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Abstract

We prove an extension of the Ocone–Karatzas integral representation, valid for all BV functions on the
classical Wiener space. We also establish an elementary chain rule formula and combine the two results to
compute explicit integral representations for some classes of BV composite random variables.
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1. Introduction

Functions of bounded variation (BV ) in a Gaussian Banach space setting were first
investigated by Fukushima and Hino in [6,7], using techniques from the theory of Dirichlet
forms. More recently, Ambrosio and his co-workers have given an alternative approach, in [3],
by adapting techniques from geometric measure theory.

The most important example of an infinite-dimensional Gaussian space is given by the
classical Wiener space (Ω ,A,P), i.e. the space of trajectories of the Wiener process. This was the
setting where the Malliavin calculus was originally developed and still most of its applications
are formulated. Since BV functions generalize Malliavin differentiable functions, we specialize
here the general results valid for all Gaussian spaces, work on explicit examples and consider
new problems which appear naturally, in connection with stochastic analysis. Thus, all the results
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given here are formulated in this setting, though some of them are certainly valid in any abstract
Wiener space.

One of the aims of this paper is to study how the theory of BV functions can be a useful
additional tool, even when dealing with classical problems. We believe that the extension of the
Ocone–Karatzas formula, Theorem 16, can be regarded as the best example, in this direction,
among those presented in this paper.

Roughly speaking, a real function f defined on the classical Wiener space is BV if it admits
an L2 (0, T )-valued measure D f which plays the role of a Malliavin derivative, so that an
integration by parts identity holds true. Generalizing the situation of differentiable functions,
where the Malliavin derivative is a stochastic process, D f can be seen as a measure on the
product space (Ω × [0, T ],A⊗ B (0, T )) and processes can be integrated with respect to it.

Notably, D f can be not absolutely continuous with respect to P ⊗ λ (where λ is the Lebesgue
measure). However, if we introduce the strictly predictable σ -algebraP , which is slightly smaller
than the usual σ -algebra of predictable sets in Ω × [0, T ], then D f restricted to P becomes
absolutely continuous with respect to P ⊗ λ. Moreover, if H = (Hs)0≤s≤T is a version of the
density, then

f = E [ f ] +

 T

0
HsdWs .

This is, informally, the content of Theorem 16, that is our extension of the classical
Ocone–Karatzas formula, originally proved in [8], which identifies the integrand in the Itô
representation of a random variable in terms of its Malliavin derivative. In the differentiable
case, one usually writes Hs = E (∂s f |Fs), for λ-a.e. s ∈ [0, T ]. Proposition 13 shows that an
similar result holds true in the BV case, which can be useful when dealing with concrete cases,
although from a higher point of view the process H should be considered as the (dual) predictable
projection of the measure D f .

BV functions can be helpful when dealing with a composite function f = φ ◦ g, where g is
a real random variable, differentiable in the Malliavin sense, and φ is a Euclidean BV function.
In such a case, as in the classical theory of Euclidean BV functions, many problems for general
functions can be reduced to the case of indicator functions of level sets {x > g}, which can be
shown to be BV , under certain assumptions. Moreover, an explicit chain rule formula can be
obtained (Propositions 8 and 10). We remark here that this chain rule is still very distant from
the deep results which can be obtained in the Euclidean setting, but it can be useful when dealing
with applications.

Indeed, as an application, we combine the extended Ocone–Karatzas formula and the
chain rule, to obtain explicit representations for some functionals of the Wiener process
(Propositions 20 and 22). While the former result is well-known, nevertheless we believe that the
theory of BV functions provides, we believe, a clear proof without advanced technical results,
such as the theory of distributions on Wiener spaces.

This paper is organized as follows: in Section 2, we fix some notation and provide the
definition of BV functions together with the main approximation result, Theorem 6, without
proof. Other technical results, e.g. on the Orlicz space L log1/2 L , are collected, for the
convenience of the reader. In Section 3, we investigate a chain rule for a special class of
BV functions. Here, we use an approximation result for Euclidean BV functions, though an
elementary proof is given for the special case of indicator functions of level sets. In Section 4,
the extended Ocone–Karatzas formula is established, after some remarks on the notion of
predictability. In Section 5, applications and examples are discussed.
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2. Notation and preliminary results

2.1. Malliavin calculus

Let us fix T > 0 and consider the classical Wiener space (Ω ,A,P), where Ω = C0 ([0, T ])

is the space of real continuous functions ω, with ω (0) = 0, A is the σ -algebra of Borel sets of
Ω , and P is the Wiener measure on A. By definition, with respect to the probability measure P,
the canonical process (Wt )0≤t≤T , given by Wt (ω) = ω (t), is a Wiener process starting from the
origin.

For a complete exposition of the Malliavin calculus on the classical Wiener space, we refer
to [11]. Here, we recall some basic facts, together with some minor changes in the notation,
which turn out to be more convenient, when dealing with BV functions.

We write L2 (0, T ) for L2 ([0, T ], λ), where λ is the Borel–Lebesgue measure, restricted to
the interval [0, T ]. We write ⟨k1, k2⟩2 for the scalar product between k1, k2 ∈ L2 (0, T ).

The classical Cameron–Martin space H1
0 ⊂ Ω is the space of real continuous functions h on

[0, T ], such that, for some k ∈ L2 (0, T ),

h (t) =

 t

0
k (s) ds,

for every 0 ≤ t ≤ T . Therefore k = h′, λ-almost everywhere. Endowed with the scalar product
⟨h1, h2⟩H1

0
=


h′

1, h′

2

2, H1

0 is a Hilbert space isomorphic to L2 (0, T ).

The Wiener integral construction allows us to identify L2 (0, T ) with a subspace of L2

(Ω ,A,P), and therefore H1
0 with the same subspace, with the correspondence h → W


h′


= T

0 h′ (s) dWs .
For n ≥ 1, given an n + 1-uple of times J = (t0, . . . , tn), with 0 ≤ t0 < · · · < tn ≤ T , we

define

∆J W =

Wt1 − Wt0 , . . . ,Wtn − Wtn−1


. (1)

We will often omit the subscript J and simply write ∆W .
A smooth function f is a real function of the form f = φ (∆J W ) for some J as above and

some φ ∈ C1
b (R

n). We remark that P plays no role in this definition, thus allowing us to consider
different measures on (Ω ,A).

It can be shown that any f = φ (∆W ), with a bounded continuous φ, is the pointwise limit
of a uniformly bounded sequence of smooth functions: indeed, it is sufficient to approximate φ
with a sequence of smooth functions on Rn . Then, by the monotone class theorem, or another
equivalent approximation argument, we obtain that, given a finite positive measure µ, smooth
functions are dense in L p (Ω ,A, µ), for every 1 ≤ p < ∞. In particular, this holds true for
µ = P. We will often write L p (P) = L p (Ω ,A,P).

By definition, the Malliavin derivative of a smooth function f = φ (∆W ) is the application
∇ f : Ω → L2 (0, T ),

∇ f (ω) =

n
i=1

∂iφ (∆W (ω)) I]ti−1,ti ] ∈ L2 (0, T ) .

The Malliavin derivative is well-defined, since
∇ f, h′


2 =

n
i=1

∂iφ (∆W )

h (ti )− h (ti−1)


= ∂h f.
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Given h ∈ H1
0 and smooth functions f, g, if we write ∂∗

h g = ∂h g − gW

h′


, the integration by

parts formula holds,

E [(∂h f ) g] = −E


f ∂∗

h g

.

It follows that, for every p ≥ 1, the linear operator ∇ is well-defined on a dense subset of L p (P),
with values in L p 

P; L2 (0, T )

, and closable. We denote the domain of its closure by D1,p.

By an explicit approximation, ∇W (k) = k, for every k ∈ L2 (0, T ). Therefore, our definition
of smooth functions provides a construction of the Malliavin derivative, equivalent to that in [11].

The fact that the Malliavin derivative of a random variable can be identified with a process
is a consequence of the following elementary result, which can be easily proved by a density
argument. We prefer to state it as a lemma, since it will be used again when dealing with BV
functions.

Lemma 1. Given a positive measure ν on (Ω ,A), there is a linear continuous immersion

L1

Ω , ν; L2 (0, T )


→ L1 (Ω × [0, T ],A⊗ B ([0, T ]) , ν ⊗ λ)

that maps every F to a process Fν such that, ν-almost everywhere, the function t → Fνt (ω)
coincides with F (ω), λ-almost everywhere. Moreover,

Ω×[0,T ]

Fν d (µ⊗ λ) ≤ T 1/2

Ω

|F |2 dν.

Therefore, given f ∈ D1,1, we write (∂t f )0≤t≤T for the process ∇ f P given by the lemma
above. For every k ∈ L2 (0, T ),

⟨∇ f, k⟩2 =

 T

0
∂s f k (s) ds, P a.s..

2.2. The space L log1/2 L

We write A1/2 for the real continuous convex function

x → A1/2 (x) =


|x |

0
log1/2 (1 + s) ds.

By definition, L log1/2 L = L log1/2 L (P) is the vector space of real random variables X ,
such that, for some k > 0, A1/2 (X/k) ∈ L1 (P). Endowed with the Luxembourg norm

∥X∥L log1/2 L = inf

k > 0 : E


A1/2 (X/k)


≤ 1


,

it is a particular case of an Orlicz space, and therefore a Banach space.
Orlicz spaces generalize L p spaces and, if the function which defines the norm does not grow

too fast, many properties can be stated and proved in exactly the same way. L log1/2 L is such an
example of slow growth, since for every real 0 < k1 < k2 and every real x ,

log1/2 (1 + x/k1) /k1 < (k2/k1)
3/2 log1/2 (1 + x/k2) /k2.

It follows that

E

A1/2 (X/k1)


≤ (k2/k1)

3/2 E

A1/2 (X/k2)


,

and so, if X ∈ L log1/2 L then, for every k > 0, A1/2 (X/k) is integrable.
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Given X ∈ L log1/2 L and a real random variable Y with centered normal law then, for some
C (Y ),

E [|XY |] ≤ C (Y ) ∥X∥L log1/2 L . (2)

This follows, for example, from Young’s inequality for A1/2,

|xy| ≤ A1/2 (x)+


|y|

0


et2

− 1


dt ≤ A1/2 (x)+ |y| ey2
,

and taking expectation, with x = X/ ∥X∥L log1/2 L and y = Y/2


E

Y 2


.

In the context of Malliavin differentiable functions, an important consequence of the result
above is that, given a smooth function g and h ∈ H1

0 , E


f ∂∗

h g


is well-defined whenever
f ∈ L log1/2 L .

Remark 2. Another fundamental fact, of which we will make implicit use, since it is partially
contained in Theorem 6, is the existence of a continuous embedding of D1,1 into L log1/2 L
(see [7, Proposition 3.2]). We remark that, in turn, this is a consequence of the Gaussian
isoperimetric inequality (see [10]).

For the reader’s convenience we state here a technical result concerning the convergence of
closed martingales in the space L log1/2 L , which will be used in the proof of Theorem 16. Since
it is a special case of classical results (see Lemma 2 in [13]), we omit the proof.

Lemma 3. Given a discrete filtration G = (Gn)n≥1, with


n Gn = A, and a G-martingale
(Mn)n≥1, closed by a random variable M ∈ L log1/2 L (so that for every n ≥ 1, Mn =

E [M |Gn]), then the sequence (Mn)n≥1 converges to M in L log1/2 L.

2.3. L2(0, T )-valued measures

We write M = M 
Ω; L2 (0, T )


for the space of L2 (0, T )-valued σ -additive measures on

(Ω ,A), with finite total variation |µ|. We recall that |µ| is a measure on (Ω ,A), given by

|µ| (A) := sup


n≥1

|µ (An)|2 : A =


n≥1

An


< ∞,

where the supremum runs along every countable measurable partition of A.
By the polar decomposition theorem, given µ ∈ M, there exists an L2 (0, T )-valued

measurable application σ , with |σ | (ω) ≤ 1, for all ω, such that, for every measurable set A,
and every k ∈ L2 (0, T ),

⟨µ (A) , k⟩2 =


IA ⟨σ, k⟩2 d |µ| .

The member on the right clearly defines a real measure, which we denote by ⟨µ, k⟩2. The
decomposition above allows us to integrate L2 (0, T )-valued applications. We define

⟨F, dµ⟩2 =


⟨σ, F⟩2 d |µ| ,

if ⟨σ, F⟩2 ∈ L1 (|µ|). Since such applications can be seen as processes, we identify µ with a real
measure on the product space. More precisely, we apply Lemma 1 with ν = |µ| and consider the
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measure µ̃ = σ |µ|
· (|µ| ⊗ λ). Given a process F = f I]s,t], with smooth f and 0 ≤ s ≤ t ≤ T ,

then 
⟨F, dµ⟩2 =


f d


µ, I]s,t]


2 =


Ω

f (ω)
 t

s
σ |µ| (ω, r) dr


|µ| (dω) .

2.4. BV functions

The following condition shows that the integration by parts formula plays a central role in the
theory of Malliavin calculus: f ∈ D1,p, with 1 ≤ p < ∞, if and only if f ∈ L p (P) and there
exists some F ∈ L p 

Ω ,P; L2 (0, T )


such that, for every smooth g and every h ∈ H1
0 ,

E


F, h′

2 g


= −E


f ∂∗

h g

. (3)

In such a case, F = ∇ f .
We can read the left member in (3) as the integral of g, with respect to the real measure

F, h′

· P. Informally, a function f is said to be of bounded variation, if we require only that

there exists a measure, such that the same condition is satisfied.

Definition 4. A real function f is said to be of bounded variation (BV ), with respect to P, if
f ∈ L log1/2 L (P), and there exists a measure D f ∈ M, such that, for every h ∈ H1

0 and every
smooth g,

g d

D f, h′


2 = −E


f ∂∗

h g

.

The quantity |D f | (Ω) is called the total variation of f . The real measure

D f, h′


2 is denoted

with Dh f .

Remark 5. In the article [3], it is required for a smooth function to be of the form
φ (W (k1) , . . . ,W (kn)), where φ is smooth and each ki ∈ L2 (0, T ) is a function of bounded
variation on [0, T ], so that W (ki ) is linear and continuous on Ω . Therefore, although the
definitions are formally identical, the class of BV functions introduced above could be larger
than that considered there. However, by an approximation argument, it can be shown that they
coincide.

Any function f ∈ D1,1 is BV , with D f = ∇ f · P, because the integrability condition
follows from the continuous embedding of D1,1 in L log1/2 L (P) (see Remark 2). Actually, a
BV function f admits a Malliavin derivative if and only if |D f | is absolutely continuous with
respect to P.

As a consequence of the general results about L2 (0, T )-valued measures, in all what follows
we will identify the measure D f with a measure on the product space Ω × [0, T ]. We can even
define a BV -analogue of the process (∂t f )0≤t≤T : given a version σ of the density of D f with
respect to |D f | ⊗ λ, we define Dt f = σ (t) · (|D f | ⊗ λ). The family of measures (Dt f )0≤t≤T
is defined up to λ-negligible sets.

We consider now the approximability of BV functions with regular functions. To make
a comparison with the differentiable case, we recall that, for p > 1, given a sequence
( fn)n≥1 in D1,p, convergent to some f in L p (P) and such that (∇ fn)n≥1 is bounded in
L p 

Ω ,P; L2 (0, T )

, then f ∈ D1,p (see [11, Lemma 1.2.3, p. 28], for the case p = 2). Such
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a conclusion does not hold, for p = 1: however, the next theorem shows that f must be a BV
function, and all BV functions can be obtained with a similar approximation. Proofs can be found
in [7, Theorem 3.7], or in [3, Theorem 4.1].

Theorem 6. Given f ∈ L1 (P), the following conditions are equivalent:
1. f is of bounded variation;
2. there exists a sequence of functions ( fn)n≥1, bounded in D1,1 and convergent to f in L1 (P);
In such a case,

|D f | (Ω) ≤ lim inf
n

E

|∇ fn|2


,

and there exists a sequence ( fn)n≥1 such that equality is attained.

We remark that in the theorem above, the second condition does not mention the space
L log1/2 L: this follows by the continuous embedding discussed in Remark 2. In this sense, the
extra integrability condition required in the definition of BV functions is technical but natural.

3. A chain rule

For a composite function f = φ ◦ g, under certain assumptions on φ and g, we can conclude
that f is BV and write an explicit formula for the integral of smooth functions with respect to
any measure Dh f .

A chain rule for the Malliavin derivative (see [11, Proposition 1.2.3, p. 28]) reads as follows:
given g1, . . . , gn ∈ D1,1 and φ ∈ C1

b (R
n), then f = φ (g1, . . . , gn) ∈ D1,1 and

∇ f =

n
i=1

∂iφ (g1, . . . , gn)∇gi .

When φ is a Euclidean BV function, we would like to conclude that f is BV (for the general
theory of Euclidean BV functions, see [2]). Before stating some precise results, we give here
a formal derivation of the chain rule in the simple case of gi = W (ki ), with {k1, . . . , kn}

orthonormal in L2 (0, T ). Under this assumption, the joint law of g = (W (k1) , . . . ,W (kn))

is the standard Gaussian law on Rn and we write ρ for its continuous density. Given a bounded
random variable u, there exists some Borel function v such that E [u|g] = v (g). For brevity, we
write v (x) = E [u|g = x]. For h ∈ H1

0 , when φ ∈ C1
b (R

n), we integrate the chain rule above:

E

u


h′,∇ f


=

n
i=1

E

u∂iφ (g)


k1, h′


2


.

The left member above can be replaced with


u Dh f , which is defined when f is BV . For the
right member, we take the conditional expectation with respect to g and we find that

u Dh f =

n
i=1


Rn

E [u|g = x]

k1, h′


2 ρ (x) ∂iφ (x) λn (dx) .

When φ is a Euclidean BV function, we would like to replace ∂iφ (x) λn (dx) with Diφ (dx).
However, we notice that the integrand in the right member above is defined λn-a.e. and, since
|Diφ| can be singular with respect to λn , it is clear that some assumptions on u are necessary to
give a precise meaning to the expression. In this setting, the following result can be established,
but we omit its proof.
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Proposition 7. With the notation as above, if u is cylindrical and continuous, then there exists a
continuous representative of E [u|g = x] and, if ρ · |Dφ| is a finite measure, then f is BV and

u Dh f =

n
i=1


Rn

E [u|g = x]

k1, h′


2 ρ (x) Diφ (dx) ,

where the integrand is intended as its continuous representative.

By a density argument, the formula above identifies the measure D f as an expression of Dφ
and ∇W (ki ) = ki .

We turn now our attention to some chain rule formulas valid with less regularity assumptions.
In what follows, we consider the case n = 1 only, but we do not limit ourselves to a Wiener
integral: more precisely, we assume that g belongs to D1,1 and moreover that its law is absolutely
continuous with respect to λ, with a locally bounded density ρ.

Given an integrable random variable X , we write

x → E [X |g = x] ,

for the equivalence class in L1 (ρ · λ) of any Borel function h : R → R such that h ◦ g =

E [X | g].
We introduce the following notation:

ξ (x) = ρ (x)E

|∇g|2 |g = x


,

which defines an element of L1 (λ). We assume that ξ is locally bounded and write ξ∗ (x) =

lim infn→∞ n
 x+1/n

x ξ (t) dt .

Proposition 8. For every real x, the level set indicator function f x
= I]x,∞[ (g) = I{g>x} is BV

and |D f x |2 (Ω) ≤ ξ∗ (x).
Let u be a smooth cylindrical function and h ∈ H1

0 . Then, for λ-a.e. x,
u Dh f x

= ρ (x)E

u


∇g, h′


2 |g = x


.

Remark 9. The left member in the identity above is a continuous function of x , since it coincides
with −E


f x∂∗

h u


and the law of g has no atoms. Therefore, the right member above admits a
continuous representative.

Proof. For x ∈ R, for n ≥ 1, we define

φx
n (t) = (n(t − x) ∧ 1) ∨ 0,

and write f x
n = φx

n ◦ g. The sequence


f x
n


n≥1 converges to f x in every L p (P), for p ≥ 1. By
the classical chain rule, f x

n admits a Malliavin derivative given by

∇ f x
n = nI]x,x+1/n[ (g)∇g.

Then, conditioning with respect to g,

E
∇ f x

n

2


= n

 x+1/n

x
ξ (t) dt,

which is bounded for n → ∞. By Theorem 6, the first statement is proved.
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Given u and h as in the second statement, we write the integration by parts identity for every
f x
n :

−E

∂∗

h u f x
n


= E

u


∇ f x

n , h′

2


.

We take the conditional expectation with respect to g and integrate with respect to its law,

−E

∂∗

h u f x
n


= n
 x+1/n

x
ρ (t)E


u


∇g, h′


2 |g = t


dt.

As n → ∞, the right member above converges to ρ (x)E

u


∇g, h′


2 |g = x


, for λ-a.e. x , while

the left member converges to −E

∂∗

h u f x, for every x . �

Once the case of level sets is settled, we consider a φ ∈ BVloc (λ) such that and |Dφ| has
compact support, contained in an interval [−M,M], for some M > 0. In particular, such a φ
is λ-a.e. constant for |x | large (possibly with two different values according to the sign of x).
Therefore, φ differs from a Euclidean BV function with compact support contained in the same
interval [−M,M], by adding a suitable constant function and a multiple of an indicator function
of an unbounded interval. We write CM for a real number such that ξ (x) ≤ CM for λ-a.e.
x ∈ [−M,M].

Proposition 10. With the notation above, f = φ ◦ g is BV , with |D f | (Ω) ≤ CM |Dφ| (R).
Let u be a smooth cylindrical function and h ∈ H1

0 . Then,
u Dh f =


R
ρ (x)E


u


∇g, h′


2 |g = x


Dφ (dx) (4)

where the integrand on the right is intended as its continuous representative.

Proof. We can suppose that φ ∈ BV (λ) has compact support. By the Euclidean analogue of
Theorem 6 (see [2, Theorem 3.9]) there exists a sequence of smooth functions with compact
support (φn)n≥1, convergent to φ in L1 (λ), such that the sequence of derivatives


φ′

n


n≥1 is
bounded in L1 (λ). We define fn = φn ◦ g, so that, for some C > 0,

E [| fn − f |] =


|φn − φ| ρdλ ≤ C ∥φn − φ∥L1 .

By the chain rule for differentiable functions, for every n ≥ 1,

∇ fn = φ′
n (g) · ∇g.

Taking expectations and conditioning with respect to g,

E

|∇ fn|2


= E

φ′
n (g)

 E

|∇g|2 | g


.

Integrating with respect to the law of g, the right member above is equal to
R

φ′
n (x)

 ξ (x) dx ≤ CM


R

φ′
n (x)

 dx,

and we conclude that f is BV .
To obtain the chain rule (4), we can suppose that the sequence of measure derivatives

(Dφn)n≥1 (where Dφn = φ′
n · λ) converges in the duality with bounded continuous functions. It
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is not hard to see that Eq. (4) holds true with φn instead of φ and therefore holds true in the limit,
if the integrand is intended as its continuous representative. �

Remark 11. If ξ admits a continuous representative, we obtain the stronger estimate |D f | (Ω) ≤
R ξ (x) |Dφ| (dx).

In the last section we will be given a Borel function U (x, r), such that, for some s ∈ [0, T ]

and λ-a.e. r ≥ s, U (x, r) is a version of ρ (x)E [u∂r g|g = x], continuous in x . In order to obtain
a chain rule in terms of U , we make some additional boundedness assumptions.

Proposition 12. Assume that, for every real x, r → U (x, r) belongs to L2 (0, T ), and the
function x → |U (x, ·)|2 is locally bounded. Then, for λ-a.e. r ≥ s,

u Dr f =


R

U (x, r) Dφ (x) . (5)

Proof. The following elementary fact will be useful. Let (kn)n≥1 be a bounded sequence in
L2 (0, T ) convergent λ-a.e. to some function k. Then k ∈ L2 (0, T ) and the sequence converges
weakly to k.

Because of the assumptions and the fact stated above, for every h ∈ H1
0 with h (r) = 0 if

r < s,
 T

0 U (x, r) h′ (r) dr , is well defined and continuous as a function of x . Moreover, if
ψ ∈ Cc (R), then

R
ψ (x)

 T

0
U (x, r) h′ (r) drdx =

 T

0
E [u (ψ ◦ g) ∂r g] h′ (r) dr,

since for every r ≥ s, U (x, r) is a version of ρ (x)E [u∂r g|g = x]. We can exchange
integration and expectation above, because u (ψ ◦ g) is bounded, and we conclude that T

0 U (x, r) h′ (r) dr = ρ (x)E

u


∇g, h′


2 |g = x


for λ-a.e. x . This suffices to settle the case

of indicator functions of level sets.
For the case of a function φ, which we suppose of compact support, we consider again an

approximation with smooth functions (φn)n≥1 with derivatives of compact support, such that
(Dφn)n≥1 weakly converges to Dφ. For every n, and every h ∈ H1

0 , with h′ (r) = 0 if r < s, T

0
h′ (r)


R

U (x, r) Dφn (x) dr =


R
ρ (x)E


u


∇g, h′


2 |g = x


Dφn (x) .

Then, for λ-a.e. r ≥ s,


R ρ (x)E [u∂r g|g = x] Dφn (x) tends to the left member in Eq. (5), since
the integrand is continuous. Moreover, the sequence is bounded in L2 (s, T ), since the integrand
is locally bounded,R

ρ (x)E [u∂r g|g = x] Dφn (x)

2

≤ C |Dφn| (R) .

As n → ∞, the fact stated at the beginning of the proof applies again and we conclude that T

0
h′ (r)


R

U (x, r) Dφ (x)


dr =


u Dh f =

 T

0
h′ (r)


u Dr f


dr. �
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4. Ocone–Karatzas formula for BV functions

4.1. Predictable processes and projections

Given a filtration G = (Gt )0≤t≤T , a G-predictable rectangle is a subset of the product space
Ω × [0, T ], of the form

A×]s, t],

where A ∈ Gs . The G-predictable σ -algebra of sets PG is, by definition, generated by the family
of all G-predictable rectangles. A stochastic process is said G-predictable if it is measurable with
respect to PG .

Usually, one takes G = FP, the natural filtration of the Wiener process, completed with all
the P-negligible Borel sets, thus satisfying the so-called usual conditions, and simply speaks
of predictable rectangles, predictable σ -algebra (PP) and predictable processes. Since we are
dealing with measures, in general, not absolutely continuous with respect to P, we consider
the case when G = F is just the natural filtration of the Wiener process, and speak of strictly
predictable rectangles, strictly predictable σ -algebra (P) and strictly predictable processes, for
the correspondent F-predictable objects.

By a monotone class argument, every predictable process coincides P ⊗λ-almost everywhere
with a strictly predictable process.

A smooth process is a finite linear combination of strictly predictable processes of the form

f I]s,t],

where f is smooth. The strict predictability implies that f can be written as φ (∆J W ) for
some ∆J W , as introduced in (1), such that sn ≤ s. By a direct approximation of cylindrical
functions with smooth functions and a monotone class argument, smooth processes are dense
in every L p (Ω × [0, T ],P, µ), for 1 ≤ p < ∞, where µ is any positive finite measure on P .
Therefore, if we are given two real measures µ, ν on P such that for every smooth process F ,

Fdµ =


Fdν, then µ = ν.
The classical Ocone–Karatzas formula contains the stochastic integral of a predictable process

H = (Hs)0≤s≤T , which can be correctly defined as the density of the measure ∇ f · (P ⊗ λ)

restricted to the strictly predictable σ -algebra P , with respect to P ⊗ λ. The process H is also
identified by the condition Hs = E [∂s f |Fs], for λ-a.e. s ∈ [0, T ]. We can see Hs as the density
of ∂s f · P, restricted to Fs , with respect to P (also restricted).

Given a BV function f , Theorem 16 will prove that its measure derivative D f , as a measure
on the product space, when restricted to P , becomes absolutely continuous with respect to P ⊗λ,
with a strictly predictable density H = (Hs)0≤s≤T . The next lemma shows that we can still see
Hs as the density of the measure Ds f , restricted to Fs , with respect to P. We state it for a general
real measure µ on the product space (Ω × [0, T ],A⊗ B (0, T )) of the form µ = σ. (ν ⊗ λ),
where ν is a positive finite measure on (Ω ,A).

Proposition 13. With the notation above, if µ|P is absolutely continuous with respect to
(P ⊗ λ)|P , with a strictly predictable density H = (Hs)0≤s≤T , then, for λ-a.e. s ∈ [0, T ],

(σ (s) · ν)|Fs = Hs · P|Fs .

Proof. For every n ≥ 1, there exists a countable family of bounded continuous functions
f n
k


k≥1, defined on Rn , such that every f ∈ Cc (Rn) is the pointwise limit of an appropriate
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sequence with elements from that family. Therefore, for λ-a.e. s ∈ [0, T ], it will suffice to prove
that, for all n ≥ 1, for every ∆J W , with J = (t0, . . . , tn) with tn ≤ s and every k ≥ 1,

f n
k (∆J W ) σ (s) dν = E


f n
k (∆J W ) Hs


.

Moreover, by continuity, we can consider only the case with each ti rational. Therefore, the thesis
is equivalent to prove that for every n, every ∆J W , with each ti rational, and every k ≥ 1, for
λ-a.e. s ≥ tn , the identity above holds true. The hypothesis implies that for every t ≥ tn , t

tn


f n
k (∆J W ) σ (s) dνds =

 t

tn
E


f n
k (∆J W ) Hs


ds

since it is the integral of a strictly predictable process. Therefore the two integrands must coincide
for λ a.e. s ≥ tn . �

4.2. Statement and proof of the main result

For the proof of the extended Ocone–Karatzas formula we will make use of the following
result, which contains the classical Brownian martingale representation theorem (see [9,
pp. 181–184]) and a version of Ocone–Karatzas formula for smooth functions, which can be
shown directly by an application of Itô’s formula.

Lemma 14. For f ∈ L1 (P), there exists a process F ∈ M2
loc such that

E


f |FP
t


= E [ f ] +

 t

0
FsdWs, for t ∈ [0, T ]. (6)

Moreover, if f is smooth, then Fs = E [∂s f |Fs], for λ-a.e. s ∈ [0, T ].

Remarks 15. The spaceM2
loc consists of all the equivalence classes of predictable processes F ,

such that T

0
F2

s ds < ∞, P-almost surely.

For such an F , there exists a sequence of predictable stopping times (τn)n≥1, increasing towards
T , such that, for every n, the predictable process Fn = F I[0,τn [ is square integrable (and so it
belongs to M2).

Although the process F in (6) is uniquely determined, since it represents the continuous
Brownian martingale


E


f |FP

t


0≤t≤T , we remark that Itô’s representation of a single random
variable in terms of a stochastic integral is, in general, not unique (see [5,9, pp. 188–189]).

Theorem 16. Let f be a BV function. The measure D f , restricted to the strictly predictable
σ -algebra P , is absolutely continuous with respect to P⊗λ. If H is a version of the density, then

f = E [ f ] +

 T

0
HsdWs .

Remark 17. By Proposition 13, we can write, for λ-a.e. s ∈ [0, T ]:

Hs =
d (Ds f )|Fs

d P|Fs

.
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We provide here a shorter proof for case f ∈ BV ∩ L2 (P).

Proof. There is no loss in generality if we suppose that E [ f ] = 0. Since f is square integrable,
the process F in (6) belongs toM2 and therefore F ·P⊗λ defines a real measure on the product
space. It is sufficient to show that the integrals of smooth processes, taken with respect to D f
and F · P ⊗ λ, coincide.

Given 0 ≤ s < t ≤ T and a smooth function g, measurable with respect toFs , the Wiener–Itô
isometry implies that

E


f
 t

s
gdWr


= E

 T

0
Fr dWr

 t

s
gdWr


= E

 t

s
gFr dr


.

Since g is Fs-measurable,
 t

s gdWr = −∂∗

h g, where h ∈ H1
0 is such that h′

= I]s,t]. By the
definition of D f , the left member above is equal to

gI]s,t] d D f.

By linearity, we conclude. �

The next lemma shows that we gain integrability for F in (6), when f is BV .

Lemma 18. If f is BV , then F in (6) satisfies T

0
E [|Fs |] ds ≤ T 1/2

|D f | (Ω) .

Remark 19. If f ∈ L log L , then, by the continuous embedding of this Orlicz space into H1

(see e.g. [12, Exercise 1.16, p. 58]) and by the equivalence of the H1 norm with E

| f | + |F |2


,

we conclude that F is integrable. However, it is not clear if such a conclusion holds true for
f ∈ L log1/2 L: we proceed therefore generalizing some ideas from [8].

Proof. If f is smooth, then F = E [∂s f |Fs], so that |Fs | ≤ E [|∂s f | |Fs]. By Fubini’s theorem
and Cauchy’s inequality,

E
 T

0
|Fs | ds


≤ E

 T

0
|∂s f | ds


≤ T 1/2E


|∇ f |2


.

Given a BV function f , we consider a sequence of smooth functions ( fn)n≥1, convergent
to f in L1 (P), such that


E


|∇ fn|2


n≥1 converges to |D f | (Ω). Such a sequence exists by an

application of Theorem 6 and a diagonal argument.
For every n ≥ 1, we write Fn for the process that represents fn , and Mn for theFP-martingale

Mn
t = E


fn|FP

t


= E [ fn] +

 t

0
Fn

s dWs .

We also write Mt = E


f |FP
t

, and ∆M∗

n = sup0≤t≤T
Mn

t − Mt
. By Doob’s maximal

inequality, we have

P

∆M∗

n > ϵ


≤
1
ϵ

E
Mn

T − MT
 ,
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for every ϵ > 0. By the Burkholder–Gundy good-λ inequality (see [4,8]),

P
 T

0

Fn
s − Fs

2 ds > 4λ2,∆M∗
n ≤ δλ


≤ δ2P

 T

0

Fn
s − Fs

2 ds > λ2

,

for every λ > 0 and δ ∈ (0, 1). This leads immediately to the inequality

P
 T

0

Fn
s − Fs

2 ds > 4λ2


≤ δ2
+

1
δλ

E
Mn

T − MT
 ,

which implies that T

0

Fn
s − Fs

2 ds → 0

in probability, and without loss of generality, P-almost surely. By Cauchy’s inequality,
 Fn

s
 ds

converges to


|Fs | ds P-almost surely so, by Fatou’s lemma, we conclude that

E
 T

0
|Fs | ds


≤ T 1/2 lim inf

n
E


|∇ fn|2


= T 1/2

|D f | (Ω) . �

Proof (General Case). We can argue as in the L2 (P) case, since by the lemma above, F in (6)
is such that F · (P ⊗ λ) defines a real measure on the product space. It is therefore sufficient to
show that the integrals of smooth processes, taken with respect to D f and F · P ⊗ λ, coincide.
We take 0 < s < t ≤ T and a smooth g, measurable with respect to Fs .

Let (τn)n≥1 be a sequence of predictable stopping times increasing to T , such that Fn
=

I[0,τn [F ∈ M2. Then,

fn = E


f |FP
τn


=

 T

0
Fn

r dWr ,

so that ( fn)n≥1 an
FP

τn


n≥1-martingale, closed by f , in L log1/2 L . By Lemma 3, ( fn)n≥1

converges to f in L log1/2 L .
For every n ≥ 1, by the Wiener–Itô isometry,

E [ fn g (Wt − Ws)] = E
 T

0
gI]s,t](r) Fn

r dr

. (7)

By inequality (2), as n → ∞, the left member converges to

E [ f g (Wt − Ws)] =


gI]s,t] d D f.

For the member on the right, we use Lebesgue’s dominated convergence theorem, since gF ∈

L1 (Ω × [0, T ],P ⊗ λ). Therefore, identity (7) holds true with f in place of fn , and we conclude
as we did for the L2 (P) case. �

5. Applications

We conclude by showing how the extended Ocone–Karatzas formula, together with the chain
rule, allows us to find explicit representations. We consider first the case of f = φ (W (k)) and
then the case of f = φ (M) where M = sups≤T Ws , with φ as introduced in Section 3.
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5.1. The case of cylindrical random variables

Given k ∈ L2 (0, T ), with |k|2 = 1, we choose a representative such that k (s) = 0 ifI]s,T ]k

2 = 0, for every s ∈ [0, T ], and write

K (x, s) = k (s)
exp


−x2/(2

I]s,T ]k
2
2)


√

2π
I]s,T ]k


2

,

where we define K (x, s) = 0 if k (s) = 0.

Proposition 20. Let f = φ (W (k)), with the notation as above. Then

f = E [ f ] +

 T

0


R

K

x − W


I]0,s]k


, s


Dφ (dx)


dWs .

Proof. It is sufficient to prove that, for all s ∈ [0, T ] and every smooth function u, measurable
with respect to Fs , then

exp

−x2/2


√

2π
E [uk (s) |W (k) = x] = E


u K


x − W


I]0,s]k


, s


.

Indeed, we define U (r, x) as the right member above if r ≥ s and U (r, x) = 0 for r < s. Since
the right member above is a continuous function of x and the inequality

E [uk (s) |W (k) = x] ≤ ∥u∥ |k (s)|

holds true for all s ∈ [0, T ], we apply Proposition 12, Fubini’s theorem and we find that

E


u


R
K


x − W


I]0,s]k


, s


Dφ (dx)


=


u Ds f

for λ-a.e. s ∈ [0, T ] and every smooth function u as above. By Remark 17, we conclude.
Therefore, given a continuous function ψ , with compact support, we have to show that

E [ψ (W (k)) uk (s)] =


R
ψ (x)E


u K


x − W


I]0,s]k


, s

 
dx .

We take the conditional expectation with respect to Fs ,

E [ψ (W (k)) uk (s)] = E


u


R
ψ


W


k I]0,s]


+ y


K (y, s) dy


.

We conclude thanks to the change of variables x = W

k I]0,s]


+ y and exchanging integration

and expectation. �

Example 1. We consider f = I{Wt ≥0}, for some 0 < t ≤ T . Since DI{
√

t x≥0} =
√

tδ0, we find
the representation

I{Wt ≥0} =
1
2

+

 t

0

exp

−W 2

s /2 (t − s)


√
2π (t − s)

dWs . (8)
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Remark 21. Formula (8) above is well known (e.g. [14, p. 68]) and there exists even an
alternative approach (see [1]), which produces similar formulas, valid for bounded cylindrical
random variables.

Indeed, the following observation shows that the two approaches are, in this case, equivalent.
For every s, K (·, s) ∈ C1

b (R), so we can integrate by parts on R and obtain the representation

f = E [ f ] +

 T

0


R

−φ (x) ∂x K

x − W


I]0,s]k


, s


dx


dWs,

which is a special case of Theorem 3.4 in [1].
We remark that, in the next application, such an integration by parts will fail in general, since

the correspondent K is less regular.

5.2. The case of the maximum of the Wiener process

Given 0 ≤ s < t ≤ T , we write M[s,t] = sups≤r≤t (Wr − Ws), so that,

M = M[0,T ] = M[0,s] ∨

Ws + M[s,T ]


(9)

and M[s,T ] is independent of Fs , with a.c. law (with respect to λ), of density

mT −s (x) = 2
exp


−x2/2 (T − s)


√

2π (T − s)
I{x>0}.

Proposition 22. Let f = φ (M), with the notation as above. Then

f = E [ f ] +

 T

0


R

mT −s (x − Ws) I{x>M[0,s]}
Dφ (dx)


dWs . (10)

Remark 23. It is known (see e.g. [11, Proposition 2.1.10, p. 109]) that M admits a Malliavin
derivative, ∇M = I[0,σ [, where

σ = inf {t : Wt ≥ Ws,∀ 0 ≤ s ≤ T } .

We note that ∂s M is the indicator function of


M[0,s] < Ws + M[s,T ]


.

Proof. It is sufficient to prove that, for all s ∈]0, T [ and every smooth function u, measurable
with respect to Fs , then

mT (x)E [u∂s M |M = x] = E

u mT −s (x − Ws) I{x>M[0,s]}


.

Indeed, we define U (r, x) as the right member above if r ≥ s and U (r, x) = 0 for r < s. Since
the right member above is a continuous function of x and the inequality

E [u∂s M |M = x] ≤ ∥u∥

holds true for all s ∈]0, T [, we conclude as we did for cylindrical functions.
Therefore, given a continuous function ψ , with compact support, we have to show that

E [ψ (M) u∂s M] =


R
ψ (x)E


u mT −s (x − Ws) I{x>M[0,s]}


dx .
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We take the conditional expectation with respect to Fs and use the expression for M in (9) and
for ∂s M in Remark 23,

E [ψ (M) u∂s M] = E


u


R
ψ (Ws + y) I{Ws+y>M[0,s]}

mT −s (y) dy

.

With a change of variables x = Ws + y and exchanging integration and expectation, we
conclude. �

Example 2. We consider the function I{M≥y}, for some y > 0. Since DI{x≥y} = δy , we find the
representation

I{M≥y} = P (M ≥ y)+

 τy

0
mT −s (y − Ws) dWs,

where τy = inf {0 ≤ s ≤ T : Ws = y} is the time of the first visit at y.
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