. The following are equivalent:

• G is metabelian.

• There exists an intermediate field F of L/K with the following properties:

– F/K is an abelian extension.
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– F = LJ , where J is a normal commutative Hopf subalgebra of H
such that H/J is commutative.

– The Hopf–Galois structures on L/F and F/K obtained by the action
of H on L are the classical structures.

Proof. The skew brace G is metatrivial if and only there exists an ideal I of G
such that I andG/I are abelian, so the result follows translating this information
to the Hopf–Galois structure.

Finally, we describe the behaviour of a Hopf–Galois structure in a particu-
larly nice situation: when the skew brace is a (semi)direct product.

Proposition 3.4.16. Suppose that G is isomorphic to a semidirect product of
skew braces. Then there exist an ideal I and a left strong ideal I ′ of G such that
the following hold:

• There exists a K-Hopf algebra isomorphism

L[G+]
G◦ ∼= L[I+]

G◦ ⊗K L[I ′+]
G◦ .

• The group (G, ◦) is the semidirect product of (I, ◦) and (I ′, ◦). In partic-
ular, the obvious map ϕ : (I ′, ◦) → (G/I, ◦) is a group isomorphism.

• The Hopf–Galois structure on LI/K given by the pair (I ′,ϕ) corresponds
to the additive operation of the skew brace G/I.

• There exists an LI′
-Hopf algebra isomorphism

LI′
⊗K LI [G/I+]

G/I◦ ∼= L[I ′+]
I′
◦ .

If the semidirect product is also direct, then also I ′ is an ideal, the group (G, ◦) is
the direct product of (I, ◦) and (I ′, ◦), and the previous results also hold switching
the roles of I and I ′.

Proof. Denote by A and A′ the skew braces such that there exists a skew brace
isomorphism

φ : A⋊A′ → G.

We take I = φ(A ⋊ 0) and I ′ = φ(0 ⋊ A′), which are easily checked to be
respectively an ideal and a strong left ideal of G. The first two items then
immediately follow.

For the third, we know that the Hopf–Galois structure on LI/K obtained
by the action of H on L corresponds to the (additive operation of) the skew
brace G/I. As the group isomorphism

ϕ : (I ′, ◦) → (G/I, ◦)

is also a skew brace isomorphism

ϕ : I ′ → G/I
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the assertion follows.
The LI′

-Hopf algebra isomorphism

LI′
⊗K LI [G/I+]

G/I◦ ∼= L[I ′+]
I′
◦

can be obtained tensoring with L and reasoning exactly as in the proof of Propo-
sition 3.4.8.

Finally, the last claim on the direct product immediately follows as in this
case also 0×A′ is an ideal of A×A′.

3.5 The Hopf–Galois correspondence

In this section, we employ the description of Theorem 3.2.3 to study the Hopf–
Galois correspondence for Hopf–Galois structures on Galois extensions. We
follow [ST23b, section 4].

3.5.1 First consequences and examples

Let L/K be a finite Galois extension with Galois group (G, ◦). We begin by
showing how a skew brace can be employed to control the image of the Hopf–
Galois correspondence. From now on, to lighten the notation, we say that a
Hopf–Galois structure on L/K corresponds to a skew brace (G,+, ◦), rather
than an operation + such that (G,+, ◦) is a skew brace, via Theorem 3.2.3.

Theorem 3.5.1. Let (H, ·) be a Hopf–Galois structure on L/K, corresponding
to the skew brace (G,+, ◦).

• An intermediate field F of L/K is in the image of the Hopf–Galois corre-
spondence if and only if the subgroup T of (G, ◦) corresponding to F via
Galois theory is a left ideal of (G,+, ◦).

• The equality

HGC(L/K,H) =
|{left ideals of (G,+, ◦)}|
|{subgroups of (G, ◦)}|

holds.

In particular, the Hopf–Galois correspondence for (H, ·) is bijective if and only
if every subgroup of (G, ◦) is a left ideal of (G,+, ◦).

Proof. By Theorem 3.4.1, there exists a bijective correspondence between

• the left ideals of (G,+, ◦);

• the intermediate field of L/K in the image of the Hopf–Galois correspon-
dence.
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By Proposition 3.4.7, if I is a left ideal of (G,+, ◦), then the corresponding
intermediate field is the one that is associated with (I, ◦) by Galois theory, and
thus the assertion follows.

Example 3.5.2. Consider the classical structure on L/K, corresponding to the
trivial skew brace (G, ◦, ◦). In this case, every subgroup of (G, ◦) is a left ideal
of (G, ◦, ◦), so we find, as expected, that the Hopf–Galois correspondence for
the classical structure is bijective.

Example 3.5.3. Suppose that (G, ◦) is cyclic of order 2n, where n ≥ 3 is odd,
and consider the Hopf–Galois structure as in Example 3.2.9. In this case, if σ
is a generator of (G, ◦) and τ ∈ G, then the gamma function of the skew brace
(G,+, ◦) satisfies

γ(σ)τ = τ−1.

In particular, every subgroup of (G, ◦) is a left ideal of (G,+, ◦). We deduce
that the Hopf–Galois structure found in this way has a bijective Hopf–Galois
correspondence.

Note that this example can be generalised to every Galois extension with
Galois group G isomorphic to a direct product of an abelian group and a cyclic
group of order 2; see [ST23b, Example 4.8].

As an application of Theorem 3.5.1, we can see that the behaviour of the
canonical nonclassical structure (Theorem 1.4.9) can be assumed also by other
Hopf–Galois structures.

Proposition 3.5.4. Consider a Hopf–Galois structure (H, ·) on L/K such that
the gamma function of the corresponding skew brace (G,+, ◦) satisfies γ(G) ⊆
Inn(G, ◦). Then every normal intermediate field K of L/K is in the image of
the Hopf–Galois correspondence for (H, ·). If in addition γ(G) = Inn(G, ◦), then
the image of the Hopf–Galois correspondence for (H, ·) consists precisely of the
normal intermediate fields of L/K.

Proof. If γ(G) ⊆ Inn(G, ◦), then every normal subgroup of (G, ◦) is a left ideal
of (G,+, ◦), that is, every normal intermediate field is in the image of the Hopf–
Galois correspondence.

Clearly, if γ(G) = Inn(G, ◦), then the left ideals of (G,+, ◦) are exactly the
normal subgroups of (G, ◦), that is, the image of the Hopf–Galois correspondence
for (H, ·) consists precisely of the normal intermediate fields of L/K.

Remark 3.5.5. By [CCDC20, table at page 1175], one can show that a skew
brace A is a bi-skew brace if and only if γ(A) ⊆ Aut(A, ◦). In particular, a skew
brace (G,+, ◦) satisfies the first assumption of Proposition 3.5.4 if and only if
(G,+, ◦) is a bi-skew brace and (G, ◦,+) is inner.

Example 3.5.6. Consider the canonical nonclassical structure on L/K, cor-
responding to the almost trivial skew brace (G, ◦op, ◦). Here γ(σ) = ι◦(σ) for
all σ ∈ G. Applying Proposition 3.5.4, we recover the fact that that the image
of the Hopf–Galois correspondence for this structure consists precisely of the
normal intermediate fields of L/K.
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Example 3.5.7. Suppose that (G, ◦) is nilpotent of class two, consider a group
homomorphism ψ : (G, ◦) → (G, ◦), and define

σ + τ = σ ◦ ι◦(ψ(σ))τ = σ ◦ ψ(σ) ◦ τ ◦ ψ(σ)−1.

As showed in Corollary 2.5.11, we obtain a skew brace (G,+, ◦) with gamma
function given by γ(σ) = ι◦(ψ(σ))

−1 = ι◦(ψ(σ)
−1). By Proposition 3.5.4, we

obtain a Hopf–Galois structure on L/K such that the normal intermediate fields
of L/K are in the image of the Hopf–Galois correspondence.

If in addition ψ is surjective (for example, ψ = id), then the image of the
Hopf–Galois correspondence consists precisely of the normal intermediate fields
of L/K.

Finally, take ψ = id; it is easy to see that if there exists σ ∈ G such that
σ ◦ σ is not in the centre of (G, ◦), then the Hopf–Galois structure we find is
different from the canonical nonclassical structure. This holds, for examples,
for the Heisenberg group of order p3, with p an odd prime.

We conclude this subsection with two easy observations.

Remark 3.5.8. Let L/K be a finite Galois extension with Galois group G, and
let (H, ·) be a Hopf–Galois structure on L/K of type N . As immediate conse-
quence of Theorem 3.5.1, if N has less subgroups than G, then the Hopf–Galois
correspondence for (H, ·) is not bijective.
Remark 3.5.9. Let L/K be a finite Galois extension with Galois group (G, ◦),
and let (G,+, ◦) be a skew brace, corresponding to the Hopf–Galois structure
(H, ·) on L/K. If the skew brace (G,+, ◦) is isomorphic a direct product of skew
braces Ai of coprime order and for all i, every subgroup of (Ai, ◦) is a left ideal
of Ai, then every subgroup of (G, ◦) is a left ideal of (G,+, ◦). In particular,
(H, ·) has a bijective Hopf–Galois correspondence by Theorem 3.5.1.

3.5.2 An explicit construction

We can propose a concrete recipe to obtain Hopf–Galois structures with a bi-
jective Hopf–Galois correspondence. Let L/K be a finite Galois extension with
Galois group (G, ◦), and denote by Z(G) its centre and by N(G) its norm, which
is the intersection of the normalisers of the subgroup of (G, ◦). The quotient
N(G)/Z(G) is abelian; this follows, for example, by [Sch60, Theorem], where it
was stated that N(G) is contained in the second centre of (G, ◦). This means
that we can apply Corollary 2.5.6 to deduce that every group homomorphism

φ : (G, ◦) → N(G)/Z(G)

can be used to construct a bi-skew brace (G, ◦,+), where

σ + τ = σ ◦ ψ(σ) ◦ τ ◦ ψ(σ)−1.

Here ψ : G → G is any map that satisfies

ψ(σ) ◦ Z(G) = φ(σ).
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As the gamma function of this skew brace is given by γ(σ) = ι◦(ψ(σ)), we find
that the gamma function of (G,+, ◦) is given by

σ → ι◦(ψ(σ))
−1 = ι◦(ψ(σ)

−1).

In particular, every subgroup T of (G, ◦) is a left ideal of (G,+, ◦), as ψ(σ)−1

belongs to the normaliser of T by definition of N(G). We obtain in this way
a Hopf–Galois structure (H, ·) on L/K with a bijective Hopf–Galois correspon-
dence; explicitly,

H =




τ∈G

ℓτ τ ∈ L[G+] | σ(ℓτ ) = ℓψ(σ)−1◦τ◦ψ(σ) for all σ, τ ∈ G


.

Finally, different group homomorphisms φ yield different operations +, again
by Corollary 2.5.6, and therefore this discussion implies the following result.

Theorem 3.5.10. Let L/K be a finite Galois extension with Galois group G.
Then there exists an injective correspondence from the group homomorphisms
ψ : G → N(G)/Z(G) to the Hopf–Galois structures on L/K with a bijective
Hopf–Galois correspondence.

Remark 3.5.11. In [ST23b, section 4], it was underlined how this construction
may be seen as an application of the behaviour of the power automorphisms of
a group.

Example 3.5.12. Let L/K be a finite Galois extension with Galois group G
isomorphic Q8, the quaternion group of order 8. There are 22 Hopf–Galois
structures on L/K, and 6 of them are of cyclic type; see [SV18, Table 2]. As
G is Hamiltonian, we derive that N(G) = G, so N(G)/Z(G) ∼= C2 × C2. Since
there are 16 distinct group homomorphisms

Q8 → C2 × C2,

we obtain 16 distinct Hopf–Galois structures on L/K with a bijective Hopf–
Galois correspondence. We find indeed all the Hopf–Galois structures on L/K
except for the 6 of cyclic type, for which the Hopf–Galois correspondence is not
bijective by Remark 3.5.8.

Example 3.5.13. Let L/K be a finite Galois extension with Galois group G
isomorphic to the nonabelian group of order p3 and exponent p2, where p is an
odd prime. One can check that N(G) is the elementary abelian subgroup of G
of order p2, while the centre is the cyclic of order p. As there are p2 distinct
group homomorphisms

G → Cp,

we obtain p2 distinct Hopf–Galois structures on L/K for which the Hopf–Galois
correspondence is bijective.
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3.5.3 Bi-skew braces

We deal now with some results related to bi-skew braces, again following [ST23b,
section 4]. First, we can give a peculiar characterisation of cyclic groups. We
need a technical lemma.

Lemma 3.5.14. Let L/K be a Galois extension with Galois group G isomorphic
to a direct product of groups T × T ′. Suppose that there exists a skew brace A
such that (A, ◦) ∼= T and not every subgroup of (A, ◦) is a left ideal of A. Then
there exists a Hopf–Galois structure on L/K with a nonbijective Hopf–Galois
correspondence.

Proof. Consider the direct product of skew bracesB = A×Triv(T ′). By assump-
tion, not every subgroup of (B, ◦) is a left ideal of B. As (B, ◦) ∼= G, we obtain
a Hopf–Galois structure on L/K by Theorem 3.2.11, and by Theorem 3.5.1, this
Hopf–Galois structure has a nonbijective Hopf–Galois correspondence.

The following result is contained in the proof of [ST23b, Theorem 4.24].

Theorem 3.5.15. Let L/K be a finite Galois extension with Galois group
(G, ◦). Then the following are equivalent:

• The group (G, ◦) is cyclic.

• Every Hopf–Galois structure on L/K whose corresponding skew brace
(G,+, ◦) is a bi-skew brace has a bijective Hopf–Galois correspondence.

Proof. Suppose first that (G, ◦) is cyclic. If (G,+, ◦) is a bi-skew brace, then
every subgroup of (G, ◦) is a left ideal, as every subgroup of a cyclic group is
characteristic and the gamma function of (G,+, ◦) take values in Aut(G, ◦).
This immediately yields one direction by Theorem 3.5.1.

We assume now that every Hopf–Galois structure on L/K whose correspond-
ing skew brace (G,+, ◦) is a bi-skew brace has a bijective Hopf–Galois corre-
spondence. As the canonical nonclassical structure corresponds to an almost
trivial skew brace, which is a bi-skew brace, we can derive by Example 3.5.6
that (G, ◦) has to be abelian or Hamiltonian. We proceed by exclusion. If
(G, ◦) is Hamiltonian, then there exists an abelian group T such that (G, ◦) is
isomorphic to the direct product of the quaternion group Q8 and T , as stated
in [Hal59, Theorem 12.5.4]. By Example 2.5.4 and Remark 3.5.8, we obtain a
skew brace A with (A, ◦) ∼= Q8 such that not every subgroup of (A, ◦) is a left
ideal. By Lemma 3.5.14, we derive a contradiction.

This means that (G, ◦) is abelian. Suppose that (G, ◦) is not cyclic. Then
there exist a prime p and an abelian group T such that (G, ◦) is isomorphic
to a direct product of the form Z/prZ × Z/psZ × T , where 1 ≤ s ≤ r. As in
Example 2.5.18, there exists a skew brace (Z/prZ×Z/psZ, ◦,+), where + is the
usual operation on the direct product of cyclic groups and

(i, j) ◦ (a, b) = (i+ a, j + b+ ia).
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Note that the subgroup {(i, 0) | i = 0, . . . , pr − 1} of (Z/prZ × Z/psZ,+) is
not a subgroup of (Z/prZ × Z/psZ, ◦), so in particular it is not a left ideal of
(Z/prZ× Z/psZ, ◦,+). Again by Lemma 3.5.14, we find a contradiction.

We discuss now a question posed in [Chi21]. Let L/K and L′/K ′ be finite
Galois extensions with Galois group G and G′, respectively. Suppose that A is
a bi-skew brace such that there exist group isomorphisms ϕ : (A, ◦) → G and
ϕ′ : (A,+) → G′. Then, by Theorem 3.2.11, the pair (A,ϕ) yields a Hopf–Galois
structure (H, ·) on L/K, and the pair (A↔,ϕ) yields a Hopf–Galois structure
(H ′, ·) on L′/K ′. In [Chi21], it was inquired whether these two Hopf–Galois
structures are related in some way. In principle, it may seem difficult to give a
positive answers, as the Hopf algebras are defined over different fields. However,
the relation between the two underlying skew braces of a bi-skew brace has the
following implication.

Theorem 3.5.16. There exists a bijective correspondence between

• the Hopf subalgebras of H;

• the Hopf subalgebras of H ′.

There is the same number of intermediate fields in the images of the Hopf–Galois
correspondence for (H, ·) and (H ′, ·) on L/K and L′/K ′, respectively, and the
following equality holds:

HGC(L/K,H)

HGC(L′/K ′, H ′)
=

|{subgroups of G′}|
|{subgroups of G}| .

In particular, the ratio between the two Hopf–Galois correspondence ratios is a
constant that depends only on the isomorphism classes of the Galois groups.

Proof. Denote by ◦ the group operation of G and by ◦′ the group operation of
G′. The pair (A,ϕ) yields a Hopf–Galois structure on L′/K ′ via Theorem 3.2.11,
and this corresponds to a skew brace (G,+, ◦). Similarly, the pair (A↔,ϕ) yields
a Hopf–Galois structure on L/K via Theorem 3.2.11, and this corresponds to
a skew brace (G,+′, ◦′). In particular, there exists a bijective correspondence
between the left ideals of A and (G,+, ◦), and the same for those of A↔ and
(G′,+′, ◦′). By Lemma 2.2.24, we know that the left ideals of A and A↔ coin-
cide. The result then follows by Theorem 3.5.1.

Example 3.5.17. Take an odd prime p, let L/K be a Galois extension with
dihedral Galois group G of order 2p, and let L′/K ′ be a Galois extension with
cyclic Galois group G′ of order 2p.

Consider the bi-skew brace A = Triv(Cp) ⋊ Triv(C2) of Example 2.2.23,
where C2 acts on Cp via inversion. Then (A,+) is cyclic of order 2p and (A, ◦)
is dihedral of order 2p. Once we fix group isomorphisms ϕ : (A, ◦) → G and
ϕ′ : (A,+) → G′, we obtain a Hopf–Galois structure (H, ·) on L/K and a Hopf–
Galois structure (H ′, ·) on L′/K ′ by Theorem 3.2.11. Exactly as shown in
Example 3.5.3, every subgroup of (A,+) is a left ideal of A. As there are p+ 3
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subgroups of G and 4 subgroups of G′, and as every subgroup of (A, ◦) is a left
ideal of A, we derive the following equalities:

HGC(L/K,H) =
4

p+ 3
,

HGC(L′/K ′, H ′) = 1,

HGC(L/K,H)

HGC(L′/K ′, H ′)
=

4

p+ 3
.

3.5.4 Childs’s property

We fix a finite Galois extension L/K with Galois group G. Motivated by the
behaviour of cyclic extensions of odd prime power degree, we give the following
definition.

Definition 3.5.18. The extension L/K satisfies Childs’s property if every
Hopf–Galois structure on L/K has a bijective Hopf–Galois correspondence.

The goal of this part is to classify entirely extensions with Childs’s prop-
erty, by stating and proving [ST23b, Theorem 4.24]. We begin with an easy
proposition.

Proposition 3.5.19. Consider a Hopf–Galois structure (H, ·) on L/K of type
N . Suppose that the number of characteristic subgroups of N is greater than or
equal to the number of subgroups of G. Then these numbers coincide and (H, ·)
has a bijective Hopf–Galois correspondence.

Proof. Denote by ◦ the group operation of G. The Hopf–Galois structure (H, ·)
corresponds by Theorem 3.2.3 to a skew brace (G,+, ◦), where N ∼= (G,+). As
every characteristic subgroup of (G,+) is a left ideal of (G,+, ◦) and thus also a
subgroup of (G, ◦), we deduce by assumption that the numbers of characteristic
subgroups of N and of subgroups of G coincide, and that every subgroup of
(G, ◦) is a left ideal of (G,+, ◦), and therefore (H, ·) has a bijective Hopf–Galois
correspondence by Theorem 3.5.1.

As a consequence, we can first recover [Chi17, Proposition 4.3], (see Proposi-
tion 3.1.7 above), and then complete it considering also groups with even order;
see [ST23b, Example 4.21].

Corollary 3.5.20 (Childs). Suppose that G is cyclic of odd prime power order.
Then L/K satisfies Childs’s property.

Proof. Let (H, ·) be a Hopf–Galois structure of type N on L/K. As stated
in [Koh98, Theorem 4.5], also N is cyclic, so by Proposition 3.5.19, we conclude
that (H, ·) has a bijective Hopf–Galois correspondence.

Proposition 3.5.21. Suppose that G is cyclic of order 2m, where m ≥ 1. Then
L/K satisfies Childs’s property.
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Proof. Denote by ◦ the group operation of G. Let (H, ·) be a Hopf–Galois
structure of type N on L/K, corresponding to a skew brace (G,+, ◦) by Theo-
rem 3.2.3 (in particular, (G,+) ∼= N).

If m = 1, 2, then both operations of (G,+, ◦) are abelian, so (G,+, ◦) arises
from a radical ring. By Example 2.2.12, we get that (G,+, ◦) is a bi-skew brace,
so the result follows by Theorem 3.5.15.

Suppose now that m ≥ 3. As proved in [Byo07, Theorem 6.1], the type N
of the extension is cyclic, dihedral, or (generalised) quaternion.

• If N is cyclic, then the numbers of characteristic subgroups of N and
subgroups of G coincide, so we conclude by Proposition 3.5.19.

• If N is dihedral with presentation

〈r, s | r2
m−1 = 1, s2 = 1, srs−1 = r−1〉,

then the subgroup generated by r is a characteristic cyclic subgroup of
order 2m−1 (for example because every element outside of it has order
2), and also its subgroups are characteristic in N . We find in this way
m+1 characteristic subgroups of N (counting also N), and as this number
equals the number of subgroups of G, we conclude by Proposition 3.5.19.

• If N is a generalised quaternion group with presentation

〈x, y | x2m−1 = 1, x2m−2

= y2, yxy−1 = x−1〉,

then, with the only exception m = 3, the subgroup generated by x is
a characteristic cyclic subgroup of order 2m−1 (as it can be checked to
be the centraliser of the commutator subgroup 〈x2〉 of N), and also its
subgroups are characteristic in N . We find in this way m+1 characteristic
subgroups of N (counting also N), and as this number equals the number
of subgroups of G, we conclude by Proposition 3.5.19.

Finally, suppose that m = 3 and N ∼= Q8. Then the centre Z of (G,+) is
a characteristic subgroup of order 2, so an ideal of (G,+, ◦). By the case
m = 2, we know that (G/Z,+, ◦) has a left ideal I/Z of order 2, which
implies that I is a left ideal of (G,+, ◦) of order 4.

Remark 3.5.22. With the classification given in [Bac15] one can construct a
skew brace A with (A, ◦) cyclic of order p3, where p is a prime, such that A is
not a bi-skew brace. Thus Corollary 3.5.20 and Proposition 3.5.21 do not follow
by Theorem 3.5.15.

We finally arrive at the main result.

Theorem 3.5.23. Let L/K be a finite Galois extension with Galois group G.
Then the following are equivalent:

• The extension L/K satisfies Childs’s property.
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• The group G is cyclic, and if p and q are prime divisors of the order of
G, then p does not divide q − 1.

Proof. Suppose first that G is cyclic, of order n and if p and q are prime divisors
of the order of G, then p does not divide q− 1. If n in even, then n needs to be
a power of 2; therefore the result follows by Proposition 3.5.21.

Suppose instead that n is odd, and take a Hopf–Galois structure (H, ·) of
type N , corresponding to a skew brace (G,+, ◦). By [Tsa22, Corollary 1.6],
N ∼= (G,+) is isomorphic to a semidirect product of cyclic groups Z/aZ⋊Z/bZ,
where a and b are coprime and ab = n. By the assumption on the divisors of the
order of G, this semidirect product is necessarily a direct product. In particular,
we find that (G,+) is cyclic, and we can apply [CSV19, Corollary 4.3] (which
is [Byo13, Theorem 1] in the context of skew braces) to deduce that (G,+, ◦) is
isomorphic to a direct product of skew braces Ai of coprime odd prime power
order. Since every subgroup of (Ai, ◦) is a left ideal of Ai, as shown in the proof
of Corollary 3.5.20, we conclude by Remark 3.5.9 that every subgroup of (G, ◦)
is a left ideal of (G,+, ◦), deriving the assertion.

Conversely, suppose that L/K satisfies Childs’s property. By Theorem 3.5.15,
G needs to be cyclic. Suppose that there exist primes p and q dividing the order
of G such that p divides q− 1. Consider the Sylow q-subgroup Q and the Sylow
p-subgroup P of G. By assumption on p and q, we can construct a nontrivial
semidirect product (A,+) of Q and P . So we consider the skew brace A, where
instead (A, ◦) is the direct product of Q and P (see Example 2.2.23). Note
that G is the direct product of all its Sylow subgroups. If the subgroup 1 × P
of (A, ◦) is not a left ideal of A, then we can apply Lemma 3.5.14 to derive a
contradiction. If instead 1× P is a left ideal of A, then 1× P is not a left ideal
of Aop, because otherwise 1× P would be a normal subgroup of (A,+). Again,
we find a contradiction by Lemma 3.5.14.

3.6 A take-home theorem

In the previous sections, we have started from a finite Galois extension L/K
with Galois group (G, ◦) and a Hopf–Galois structure (H, ·) on L/K, obtained
a skew brace (G,+, ◦) by Theorem 3.2.3, and we have obtained various results
regarding the properties of H and the Hopf–Galois correspondence of (H, ·).
However, as already mentioned, one can also start from a totally abstract skew
brace A and obtain a Hopf–Galois structure on every finite Galois extension
L/K with Galois group G ∼= (A, ◦), once a group isomorphism is chosen, by
Theorem 3.2.11.

We conclude this chapter with a final result, which summarises many of
the ones developed so far, in a way that captures both the aforementioned
approaches. Its proof follows by Theorem 3.2.11, together with the appropriate
results given in the context of Theorem 3.2.3.

Theorem 3.6.1. If A is a skew brace, then we can associate with A, on every
Galois extension L/K with Galois group G ∼= (A, ◦), a Hopf–Galois structure
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(H, ·).
Conversely, if (H, ·) is a Hopf–Galois structure on a finite Galois extension

L/K with Galois group G, then we can associate with (H, ·) a skew brace A with
(A, ◦) ∼= G.

The data associated in either of these ways satisfy the following properties.

1. The type of (H, ·) is (A,+). In particular, L ⊗K H ∼= L[A,+] as L-Hopf
algebras.

2. A is (almost) trivial if and only if (H, ·) is the (canonical non)classical
structure.

3. There exists a bijective correspondence between

• the (strong) left ideals of A;

• the (normal) Hopf subalgebras of H.

4. There exists a bijective correspondence between

• the elements of Fix(A);

• the grouplike elements of H.

5. There exists a bijective correspondence between

• the trivial left ideals of A;

• the Hopf subalgebras J of H such that L⊗K J is a group algebra.

6. There exists a bijective correspondence between

• the left ideals of A contained in Fix(A);

• the Hopf subalgebras of H that are group algebras.

7. There exists a bijective correspondence between

• the abelian left ideals of A;

• the commutative Hopf subalgebras J of H such that L⊗K J is a group
algebra.

8. There exists a bijective correspondence between

• the abelian left ideals of A contained in Fix(A);

• the commutative Hopf subalgebras of H that are group algebras.

9. There exists a bijective correspondence between

• the strong left ideals A that contain A2;

• the normal Hopf subalgebras J of H such that H/J is a group algebra

10. There exists a bijective correspondence between
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• the strong left ideals A that contain [A,A];

• the normal Hopf subalgebras J of H such that H/J is a commutative
group algebra.

11. There exists a bijective correspondence between

• the ideals of A;

• the normal Hopf subalgebras J of H such that L/LJ is Galois.

12. If A is a (semi)direct product of skew braces, then H is a tensor product
of Hopf algebras and G is a (semi)direct product of groups.

13. The Hopf–Galois correspondence for (H, ·) is bijective if and only if every
subgroup of (A, ◦) is a left ideal of A.

14. Every normal intermediate field of L/K is in the image of the Hopf–Galois
correspondence for (H, ·) if and only if every normal subgroup of (A, ◦) is
a left ideal of A. In particular, this is the case when A is a bi-skew brace
and A↔ is inner.
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