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The philosophy

Competitions in which:

large number of players: taking N →∞
small players: very little in�uence on the overall system

indistinguishable players: symmetric payo�s

→ Analogy with mean �eld models

Mean �eld games

Study of strategic decision making in very large populations of

small interacting individuals with symmetric payo�s.
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Outline

1 A stochastic optimal control problem

mean �eld game (MFG)
the concept of ε-Nash Equilibrium

2 From game to PDEs: the mean �eld equations (MFE)

main hypothesis
existence theorem
uniqueness theorem

3 The link between MFG and MFE

an abstract control problem
asymptotic resolution of MFG
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Mean �eld game (MFG)

We have N players. For i = 1, · · · , N , the player i has a dynamic

described by the following SDE:

dXi
t = αitdt+

√
2dBi

t.

We suppose:

H1. Xi
0 has a �xed law m0 and are independent;

H2. (Bi
t) are independent d-dimensional Brownian motions.

The player i can choose his control αi adapted to the �ltration

(Ft = σ(Xj
0 , B

j
s : s ≤ t, j = 1, · · · , N))
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Mean �eld game (MFG)

Player i's payo� is given by

JNi (α1, · · · , αN ) = E

ˆ T

0

1

2
|αit|2 + F

Xi
t ,

1

N − 1

∑
j 6=i

δ
Xj

t

 dt

 .

The problem

Minimize JNj conditioned to

dXj
t = αjtdt+

√
2dBj

t

for all j.
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The notion of ε - Nash equilibrium

We say that (α∗,1, · · · , α∗,N ) is a Nash equilibrium for (JNi )Ni=1 if

for all i and for all α

JNi (α∗,1, · · · , α∗,N ) ≤ JNi ((α∗,j)j 6=i, α)

ε - Nash equilibrium

We say that (α∗,1, · · · , α∗,N ) is an ε - Nash equilibrium for

(JNi )Ni=1 if for all i and for all α

JNi (α∗,1, · · · , α∗,N ) ≤ JNi ((α∗,j)j 6=i, α) + ε
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The Mean Field Equations (MFE)

In some sense, the MFG evolves to:


−∂tu−∆u+ 1

2 |∇u|
2 = F (x,m)

∂tm−∆m−div(m∇u) = 0
u(x, T ) = 0
m(0) = m0,

1 the �rst is an Hamilton Jacobi Bellman

2 the second is a Fokker Planck

3 they are coupled by F (the coupling term)

4 the system is forward - backward
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The Mean Field Equations (MFE): main hypothesis

1 F : Rd × P1(Rd)→ R,

such that

|F (x,m)| ≤ C0,

|F (x,m)− F (x′,m′)| ≤ C0(|x− x′|+ d1(m,m′)).

2 m0 is absolutely continuous with respect to Lebesgue measure

with Holder continuous density and satis�esˆ
Rd

|x|2m0(dx) < +∞.

3 for all m,m′ ∈ P1(Rd),m 6= m′,ˆ
Rd

(F (x,m)− F (x,m′))d(m−m′)(x) > 0.
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The Mean Field Equations (MFE): existence theorem

We say that a pair (u,m) is a classical solutions to MFE if

u,m : Rd × [0, T ]→ R are continuous

u,m are C2 in space and C1 in time

u,m satisfy the MFE in a classical sense.

Existence theorem

Under the above assumptions, there is at least one classical solution

to MFE.
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The Mean Field Equations (MFE): existence theorem

We denote with Cs+α (s ∈ N, α ∈ (0, 1])the maps

z : Rd × [0, T ]→ R such that

the derivatives ∂ktD
l
xz exist if 2k + l ≤ s

the derivatives are bounded and α- Holder in space and α/2-
Holder in time

Existence and uniqueness result for the heat equation

If a, b, f, w0 ∈ Cα, the there exists a unique weak solution to{
∂tw −∆w + 〈a(x, t),∇w〉+ b(x, t)w = f(x, t)
w(x, 0) = w0(x).

Moreover w ∈ C2+α.
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The Mean Field Equations (MFE): existence theorem

The proof is split in the following steps:

1 Consider a proper convex and compact subset C of

C([0, T ] : P1);

2 Build a map Ψ : C → C in the following way:
associate to some µ ∈ C the solution u of{

−∂tu−∆u+ 1
2 |∇u|

2 = F (x, µ)
u(x, T ) = 0

associate to u the solution m of{
∂tm−∆m−div(m∇u) = 0
m(0) = m0,

3 Apply a �xed point to Ψ : µ 7→ m.
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The Mean Field Equations (MFE): existence theorem

Step 1. The set C
C is the set of maps µ ∈ C([0, T ] : P1(Rd)) such that

sup
s 6=t

d1(µ(s), µ(t))

|t− s|1/2
≤ C

and

sup
t∈[0,T ]

ˆ
Rd

|x|2µ(t)(dx) ≤ C.

Properties of C:

C is convex;

C is compact in the topology of

d(µ, ν) = sup
t∈[0,T ]

d1(µ(t), ν(t)).
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The Mean Field Equations (MFE): existence theorem

Step 2. The map Ψ
Associate to some µ ∈ C the solution u of{

−∂tu−∆u+ 1
2 |∇u|

2 = F (x, µ)
u(x, T ) = 0

To see that a solution exists and is unique, we use Cole Hopf

transform:

w = e−u/2;

then w has to satisfy{
−∂tw −∆w = wF (x, µ)
w(x, T ) = 1
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The Mean Field Equations (MFE): existence theorem

In our situations:

a = 0;

f = 0;

b = F ;

w0 = 1;

It is su�cient to control that (x, t) 7→ F (x, µ(t)) ∈ Cα :

|F (x, µ(t))− F (x′, µ(t′))| ≤ C(|x− x′|+ d1(µ(t), µ(t′)))

≤ C(|x− x′|+ |t− t′|1/2)
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The Mean Field Equations (MFE): existence theorem

Properties of u:

u is bounded;

u is Lipschitzian;

u ∈ C2+α.

Associate to u the solution m of{
∂tm−∆m−div(m∇u) = 0
m(0) = m0,

which can be written as{
∂tm−∆m− 〈∇m,∇u〉 −m∆u = 0
m(0) = m0,
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∂tm−∆m−div(m∇u) = 0
m(0) = m0,

which can be written as{
∂tm−∆m− 〈∇m,∇u〉 −m∆u = 0
m(0) = m0.
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The Mean Field Equations (MFE): existence theorem

Step 3. The properties of Ψ and �xed point theorem

Properties of Ψ:

well de�ned (m ∈ C)
continuous

Schauder �xed point Theorem

Let X be a locally convex topological vector space. Let K ⊂ X be

a non-empty, convex and compact set. For any continuous function

f : K → K,

there exists x ∈ K such that f(x) = x.
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The Mean Field Equations (MFE): uniqueness theorem

As to uniqueness we suppose: for all m,m′ ∈ P1(Rd),m 6= m′,

ˆ
Rd

(F (x,m)− F (x,m′))d(m−m′)(x) > 0

Uniqueness Theorem

Under the above assumption, there exists a unique classical solution

to MFE.
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The link between MFG and MFE: abstract control problem

Consider the following abstract control problem:

Abstract problem

We have

a functional: J(α) = E
[´ T

0
1
2 |αt|

2 + F (Xt,mt)dt
]
,

a state: dXt = αtdt+
√

2dBt.

Find

inf
α
J(α)
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The link between MFG and MFE: abstract control problem

Resolution of abstract control problem

�x (u,m) solution to the MFE;

let X̄ solves

dX̄t = −∇u(X̄t, t)dt+
√

2dBt;

put

ᾱt = −∇u(X̄t, t);

Then

J(ᾱ) = inf
α
J(α).
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The link between MFG and MFE: abstract control problem

0 = E[u(XT , T )]

= E
[
u(X0, 0) +

ˆ T

0
∂tu(Xs, s) + 〈αs,∇u(Xs, s)〉+ ∆u(Xs, s)ds

]
= E

[
u(X0, 0) +

ˆ T

0

1

2
|∇u(Xs, s)|2 + 〈αs,∇u(Xs, s)〉 − F (Xs,ms)ds

]
notag

≥ E
[
u(X0, 0) +

ˆ T

0
−1

2
|αs|2 − F (Xs,ms)ds

]
= E [u(X0, 0)]− J(α).

Then

J(α) ≥ E [u(X0, 0)] .
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The link between MFG and MFE: asymptotic resolution of
MFG

We have the following situation:

a payo� for each player:

JNi (α1, · · · , αN ) = E

ˆ T

0

1

2
|αit|2 + F

Xi
t ,

1

N − 1

∑
j 6=i

δ
Xj

t

 dt


a state for each player:

dXi
t = αitdt+

√
2dBi

t
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The link between MFG and MFE: asymptotic resolution of
MFG

Main theorem

Fix (u,m) solution to MFE. For all i, put

dX̄i
t = −∇u(X̄i

t , t)dt+
√

2dBi
t

ᾱit = −∇u(X̄i
t , t)

Then (ᾱ1, · · · , ᾱN ) is a εN - Nash equilibrium for (JN1 , · · · , JNN )
with εN → 0 as N →∞.
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Then (ᾱ1, · · · , ᾱN ) is a εN - Nash equilibrium for (JN1 , · · · , JNN )
with εN → 0 as N →∞.

Valeria De Mattei Università di Pisa

An introduction to the theory of Mean Field Games



The link between MFG and MFE: asymptotic resolution of
MFG

Proof. We have to evaluate:

JNi (ᾱ1, · · · , ᾱN )− JNi ((ᾱj)j 6=i, α)

which is dominated by

JNi (ᾱ1, · · · , ᾱN )− J(ᾱi) + J(α)− JNi ((ᾱj)j 6=i, α).

It is su�cient to show that

JNi (ᾱ1, · · · , ᾱN )− J(ᾱi)→ 0

and

J(α)− JNi ((ᾱj)j 6=i, α)→ 0.
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The link between MFG and MFE: asymptotic resolution of
MFG

Consider the �rst:

JNi (ᾱ1, · · · , ᾱN )−J(ᾱi) ≤ E

ˆ T

0
d1

m(t),
1

N − 1

∑
j 6=i

δ
X̄j

t

 dt

 ,

which goes to zero, since X̄j are independent and identically

distributed with law m :

dX̄i
t = −∇u(X̄i

t , t)dt+
√

2dBj
t

∂tm−∆m− div(m∇u) = 0
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The link between MFG and MFE: asymptotic resolution of
MFG

So we get

ε1N = JNi (ᾱ1, · · · , ᾱN )− J(ᾱi)→ 0

ε2N = J(α)− JNi ((ᾱj)j 6=i, α)→ 0;

then

JNi (ᾱ1, · · · , ᾱN )− JNi ((ᾱj)j 6=i, α) ≤ εN
with

εN = ε1N + ε2N → 0.
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The link between MFG and MFE: asymptotic resolution of
MFG

The MFG evolves to:


−∂tu−∆u+ 1

2 |∇u|
2 = F (x,m)

∂tm−∆m−div(m∇u) = 0
u(x, T ) = 0
m(0) = m0,

optimality is given by the notion of ε− Nash equilibrium;

the optimal control is −∇u;
the law of the optimal state is m.
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