

Esercizi di preparazione al compitino #1

1.

Data la funzione f (x , y) = $4 x^3 + 3 y^4 - 12 x y$, trovare (se esistono) :

- i punti di massimo o minimo locali o assoluti;
- massimo e minimo nel dominio $x, y \ge 0$.

2.

Data la funzione f (x , y) = $e^{x-y} \sqrt{1 + x y}$, scrivere il polinomio di Taylor di grado 2 e punto iniziale (0 ,0).

3.

Integrare la funzione f (x , y) = $\frac{(x-y)^2}{1+(x-y)^2}$ nel dominio $0 \le x \le 2$, $0 \le x-y \le 2$, ponendo u = x , v = x - y.

4.

Integrare la funzione f (x , y , z) = log ($x^2 + y^2 + z^2$) nel dominio $x^2 + y^2 + z^2 \le 1$, $x^2 + y^2 \le z^2$, $z \ge 0$.

5.

Calcolare

$$\lim_{(x,y)\to(0,0)} \frac{x + (x + y)^2}{2x + y + (x + y)^2} \qquad \lim_{\|(x,y)\|\to+\infty} \frac{x - y}{(x + y)^3}$$

6.

Calcolare il volume della regione $x^2 + y^2 + z^2 \le 4$, $x^2 + y^2 \le 2$ y.

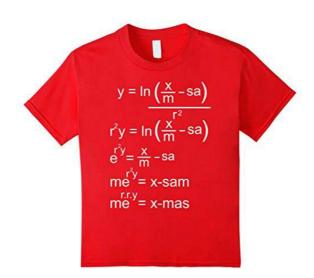
7.

Integrare la funzione f (x , y , z) = $z^2 + x$ y nel dominio $\sqrt{x^2 + y^2} \le z \le 1$.

8.

Dato il cono omogeneo di massa M definito da $0 \le z \le H$, $x^2 + y^2 \le z^2 R^2 / H^2$, calcolarne il momento di inerzia rispetto all'asse delle x.

9


Trovare massimo e minimo di f (x , y , z) = x + y z^2 nel dominio $\sqrt{x^2 + y^2} \le z \le \sqrt{1 - x^2 - y^2}$.

10.

Trovare le dimensioni di una scatola (priva della faccia superiore) dal volume V assegnato che abbia la superficie di area minima.

11.

Trovare la minima distanza della retta x + 2y + z = 1, 2x - y - 3z = 4 dall'origine.

