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One-dimensional random motions at finite velocity

1.The symmetric telegraph process

Definition 1.

X(t) = V (0)

∫ t

0

(−1)N(s)ds (1)

where V (0) is a symmetric two-valued r.v. taking values ±c. It can be regarded
as the initial velocity of motion. N(t) is the number of events of a homogeneous
Poisson process independent from V (0).
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Known results:

1. Let Pr {X(t) ∈ dx} /dx = p(x, t). The absolutely continuous part of the
probability distribution satisfies the telegraph equation

∂2p

∂t2
+ 2λ

∂p

∂t
= c2

∂2p

∂x2
, p(x, 0) = δ(x), pt(x, 0) = 0. (2)

The discrete part of the distribution is concentrated at ±ct with probabilities
1
2e
−λt.

2. The probability density of the a.c. part is

p(x, t) =
e−λt

2c

[
λI0

(
λ

c

√
c2t2 − x2

)
+
∂

∂t
I0

(
λ

c

√
c2t2 − x2

)]
, |x| < ct,

(3)
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where I0(x) =
∑∞
k=0

(
x
2

)2k 1
k! and

∫ +ct

−ct
p(x, t)dx = 1− e−λt, t ≥ 0. (4)

3. For a fixed number N(t) of changes of direction we have that

Pr {X(t) ∈ dx|N(t) = 2k + 1} = dx
(2k + 1)!

(k!)2

(
c2t2 − x2

)k
(2ct)2k+1

, k ≥ 0,

Pr {X(t) ∈ dx|N(t) = 2k} = dx
ct(2k)!

k!(k − 1)!

(c2t2 − x2)k−1

(2ct)2k
, k ≥ 1. (5)
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For example,

Pr {X(t) ∈ dx|N(t) = 1} = Pr {X(t) ∈ dx|N(t) = 2} =
1

2ct
, x ∈ (−ct, ct)

Pr {X(t) ∈ dx|N(t) = 3} = Pr {X(t) ∈ dx|N(t) = 4} =
3!

(2ct)3

(
c2t2 − x2

)
(6)

4. The first-passage time Ta = inf {t > 0 : X(t) = a} in case of positive initial
velocity reads

Pr {Ta > t|V (0) = c} =


∫∞
t

λa√
c2s2−a2

I1
(
λ
c

√
c2s2 − a2

)
ds, t > a

c

1, t < a
c

Pr
{
Ta =

a

c
|V (0) = c

}
= e−λ

a
c (7)
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5. The characteristic function

EeiβX(t) =

=
e−λt

2

[(
1 +

λ√
λ2 − c2β2

)
et
√
λ2−c2β2

+

(
1− λ√

λ2 − c2β2

)
e−t
√
λ2−c2β2

]
(8)

for |β| < λ
c .

6.

Remark 1. For λ→∞, c→∞, c2/λ→ 1, we have that

(a) The telegraph equation becomes the heat-equation
(b) The distribution p(x, t) of the telegraph process converges to the transition

function of Brownian motion
(c) The first-passage time distribution converges to the law of the first-passage

time of Brownian motion
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(d) For the characteristic function we have

EeiβX(t) → e−
tβ2

2 (9)

2. Telegraph process with drift

Some generalization is introduced by assuming that the telegraph process has
drift.

1. The particle moves rightward with velocity c1 or leftward with velocity −c2.

2. When moving rightward the particle reverses velocity after an exponentially
distributed time interval (with parameter λ1) and when moving leftward with
velocity −c2 reverses the direction of motion after a time with exponential
distribution of parameter λ2.
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In this last case the telegraph equation governing the distribution reads

∂2

∂t2
p = c1c2

∂2p

∂x2
+ (c2 − c1)

∂2p

∂x∂t
− (λ1 + λ2)

∂p

∂t

+
1

2
[(c2 − c1) (λ1 + λ2)− (λ2 − λ1)(c1 + c2)]

∂p

∂x
(10)

By means of a relativistic transformation{
x′ = αx+ βt

t′ = γx+ δt
(11)

we can pass from the asymmetric telegraph process in (x, t) to a symmetric
telegraph process in (x′, t′) where the probability law p(x′, t′) is governed by

∂2p

∂t′2
=

4(c1 + c2)2λ2
1λ

2
2

(λ1 + λ2)
4

∂2p

∂x′2
− 4λ1λ2

(λ1 + λ2)

∂p

∂t′
(12)
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where the new velocity is c′ = ±2(c1+c2)λ1λ2

(λ1+λ2)2 while the rate of velocity reversal is

λ′ = 2λ1λ2
λ1+λ2

. The explicit form of the absolutely continuous part of the distribution
reads

p(x, t) =

e
−(λ1+λ2)t

c +
λ2−λ1
c1+c2

x+
(λ2−λ1)(c2−c1)

2(c1+c2)
t

c1 + c2

[
λ1 + λ2

2
I0

(
2
√
λ1λ2

c1 + c2

√
(x+ c2t)(c1t− x)

)
+
∂

∂t
I0

(
2
√
λ1λ2

c1 + c2

√
(x+ c2t)(c1t− x)

)
−(c2 − c1)

2

∂

∂x
I0

(
2
√
λ1λ2

c1 + c2

√
(x+ c2t)(c1t− x)

)]
. (13)

The singular part of the distribution concentrated at C1t has weight e−λ1t/2 and
at −c2t has weight e−λ2t/2.
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Multidimensional extensions

For the sake of simplicity we consider two types of motions in R2.

1. A planar random motion with a finite number of possible directions

2. A planar motion with an infinite number of possible directions
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In the first case the simplest model has four orthogonal directions which are
assumed initially with equal probability.
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The changes of direction are governed by a homogenous Poisson process.

The velocity is c and changes of direction of motion occur at Poisson times and
at each event the particle moves on the line orthogonal with respect to that on
which it was moving before the deviation.

Sample paths are formed by segments parallel to the axes.

At each instant the particle is located inside a square Qt with vertices (−ct, 0),
(ct, 0), (0,−ct), (0, ct).

If the particle points outward up to time t it will be located on the boundary
∂Qt with probability

Pr {X(t), Y (t) ∈ ∂Qt} = Pr {N(t) = 0}+
∞∑
k=1

Pr {N(t) = k} 1

2k
= 2e−λ

t
2−e−λt

(14)
and clearly with probability e−λt the moving particle is on one of the four vertices.
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At each time t a part of the distribution is on the boundary and the absolutely
continuous one is inside Qt.

The inside component grows as time passes and at time t? = −2 log
(

1− 1√
2

)
their weight coincides.
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The position X(t), Y (t) of this moving particle has the following representation{
X(t) = U(t) + V (t)

Y (t) = U(t)− V (t)
(15)

where U and V are independent, symmetric, one-dimensional telegraph processes
of parameters λ

2 ,
c
2. Therefore the absolutely continuous part of the distribution

inside Qct, reads

g(x, y, t) =
e−λt

2c2

[
λ2

4
I0

(
λ

2c

√
c2t2 − (x+ y)2

)
I0

(
λ

2c

√
c2t2 − (x− y)2

)
+
λ

2

∂

∂t

(
I0

(
λ

2c

√
c2t2 − (x+ y)2

)
I0

(
λ

2c

√
c2t2 − (x− y)2

))
+
∂

∂t
I0

(
λ

2c

√
c2t2 − (x+ y)2

)
∂

∂t
I0

(
λ

2c

√
c2t2 − (x− y)2

)]
for |x− y| < ct, |x+ y| < ct (16)
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On each of the four segments of the boundary ∂Qct of Qt the distribution coincides
with that of a telegraph process. The probability function g satisfies the following
fourth-order p.d.e.

(
∂

∂t
+ λ

)2(
∂2

∂t2
+ 2λ− c2

{
∂2

∂x2
+

∂2

∂y2

})
u+ c4

∂4u

∂x2∂y2
= 0. (17)

Of course, there are many other models with an arbitrary number of possible
directions of motions and with different rules of change among directions (for
example, the cyclic one).
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Infinite number of directions

The particle moves on R2 with velocity c and its direction changes at Poisson
times.

At each Poisson event it takes a
direction with uniformly distributed
orientation. Each change of
direction is independent from the
previous one. The set of possible
positions at time t is a circle
Cct =

{
x, y : x2 + y2 ≤ c2t2

}
and

the particle is located on ∂Cct with
probability e−λt if no Poisson event
disturbs its motion until time t.

A complete probabilistic description of this motion has been given.
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The position of the moving particle is given by{
X(t) = c

∑n+1
j=1 (sj − sj−1) cos θj

Y (t) = c
∑n+1
j=1 (sj − sj−1) sin θj

(18)

where s0 = 0, sn+1 = t, θj are independent r.v.’s uniformly distributed in [0, 2π).
Thanks to some particular properties of Bessel functions it is possible to obtain
explicitly the characteristic function

E
[
eiαX(t)+iβY (t)

∣∣∣∣N(t) = n

]
=

2
n
2 Γ
(
n
2 + 1

)(
ct
√
α2 + β2

)n
2
Jn

2

(
ct
√
α2 + β2

)
, n ≥ 1.

(19)

For n = 0

E
[
eiαX(t)+iβY (t)

∣∣∣∣N(t) = 0

]
= J0

(
ct
√
α2 + β2

)
. (20)
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The characteristic function above can be inverted and for n ≥ 1 we have that

Pr {X(t) ∈ dx, Y (t) ∈ dy|N(t) = n} =
n

2π(ct)n
(
c2t2 − (x2 + y2)

)n
2−1

dxdy

(21)

Note that for n = 2 the distribution obtained is uniform in the circle Cct. For n = 1
it coincides with the Green function of the planar waves equation. For n ≥ 3 it has
the form of a bell which is more and more concentrated around the starting point.

The unconditional distribution

Pr {X(t) ∈ dx, Y (t) ∈ dy} = p(x, y, t)dxdy =
λdxdy

2πc
e−λt

e
λ
c

√
c2t2−(x2+y2)√

c2t2 − (x2 + y2)
(22)

for (x, y) ∈ Cct − ∂Cct, can easily be inferred from the previous conditional
distribution.
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We observe that p is a solution to the planar wave equation

∂2p

∂t2
+ 2λ

∂p

∂t
= c2

(
∂2

∂x2
+

∂2

∂y2

)
p (23)

and for c → ∞, λ → ∞, c2

λ → 1, converges to the planar heat equation. The
density p coinverges to the transition density of the planar Brownian motion.

By means of p = e−λtw equation (23) becomes

∂2w

∂t2
− c2

(
∂2

∂x2
+

∂2

∂y2

)
w = λ2w (24)

which is a Klein-Gordon type equation.
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Random flights in Rd

The last model can be extended in an Euclidean space of dimension d. The first
who thought of random flights with deterministic displacements, with uniformly
distributed orientation was K. Pearson. In the case the motion at finite velocity
is governed by a homogeneous Poisson process (of rate λ) and at each event a
new direction is chosen. The distribution of the orientation is uniform on the
hypersphere, that is has density

f (θ1, . . . , θd−2, φ) =
Γ
(
d
2

)
2n

d
2

sind−2 θ1 sind−3 θ2 · · · sin θd−2 (25)

where 0 ≤ θj ≤ π, j = 1, . . . , d− 2, 0 ≤ φ ≤ 2π.
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If N(t) = n, the total displacement has the form

Xd(t) = c

n+1∑
j=1

(sj − sj−1) sin θ1,j sin θ2,j · · · sin θd−2,j sinφj (26)

Xd−1(t) = c

n+1∑
j=1

(sj − sj−1) sin θ1,j · · · sin θd−2,j cosφj (27)

... (28)

X2(t) = c

n+1∑
j=1

(sj − sj−1) sin θ1,j sin cos θ2,j (29)

X1(t) = c

n+1∑
j=1

(sj − sj−1) cos θ1,j (30)

where 0 ≤ θj ≤ π, 0 ≤ φj ≤ 2π, sj are the instants of Poisson events with s0 = 0,
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sn+1 = t.

The general expression of the conditional characteristic function for n ≥ 1,
d ≥ 2 is

E
[
ei
∑d
k=1 αkXk(t)

∣∣∣∣N(t) = n

]
=

=
n!

tn

(
2
d
2−1Γ

(
d

2

))n+1 ∫ t

0

ds1 · · ·
∫ t

sn−1

dsn

n+1∏
j=1

Jd
2−1

(
c(sj − sj−1)

√∑d
j=1α

2
j

)
(
c(sj − sj−1)

√∑d
k=1α

2
k

)d
2−1

(31)

for (α1, . . . , αd) ∈ Rd, 0 = s0 < · · · < sn+1 = t
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The distribution corresponding to this characteristic function reads

pn(x1, x2, . . . , xd, t) =

(
Γ
(
s
2

)
2
d
2−1
)n

(2π)
d
2tn
(√∑

x2
k

)d
2−1

∫ ∞
0

ρ
d
2Jd

2−1

ρ
√√√√ d∑
k=1

x2
k

 dρ

×
∫ t

0

ds1 · · ·
∫
stn−1

dsn

n+1∏
j=1

Jd
2−1 (cρ (sj − sj−1))

(cρ (sj − sj−1))
d
2−1

, n ≥ 1

(32)

This integral can be evaluated explicitly for all n ≥ 1 only for d = 2, 4. For example
for d = 2

n!

tn

∫ t

0

ds1 · · ·
∫ t

sn−1

dsn

n+1∏
j=1

J0 (cρ (sj − sj−1))

(ctρ)
n
2

=
2
n
2 Γ
(
n
2 + 1

)
(ctρ)

n
1

Jn
2
(ctρ) (33)
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and thus

pn(x1, x2, t) =
2
n
2nΓ

(
n
2

)
4π(ct)

n
2

∫ ∞
0

ρ1−n2J0

(
ρ
√
x2

1 + x2
2

)
Jn

2
(ctρ) dρ

=
n

2π(ct)
n
2

(
c2t2 −

(
x2

1 + x2
2

))n
2−1

(34)

and a previous result is obtained.

Even the distribution after one single Poisson event is extremely entangled for
arbitrary d. For d = 3 we have

p1(x1, x2, x3, t) =

log

(
ct+
√
x1

1+x2
2+x2

3

ct−
√
x1

1+x2
2+x2

3

)
π(2ct)2

√
x1

1 + x2
2 + x2

3

, (x1, x2, x3) ∈ S3
ct (35)
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while for d = 2

p1(x1, x2; t) =
1

2πct
√
c2t2 − (x2

1 + x2
2)
, (x1, x2) ∈ S2

ct

and d = 4 (36)

p1(x1, x2, x4, x4; t) =
2

π2(ct)4
, (x1, x2, x3, x4) ∈ S4

ct (37)

In the last case we have a uniform distribution!
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For this reason we are able to produce explicit unconditional distributions in R2

and R4, only. For x2
1 + x2

2 < c2t2 we have that

Pr {X1(t) ∈ dx1, X2(t) ∈ dx2} =
λ

2πc

e−λt+
λ
c

√
c2t2−(x2

1+x2
2)√

c2t2 − (x2
1 + x2

2)
dx1dx2, (38)

and on ∂Cct the distribution is uniform.

Its projection on the x-axis has an absolutely continuous distribution for |x| < ct

Pr {X1(t) ∈ dx1} = dx1
λe−λt

2c

∞∑
k=0

(
λ

2c

√
c2t2 − x2

1

)k−1
1

Γ2
(
k+1

2

) (39)

which differs from that of the classical telegraph process because it behaves as a
forward backward motion with random velocities.

In R4 the explicit unconditional distribution has the form of a cut-off four-
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dimensional Gaussian

p(x1, x2, x3, x4, t) =
λ

c4t3π2
e
− λ
c2t

∑4
k=1 x

2
k

(
2 +

λ

c2t

(
c2t2 −

4∑
k=1

x2
k

))
(40)
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Dirichlet displacements

A random walker starts from the origin of a frame of reference, moves in the
d-dimensional real space (d ≥ 2) at finite velocity c. In [0, t], n changes of direction
are recorded. The instants at which the random walker changes direction are
0 < t1 < · · · < tn < t, t0 = 0, tn+1 = t, and by τj = tj − tj−1, 1 ≤ j ≤ n + 1,
we represent the length of time between successive changes of direction. Each
displacement has uniformly distributed orientation. In this case we assume that
τ1, . . . , τn has distribution either equal to

f1(τ1, . . . , τn) =
Γ ((n− 1)(d− 1))

(Γ(d− 1))
n+1

1

t(n+1)(d−1)−1

n+1∏
j=1

τd−2
j , d ≥ 2 (41)
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or

f2(τ1, . . . , τn) =
Γ
(
(n− 1)(d2 − 1)

)(
Γ(d2 − 1)

)n+1

1

t(n+1)(d2−1)−1

n+1∏
j=1

τ
d
2−2

j , d ≥ 3 (42)

where

0 < τj < t−
j−1∑
k=0

τk, 1 ≤ j ≤ n, τn+1 = t−
n+1∑
j=1

τj. (43)

The two distributions are Dirichlet with parameters (d − 1), . . . , (d − 1) and(
d
2 − 1, . . . , d2 − 1

)
, respectively.

The model consists of a triple (θ, τ , Nd(t)) where θ represents the orientations,
τ the displacements and Nd(t) the number of changes of direction up to time t.

29



By using the first Dirichlet distribution we get

pXd
(xd, t;n) =

Γ
(
n+1

2 (d− 1) + 1
2

)
Γ
(
n
2(d− 1)

)
(
c2t2 − ‖xd‖2

)n
2 (d−1)−1

π
d
2(ct)(n+1)(d−1)−1

, ‖xd‖ < ct, d ≥ 2

(44)

while by using the second Dirichlet distribution we get

pY d
(yd, t;n) =

Γ
(
n+1

2 (d− 1) + 1
)

Γ (n(d− 1))

(
c2t2 − ‖yd‖2

)n(d2−1)−1

π
d
2(ct)2(n+1)(d2−1)

, ‖yd‖ < ct, d ≥ 3.

(45)

For d = 2 the first one yields

px2(x2, t;n) =
n

2π(ct)n

(
c2t2 − ‖x2‖2

)n
2−1

, ‖x2‖ < ct (46)
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while for d = 4, the second one gives

pY 4(y4, t;n) =
n(n+ 1)

π2(ct)2n+1

(
c2t2 − ‖y4‖2

)n−1

, ‖y4‖ < ct (47)

The unconditional distribution are obtained by randomizing by means of a sort
of fractional Poisson process. In the first case

Pr {Nd(t) = n} =
1

Ed−1
2 ,d2

(λt)

(λt)n

Γ
((
d−1

2

)
n+ d

2

), λ ≥ 0, d ≥ 2, n ≥ 0 (48)

while in the second case

Pr {Md(t) = n} =
1

Ed
2−1,d2

(λt)

(λt)n

Γ
((
d
2 − 1

)
n+ d

2

), λ ≥ 0, d ≥ 3, n ≥ 0. (49)
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The unconditional distribution obtained in this way has the form (in the case of
the first Dirichlet distribution)

Pr {Xd ∈ dxd} =
λt

π
d
2

(
c2t2 − ‖xd‖

)d−1
2 −1

(ct)2(d−1)−1

Ed−1
2 ,d−1

2

(
λt(c2t2−‖xd‖

2)
d−1

2

(ct)d−1

)
Ed−1

2 ,d2
(λ, t)

. (50)

As a special case for d = 3 we have that

Pr {X3(t) ∈ dx3} =
λ

π
3
2c3t2

e
λ(c2t2−‖x3‖

2)
c2t

E1,32
(λt)

(51)
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Fractional extension

The telegraph process has been extended in several directions. The simplest
one (perhaps) stems from the fractionalization of the telegraph equation

∂2αu

∂t2α
+ 2λ

∂αu

∂tα
= c2

∂2u

∂x2
, α ∈ (0, 1) (52)

where

∂α

∂tα
u(x, t) =

1

Γ(m− α)

∫ t

0

∂mu(x, s)

∂sm
1

(t− s)α+1−mds, m− 1 < α < m,

(53)

is the Dzerbayshan-Caputo fractional derivative.
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For 0 < α < 1
2 the initial condition assumed is

u(x, 0) = δ(x) (54)

while for 1
2 < α < 1 a further initial condition is necessary and taken to be equal to

ut(x, 0) = 0. (55)

For λ→∞, c→∞, c
2

λ → 1, one obtains the so called fractional diffusion equation
of which a vast literature exists.
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The Fourier transform of the solution of the Cauchy problem for the time-
fractional telegraph equation reads∫ ∞

−∞
eiβxu(x, t)dx

=
1

2

[(
1 +

λ√
λ2 − c2β2

)
Eα,1(η1t

α) +

(
1− λ√

λ2 − c2β2

)
Eα,1(η2t

α)

]
(56)

where

η1 = −λ+
√
λ2 − c2β2, η2 = −λ−

√
λ2 − c2β2. (57)

Since solutions to the fractional telegraph equations are non-negative for 0 < α < 1,
the expression above can be viewed as the characteristic function of some r.v. Xα(t),
t > 0. For α = 1 (56) coincides with the characteristic function of the telegraph
process. Here the exponentials are replaced by the Mittag-Leffler functions Eα,1(x).
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For α = 1
2 the characteristic function (56) coincides with that of the composition

of a telegraph process T with a reflecting Brownian motion

T (|B(t)|) , t > 0. (58)

This means that we can construct a telegraph process moving inside the interval
(−c|B(t)|, +c|B(t)|) according to the rules of the usual symmetric process, taken
at the random time |B(t)|.

Furthermore

VarXα(t) = 2c2t2αEα,α+1(−2λtα), 0 < α ≤ 2,

VarX1
2
(t) =

∫ ∞
0

e−
w2

4t

√
πt

c2

λ

(
w +

e−2λw − 1

2λ

)
dw

t→∞∼ 2c2

λ
√
π

√
t (59)
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A second type of fractionalization is based on the idea that the telegraph
equation

∂2u

∂t2
+ 2λ

∂u

∂t
= c2

∂2u

∂x2
(60)

after the transformation u = e−λtw becomes a sort of Klein-Gordon equation

(
∂2

∂t2
− c2 ∂

2

∂x2

)
u = λ2u. (61)

The fractionalization of the K.G. equation of order α ∈ (0, 1)

(
∂2

∂t2
− c2 ∂

2

∂x2

)α
u = λ2u (62)
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is based on the idea that by means of the transformation

w =
√
c2t2 − x2 (63)

we obtain

(
d2

dw2
+

1

w

d

dw

)α
u(w) =

λ2

c2α
u(w) (64)

where the fractional power of the Bessel operator LB appears

LB =
d2

dw2
+

1

w

d

dw
=

1

w2

(
w
d

dw
w
d

dw

)
. (65)
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By means of the Mc Bride theory we have that

(LB)
α
f(w) =

(
d2

dw2
+

1

w

d

dw

)α
f(w)

= 4αw−2αI0,−α
2 I0,−α

2 f(w) (66)

where

Iη,αm f =
x−mη−mα

Γ(α)

∫ x

0

(xm − um)
α−1

umηf(w)dum, α > 0, (67)

are the Erdelyi-Kober integrals. This is a particular case of the hyper-Bessel
operator

L = xa1Dxa2 · · ·xanDxan+1, n ∈ N, a1, · · · , an+1 complex numbers (68)
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The operator L can be written as

Lf = mnxa−n
n∏
k=1

xm−mbkDmx
mbkf (69)

where

Dm =
d

dxm
=

1

m
x1−m d

dx
, a =

n+1∑
k=1

ak, m = |a− n|, bk =
1

m

 n+1∑
i=k+1

ai + k − n


(70)

The integer power of L writes

Lrf = mnrx−mr
n∏
k=1

Ibk,−rm (71)
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where, for α > 0

Iη,αm f =
x−mη−mα

Γ(α)

∫ x

0

(xm − um)α−1umηf(u)d(um) (72)

and for α < 0

Iη,αm f = (η + α+ 1) Iη,α+1
m f +

1

m
Iη,α+1
m

(
x
d

dx
f

)
(73)

the same representation of the fractional power of the operator holds.

If m = n − α > 0, α a complex number, bk ∈ Ap,µ,m, k = 1, . . . , n, for any
function f ∈ Fp,µ we have that

L
α
f = m

nα
x
−mα

n∏
k=1

I
bk,−α
m f (74)

where, again, I
bk,−α
m is an Erdely-Kober integral.
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The intuitive idea of this representation can be caught by considering the
integral operator

Iαmf =
m

Γ(α)

∫ x

0

(xm − um)
α−1

um−1f(u)du (75)

which includes, for m = 1, the Riemann-Liouville fractional integral. The integrals
Iαmf and Iη,αm f are related by

Iαmf = xmαI0,α
m f. (76)
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Furthermore

Iαmf =DmI
α+1
m f =

mDm

Γ(α+ 1)

∫ x

0

(xm − um)
α
um−1f(u)du

=

[
since Dm = m−1x1−m d

dx

]
=
mDmDm

Γ(α+ 2)

∫ x

0

(xm − um)
α+1

um−1f(u)du

= · · · = Dm · · ·Dm︸ ︷︷ ︸
r times

Iα+r
m f (77)

I−rm f = Dm · · · , DmI
0
mf = (Dm)

r
f (78)

and for a real number α

I−αm f = (Dm)
α
f. (79)
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Since the Erdelyi-Kober integrals satisfy the semigroup property, we have that

(Dm)
α
f = (Dm)

n
(Dm)

α−n

= I−nm In−αm f

=Dm
m

Γ(n− α)

∫ x

0

(xm − um)
n−α−1

um−1f(u)du (80)

and for m = 1 we recover the R-L fractional derivative.
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By applying the previous framework we obtain a fractional telegraph-type process Tα(t), t > 0,

whose distribution is

p
α
(x, t) =

1

Eα,α (λtα)

[
ct

∞∑
k=1

(
λ

2αcα

)2k
(
c2t2 − x2

)2k−1

Γ(αk)Γ(αk + 1)

+

∞∑
k=1

(
λ

2αcα

)2k+1
(
c2t2 − x2

)αk+1(
Γ
(
αk + 1+α

2

))2

]

+
1

2Eα,1(λtα)
(δ(x+ ct)− δ(x− ct)) (81)

The function

f(x, t) = Eα,1 (λt
α
) Pr {Tα(t) ∈ dx} , x ∈ (−ct,+ct) (82)

is a solution to(
∂2

∂t2
− c2 ∂

2

∂x2

)α

uα(x, t) = λ
2
uα(x, t) + λ2

α
c
α

(√
c2t2 − x2

)(
Γ
(

1−α
2

))2
(83)
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