Ingegneria Aerospaziale. Corso di Analisi Matematica 1. Compito dell' 29 giugno 2009

1. Se $f: \mathbb{R} \to \mathbb{R}$ è definita da $f(x):=\frac{e^{-|x|}-1}{|x|}$ per $x \neq 0$ e f(0):=-1, allora (1/-1 p.)

- (a) f è continua su \mathbb{R} ; (b) f è derivabile in x = 0; (c) f è limitata su \mathbb{R} ; (d) f è pari su \mathbb{R} .

2. Se A é l'insieme $\{x \in \mathbb{R} : y^2 + 5 \ge x \, \forall y \in \mathbb{R}\}\$ allora (2/-.5 punti) :

(a)
$$\sup A = 0$$
, (b) $\sup A = 5$, (c) $\sup A = -5$, (d) $\sup A = -\infty$, (e) $\sup A = +\infty$.

3. Si calcolino i seguenti limiti di successione (2,5 punti ciascuno)

(a)
$$\lim_{n \to \infty} \frac{5^n}{n^{\ln(n)}}$$
 (b) $\lim_{n \to \infty} \frac{\ln^2(1 + \ln(n)) - \ln(n)}{\ln(n^2) + 9}$

4. Calcolare il seguente limite di funzione (5 punti)

$$\lim_{x \to 0} \left(\frac{\cos(2x)}{e^{-2x^2}} \right)^{\frac{1}{1 - \cos(x^2)}}$$

5. Quali delle affermazioni sono vere per il seguente problema di Cauchy (1/-1 p.)

$$y'' + y = \cos(x),$$
 $y(0) = 0,$ $y'(0) = 0$

$$(a) \ y(-x) = y(x), \quad (b) \ y'\left(\frac{\pi}{2}\right) = \frac{1}{2} + \frac{\pi}{4}, \quad (c) \ y\left(\frac{\pi}{2}\right) = \frac{\pi}{4}, \quad (d) \ \lim_{x \to +\infty} y(x) = +\infty.$$

6. Per quali valori di α converge la seguente serie numerica: (2/-0.5 p.)

$$\sum_{n=0}^{\infty} \frac{n^{\alpha}}{1 + n^{4\alpha - 1}}$$

$$(a) \ \alpha \in]-\infty, -1[\cup \left \lfloor \frac{2}{3}, +\infty \right \lceil, \ (b) \ \alpha \in]-\infty, -1[, \ (c) \ \alpha \in \left \lfloor \frac{2}{3}, +\infty \right \lceil, \ (d) \ \alpha \in \left \rfloor -1, \frac{2}{3} \right \lceil, \ (e) \ \alpha \in \mathbb{R}.$$

7. Calcolare il seguente integrale improprio (se esiste) (3 punti)

$$\int_0^{+\infty} \frac{1}{(25+x^2)(x+5)} \, dx$$

$$(x+1)y' = 2y - \frac{3x+3}{x+3}$$
, (per $x > -1$), $y(0) = y_0$.

- (a) Si scriva l'espressione della soluzione y(x) (in dipendenza da y_0) (2 p.);
- (b) si calcolino (al variare di y_0) i limiti di y(x) per $x \to -1^+$ e per $x \to +\infty$ (3 p.);
- (c) si tracci il grafico di y(x) per i valori (che si ritengono) più significativi di y_0 (1 p.);
- (d) si dica per quali valori di y_0 l'equazione $y(x) = \frac{1}{2}$ ha due soluzioni (1 p.).

Ingegneria Aerospaziale. Corso di Analisi Matematica 1. Compito dell' 29 giugno 2009

1. Se
$$f: \mathbb{R} \to \mathbb{R}$$
 è definita da $f(x) := \frac{e^{-|x|} - 1}{|x|}$ per $x \neq 0$ e $f(0) := -1$, allora (1/-1 p.)

- (a) f è derivabile in x = 0; (b) f è continua su \mathbb{R} ; (c) f è pari su \mathbb{R} ; (d) f è limitata su \mathbb{R} .
- 2. Se A é l'insieme $\{x \in \mathbb{R} : y^2 + 2 \ge x \,\forall y \in \mathbb{R}\}\$ allora (2/-.5 punti) :

(a)
$$\sup A = -\infty$$
, (b) $\sup A = -2$, (c) $\sup A = 0$, (d) $\sup A = 2$, (e) $\sup A = +\infty$.

3. Si calcolino i seguenti limiti di successione (2,5 punti ciascuno)

(a)
$$\lim_{n \to \infty} \frac{\ln^3 (1 + \ln(n)) - \ln(n)}{\ln(n^3) + 6}$$
 (b) $\lim_{n \to \infty} \frac{4^n}{n^{\ln(n)}}$

4. Calcolare il seguente limite di funzione (5 punti)

$$\lim_{x \to 0} \left(\frac{\cos(2x)}{e^{-2x^2}} \right)^{\frac{1}{1 - \cos(x^2)}}$$

5. Quali delle affermazioni sono vere per il seguente problema di Cauchy (1/-1 p.)

$$y'' + y = \cos(x),$$
 $y(0) = 0,$ $y'(0) = 0$

(a)
$$y'\left(\frac{\pi}{2}\right) = \frac{1}{2} + \frac{\pi}{4}$$
, (b) $y(-x) = y(x)$, (c) $\lim_{x \to +\infty} y(x) = +\infty$, (d) $y\left(\frac{\pi}{2}\right) = \frac{\pi}{4}$.

6. Per quali valori di α converge la seguente serie numerica: (2/-0.5 p.)

$$\sum_{n=0}^{\infty} \frac{n^{\alpha}}{1 + n^{5\alpha - 1}}$$

$$(a) \ \alpha \in \mathbb{R}, \ (b) \ \alpha \in]-\infty, -1[\cup \left\lfloor \frac{1}{2}, +\infty \right\lceil, \ (c) \ \alpha \in]-\infty, -1[, \ (d) \ \alpha \in \left\lfloor \frac{1}{2}, +\infty \right\lceil, \ (e) \ \alpha \in \left\lfloor -1, \frac{1}{2} \right\rfloor.$$

7. Calcolare il seguente integrale improprio (se esiste) (3 punti)

$$\int_0^{+\infty} \frac{1}{(16+x^2)(x+4)} \, dx$$

$$(x+1)y' = 2y - \frac{3x+3}{x+3}$$
, (per $x > -1$), $y(0) = y_0$.

- (a) Si scriva l'espressione della soluzione y(x) (in dipendenza da y_0) (2 p.);
- (b) si calcolino (al variare di y_0) i limiti di y(x) per $x \to -1^+$ e per $x \to +\infty$ (3 p.);
- (c) si tracci il grafico di y(x) per i valori (che si ritengono) più significativi di y_0 (1 p.);
- (d) si dica per quali valori di y_0 l'equazione $y(x) = \frac{1}{2}$ ha due soluzioni (1 p.).

Ingegneria Aerospaziale. Corso di Analisi Matematica 1.

Compito dell' 29 giugno 2009

1. Se
$$f : \mathbb{R} \to \mathbb{R}$$
 è definita da $f(x) := \frac{e^{-|x|} - 1}{|x|}$ per $x \neq 0$ e $f(0) := -1$, allora (1/-1 p.)

2. Se
$$A$$
 é l'insieme $\{x \in \mathbb{R} : y^2 + 4 \ge x \, \forall y \in \mathbb{R}\}$ allora (2/-.5 punti) :

(a)
$$\sup A = 0$$
, (b) $\sup A = -\infty$, (c) $\sup A = +\infty$, (d) $\sup A = 4$, (e) $\sup A = -4$.

3. Si calcolino i seguenti limiti di successione (2,5 punti ciascuno)

(a)
$$\lim_{n \to \infty} \frac{3^n}{n^{\ln(n)}}$$
 (b) $\lim_{n \to \infty} \frac{\ln^4(1 + \ln(n)) - \ln(n)}{\ln(n^4) + 1}$

4. Calcolare il seguente limite di funzione (5 punti)

$$\lim_{x \to 0} \left(\frac{\cos(2x)}{e^{-2x^2}} \right)^{\frac{1}{1 - \cos(x^2)}}$$

5. Quali delle affermazioni sono vere per il seguente problema di Cauchy (1/-1 p.)

$$y'' + y = \cos(x),$$
 $y(0) = 0,$ $y'(0) = 0$

(a)
$$y\left(\frac{\pi}{2}\right) = \frac{\pi}{4}$$
, (b) $\lim_{x \to +\infty} y(x) = +\infty$, (c) $y(-x) = y(x)$, (d) $y'\left(\frac{\pi}{2}\right) = \frac{1}{2} + \frac{\pi}{4}$.

6. Per quali valori di α converge la seguente serie numerica: (2/-0.5 p.)

$$\sum_{n=0}^{\infty} \frac{n^{\alpha}}{1 + n^{2\alpha - 1}}$$

$$(a) \ \alpha \in]-1,2[\ , \ (b) \ \alpha \in \mathbb{R}, \ (c) \ \alpha \in]-\infty,-1[\cup \]2,+\infty[\ , \ (d) \ \alpha \in]-\infty,-1[\ , \ (e) \ \alpha \in \]2,+\infty[\ .$$

7. Calcolare il seguente integrale improprio (se esiste) (3 punti)

$$\int_0^{+\infty} \frac{1}{(9+x^2)(x+3)} \, dx$$

$$(x+1)y' = 2y - \frac{3x+3}{x+3}$$
, (per $x > -1$), $y(0) = y_0$.

- (a) Si scriva l'espressione della soluzione y(x) (in dipendenza da y_0) (2 p.);
- (b) si calcolino (al variare di y_0) i limiti di y(x) per $x \to -1^+$ e per $x \to +\infty$ (3 p.);
- (c) si tracci il grafico di y(x) per i valori (che si ritengono) più significativi di y_0 (1 p.);
- (d) si dica per quali valori di y_0 l'equazione $y(x) = \frac{1}{2}$ ha due soluzioni (1 p.).

Ingegneria Aerospaziale. Corso di Analisi Matematica 1. Compito dell' 29 giugno 2009

1. Se $f: \mathbb{R} \to \mathbb{R}$ è definita da $f(x) := \frac{e^{-|x|} - 1}{|x|}$ per $x \neq 0$ e f(0) := -1, allora (1/-1 p.)

- (a) f è pari su \mathbb{R} ; (b) f è limitata su \mathbb{R} ; (c) f è derivabile in x=0; (d) f è continua su \mathbb{R} .

2. Se A é l'insieme $\{x \in \mathbb{R} : y^2 + 1 \ge x \, \forall y \in \mathbb{R} \}$ allora (2/-.5 punti) :

(a)
$$\sup A = 0$$
, (b) $\sup A = -1$, (c) $\sup A = 1$, (d) $\sup A = +\infty$, (e) $\sup A = -\infty$.

3. Si calcolino i seguenti limiti di successione (2,5 punti ciascuno)

(a)
$$\lim_{n \to \infty} \frac{\ln^5 (1 + \ln(n)) - \ln(n)}{\ln(n^5) + 4}$$
 (b) $\lim_{n \to \infty} \frac{2^n}{n^{\ln(n)}}$

4. Calcolare il seguente limite di funzione (5 punti)

$$\lim_{x \to 0} \left(\frac{\cos(2x)}{e^{-2x^2}} \right)^{\frac{1}{1 - \cos(x^2)}}$$

5. Quali delle affermazioni sono vere per il seguente problema di Cauchy (1/-1 p.)

$$y'' + y = \cos(x),$$
 $y(0) = 0,$ $y'(0) = 0$

(a)
$$\lim_{x \to +\infty} y(x) = +\infty$$
, (b) $y\left(\frac{\pi}{2}\right) = \frac{\pi}{4}$, (c) $y'\left(\frac{\pi}{2}\right) = \frac{1}{2} + \frac{\pi}{4}$, (d) $y(-x) = y(x)$.

6. Per quali valori di α converge la seguente serie numerica: (2/-0.5 p.)

$$\sum_{n=0}^{\infty} \frac{n^{\alpha}}{1 + n^{3\alpha - 1}}$$

$$(a) \ \alpha \in \left]1,+\infty\right[, \ (b) \ \alpha \in \left]-1,1\right[, \ (c) \ \alpha \in \mathbb{R}, \ (d) \ \alpha \in \left]-\infty,-1\right[\cup\left]1,+\infty\right[, \ (e) \ \alpha \in \left]-\infty,-1\left[-\infty\right]$$

7. Calcolare il seguente integrale improprio (se esiste) (3 punti)

$$\int_0^{+\infty} \frac{1}{(4+x^2)(x+2)} \, dx$$

$$(x+1)y' = 2y - \frac{3x+3}{x+3}$$
, (per $x > -1$), $y(0) = y_0$.

- (a) Si scriva l'espressione della soluzione y(x) (in dipendenza da y_0) (2 p.);
- (b) si calcolino (al variare di y_0) i limiti di y(x) per $x \to -1^+$ e per $x \to +\infty$ (3 p.);
- (c) si tracci il grafico di y(x) per i valori (che si ritengono) più significativi di y_0 (1 p.);
- (d) si dica per quali valori di y_0 l'equazione $y(x) = \frac{1}{2}$ ha due soluzioni (1 p.).