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Abstract. The main result of the paper is a stability theorem for the Snell en-
velope under convergence in distribution of the underlying processes: more pre-
cisely, we prove that if a sequence (Xn) of stochastic processes converges in
distribution for the Skorokhod topology to a processX and satisfies some addi-
tional hypotheses, the sequence of Snell envelopes converges in distribution for
the Meyer–Zheng topology to the Snell envelope ofX (a brief account of this
rather neglected topology is given in the appendix). When the Snell envelope
of the limit process is continuous, the convergence is in fact in the Skorokhod
sense.

This result is illustrated by several examples of approximations of the Ameri-
can options prices; we give moreover a kind of robustness of the optimal hedging
portfolio for the American put in the Black and Scholes model.
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1 Introduction

If (St ) is the risky asset price in the Black and Scholes model, it is well known
(see e.g. [7] or [26]) that the discounted price at timet of the American put
option with strike priceK is given by
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Jt = ess sup
t≤σ≤T

E
[

e−r σ (K − Sσ)+ |Ft
]

,

whereσ is a stopping time with values in [t , T] , r is the istantaneous interest
rate and the conditional expectation is with respect to the unique equivalent
probability measure for which̃St = e−rt St is a martingale. More precisely, the
stochastic processJ is the Snell envelope of the process e−rt (K − St )

+ , i.e. the
smallest supermartingaleZ such that, for everyt , Zt ≥ e−rt (K − St )

+ .
It is natural to ask whether the Snell envelope is stable for a convergence

of stochastic processes, i.e. ifXn converges toX in some sense, do the Snell
envelopes off (t , Xn

t ) converge to the Snell envelope off (t , Xt ) ?
Discrete–time approximations to continuous-time models (see e.g. [10]) are

frequently used in Mathematical Finance, and are based on stability results for
convergence in distribution.

The celebrated Cox–Ross–Rubinstein simplified approach to the American
Option price (see [8]) is justified by the convergence of Snell envelopes for
the binomial approximation to the Black and Scholes model; paper [3] gives a
stability theorem of Snell envelopes in the framework of diffusion processes and
paper [6] investigates the same problem by non–standard techniques.

General results are contained in papers [21] and [22] of Lamberton and
Pag̀es: they have proved that ifXn converges in distribution on the space
D = D ([0, T] ; R) (of regular right continuous paths) endowed with the Sko-
rokhod topology, then (denoting byJ n andJ the Snell envelopes off (t , Xn

t ) and
f (t , Xt ) respectively), under additional conditionsJ n

0 converges toJ0 .
In this paper we extend the result of Lamberton and Pagès proving that, ifXn

converges in distribution toX whenD is endowed with the Skorokhod topology,
under suitable additional conditions the stochastic processesJ n converge in dis-
tribution toJ if D is endowed with a weaker topology, namely the Meyer-Zheng
topology (a brief account of this topology will be given in the appendix).

The motivation for the use of the pseudo–paths or Meyer–Zheng topology,
less commonly used than the well known Skorokhod topology, is essentially the
convenience of the tightness/compactness criteria for laws of semimartingales.

We recall that a familyXi of stochastic processes with paths on the spaceD

is said to be tight if the family of the probability distributions of the processes
Xi is tight, that is if, for everyε > 0 , there exists a compactK in D such that,
for every i , P

(
Xi ∈ K

) ≥ 1 − ε ; so, by the theorem of Prokhorov, this family
is relatively compact for convergence in distribution.

As it will be shown in Sect. 3, the sequence (J n) of the Snell envelopes of
a sequence of uniformly integrable stochastic processes is tight (and therefore
relatively compact) for the Meyer–Zheng topology, while this result seems not
to be true in general for the Skorokhod topology.

Naturally, when it is possible to show directly that the sequenceJ n is rel-
atively compact for the Skorokhod topology, our convergence theorem is valid
also for this more habitual topology; this is the case, as we will show, if the
Snell envelope of the limit processX is continuous.
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The importance of obtaining a convergence result of the whole Snell envelope
as a stochastic process will be evident in Sect. 6, where a kind of robustness of
the optimal hedging portfolio will be proved for the Black and Scholes model.

2 Notations and preliminary results

Given a stochastic basis (Ω, F , F = (Ft )0≤t≤T , P) with the usual assumptions,
we will consider real valued adapted stochastic processesY = (Yt )0≤t≤T with
càdl̀ag (the French notation for “right continuous with left–hand limits”) paths
(we refer to [17] for definitions and properties concerning “General Theory of
Stochastic Processes”).

We indicate byFY the smallest (right continuous) filtration with respect to
which Y is adapted, and byPY the distribution ofY on the canonical space
D = D([0, T]; R) of càdl̀ag paths. IfX is the canonical process of coordinate
projections onD , then D = (Dt )0≤t≤T is the filtration generated byX and
D = DT .

We will consider onD , besides the usual Skorokhod topology referred to as
the S–topology ([17] is the best reference for our purposes) , the MZ–topology
introduced by Meyer and Zheng in [27] . We refer to the Appendix for the
definition and a brief account of the main properties of the MZ–topology.

We will use the notationYn =⇒S Y (respectivelyYn =⇒MZ Y ) to indicate that
the probabilitiesPYn converge strictly toPY when the spaceD is endowed with
the S (respectively the MZ) –topology.

Let Y be a positive stochastic process of class (D) (i.e. the random variables
Yτ , for every stopping timeτ , are uniformly integrable) : the Snell envelope of
Y is the smallest supermartingaleJ such that, for everyt , Jt ≥ Yt . Since the
paths ofY are right continuous, it is known (see, for instance, [11] or [23]) that,
for every stopping timeτ ,

Jτ = ess sup
τ≤σ≤T

E[Yσ|Fτ ] (2.1)

whereσ varies in the set of stopping times with values in [τ, T] . Moreover one
has, for every stopping timeτ andA ∈ Fτ ,

∫
A

Jτ dP = sup
τ≤σ≤T

∫
A

YσdP (2.2)

(see [23] page 258).

The following lemma guarantees that the law of the Snell envelope ofY with
respect to the proper filtrationFY depends only on the law ofY .

Lemma 2.3 Let J be the Snell envelope of Y with respect to the filtrationFY

and J̃ be the Snell envelope of the canonical process X whenD is provided with
the probabilityPY : then J = J̃ ◦ Y .
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Proof. It is easy to see that̃J ◦ Y is a supermartingale on (Ω, F , FY , P) such
that J̃t ◦ Y ≥ Xt ◦ Y = Yt and soJ̃t ◦ Y ≥ Jt . Conversely, for every stopping
time σ on (D, D) with σ ≥ t , sinceσ ◦ Y is a stopping time onΩ with respect
to the filtrationFY , we have

EP
Y

[Xσ] = EP[Xσ ◦ Y ] = EP[Yσ◦Y ] ≤ EP[Jt ] .

Then
EP[J̃t ◦ Y ] = EP

Y

[J̃t ] = sup
t≤σ≤T

EP
Y

[Xσ] ≤ EP[Jt ]

and hence, for every fixedt , J̃t◦Y = Jt . The equality between stochastic processes
is a consequence of the right continuity of the paths.

The following hypothesis was introduced by Brémaud and Yor in the paper
[5] under the name of hypothesis (H).

Definition 2.4 Let Y be a stochastic process adapted to a filtrationF : the pair
(Y , F) satisfies hypothesis (H) if everyFY –martingale is anF–martingale.

This condition is studied in detail in [5] : it is shown, in particular, that ifY
is Markovian with respect to the filtrationF , then (Y , F) satisfies (H).

Lamberton and Pagès also use this condition ([22] p. 349) : they show that
the following is a sufficient condition for (H).

(2.5) there exists a dense subsetT ⊂ [0, T] such that, for every n≥ 1 , t1, . . . ,
tn, t ∈ T and for every bounded continuous function defined onRn , one has

E
[
h(Yt1, . . . , Ytn )|Ft

]
= E

[
h(Yt1, . . . , Ytn )|F Y

t

]
.

The following lemma has already been proved in [22] ; we will present the
proof for the sake of completeness.

Lemma 2.6 If (Y , F) satisfies hypothesis (H), the Snell envelopes of Y with
respect to the filtrationsFY and F coincide.

Proof. Let J andZ respectively be the Snell envelopes with respect toFY to F :
sinceJ is anF–supermartingale withJt ≥ Yt , we haveJt ≥ Zt . Conversely, it is
easy to check thatE[Zt |F Y

t ] is anFY –supermartingale bigger thanE[Yt |F Y
t ] =

Yt and soE[Zt |F Y
t ] ≥ Jt : in particular E[Zt ] ≥ E[Jt ] . We have necessarily

Zt = Jt .

More precisely we will be interested in the Snell envelope of a stochastic
process of the formf (t , Yt ) with respect to the filtration generated byY : it is
immediate to modify Lemmas 2.3 and 2.6 to this situation.

Lemma 2.7 If Y is a supermartingale of class (D) and(Y , F) satisfies (H), the
Doob–Meyer decompositions of Y with respect toFY and F coincide.

Proof. Let us writeY in the form Y = M − A , whereM is an FY –martingale
and A an increasing predictable process withA0 = 0 : sinceM is also anF–
martingale andA is predictable with respect toF , the result is a consequence of
the uniqueness of the Doob–Meyer decomposition.
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3 The convergence result

In this section we consider a sequence (Xn) of positive stochastic processes,
satisfying the following hypotheses:

(3.1) the processes(Xn) are uniformly of class (D), i.e. the r.v.(Xn
τ ) , for n ∈ N

andτ stopping time for the filtrationFXn
, are uniformly integrable;

(3.2) for everyε > 0 , there exist n0 ∈ N and δ > 0 such that if n≥ n0 , 0 <
s < δ andτ is anF Xn

–stopping time, we have

En
[| Xn

τ+s − Xn
τ |] < ε .

(we require that all stopping times take values in [0, T] , but it is technically
convenient to regard each processX as extended to [0, +∞) by puttingXt = XT

for t ≥ T : this enables us to writeXn
τ+s instead ofXn

(τ+s)∧T ).
Hypothesis (3.2) is known as the “Aldous tightness criterion” and (together

with the condition that all r.v. (Xn
t ) , for t fixed, are tight onR , a condition which

is obviously implied by (3.1)) guarantees the tightness of the lawsPXn
for the

S–topology (see [1] page 365).

Lemma 3.3 Givenε > 0 , there existγ > 0 and n0 ∈ N such that, for every
n ≥ n0 , 0 < δ < γ and every stopping timeτ one has∣∣∣∣∣En

[
Xn

τ

] − En

[
1
δ

∫ τ+δ

τ

Xn
s ds

]∣∣∣∣∣ ≤ ε .

Proof. Due to the inequalities

∣∣∣∣∣En
[
Xn

τ

] − En

[
1
δ

∫ τ+δ

τ

Xn
s ds

]∣∣∣∣∣ =

∣∣∣∣∣1
δ

∫ δ

0
En

[
Xn

τ+s − Xn
τ

]
ds

∣∣∣∣∣
≤ 1

δ

∫ δ

0
En

[|Xn
τ+s − Xn

τ |] ds ;

the assertion is an evident consequence of (3.2).

Lemma 3.4 Givenε > 0 , there exists a C> 0 such that, for everyδ > 0 , c > C
and every stopping timeτ one has

En

[
1
δ

∫ τ+δ

τ

(
Xn

s ∧ c
)

ds

]
≥ En

[
1
δ

∫ τ+δ

τ

Xn
s ds

]
− ε .

Proof. By hypothesis (3.1), for everyn ∈ N every stopping timeρ and c
sufficiently large, we have

En
[
Xn

ρ ∧ c
] ≥ En

[
Xn

ρ

] − ε .
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By considering that

En

[
1
δ

∫ τ+δ

τ

(
Xn

s ∧ c
)

ds

]
=

1
δ

∫ δ

0
En

[
Xn

τ+s ∧ c
]

ds ,

one immediately concludes the proof.

Now we consider the pairs (Xn, J n) , whereJ n is the Snell envelope ofXn

for its natural filtrationFXn
: by property (3.1), the positive supermartingalesJ n

are uniformlyL1–bounded. The sequence (Xn, J n) is tight in D2 = D([0, T], R2)
for the MZ–topology (see the Appendix) and so there exists a subsequence such
that (Xn, J n)=⇒MZ (X, J ). (Here and in the sequel, for the sake of simplicity of
notations, we will assume that indices have been renamed so that the whole
sequence converges).

Let us now consider, for everyn , a stopping timeτn with respect to the
filtration FXn

, and the law of (Xn, J n, τn) on D2× [0, T]: these laws are evidently
tight for the product topology, ifD2 is endowed with the MZ–topology.

Let (X, J , θ) be the canonical process onD2 × [0, T] and Dθ = F X,J ,θ be
the smallest right continuous filtration such that (X, J ) are adapted andθ is a
stopping time (i.e.D θ

t = ∩s>t σ {Xu, Ju, {θ ≤ u}; u ≤ s} ).
There exists a subsequence and a probabilityQ on D2 × [0, T] such that

(Xn, J n, τn)=⇒MZ (X, J , τ )

(this notation means that the probabilitiesPXn,J n,τn
converge strictly toQ for the

product topology specified above).

Theorem 3.5 Suppose that Xn=⇒SX , that (3.1) and (3.2) are verified and that,
for any stopping timeτn for FXn

and every limit law of(Xn, J n, τn) on D2 ×
[0, T], the pair

(
X, FX,J ,θ

)
satisfies the hypothesis (H) of definition 2.2: then

(Xn, J n)=⇒MZ (X, J ) where J is the Snell envelope of X .

Proof. We can suppose that (Xn, J n)=⇒MZ (X, J ) (by considering if necessary a
subsequence), and we begin by observing that, for everyt ,
E [Jt ] ≤ lim inf n→∞ En

[
J n

t

]
.

In fact, J being a positive supermartingale, we have

E [Jt ] = sup
c>0

sup
0<δ<T−t

E

[
1
δ

∫ t+δ

t
(Js ∧ c) ds

]
,

(and the same equality for everyJ n): the functionsw 7→ 1
δ

∫ t+δ

t (w(s) ∧ c)ds are
continuous onD for the MZ–topology and consequentlyJ 7→ E[Jt ] is lower–
semicontinuous for MZ–convergence.

On D2, the pair (X, FX,J ) satisfies hypothesis (H) (one can consider, for
instance, the sequence of stopping timesτn = T): consequently the Snell envelope
of X with respect toFX , denoted byZ , coincides with the one obtained with
respect to the filtrationFX,J .
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J is an FX,J –supermartingale withJt ≥ Xt for every t (and soJt ≥ Zt ): to
complete the proof it is enough to prove that, for everyt , E[Zt ] ≥ E[Jt ].

Suppose this inequality is not true for a particulart , and letε =
E[Jt ] − E[Zt ]

4
> 0.

For everyn, we can choose by (2.2) a stopping timeτn with values in [t , T]
such thatEn

[
Xn

τn

] ≥ En
[
J n

t

] − ε.
We can suppose that (Xn, J n, τn)=⇒MZ (X, J , θ): we remark that, by 2.3 and

2.6, the Snell envelopes ofX on D2 with respect toFX,J and onD2 × [0, T] with
respect toFX,J ,θ have the same distribution.

By Lemmas 3.3 and 3.4, it is possible to determineγ > 0 , C > 0 andn0 ∈ N

such that, for 0< δ < γ , c > C andn > n0 , one has

En

[
1
δ

∫ τn+δ

τn

(
Xn

s ∧ c
)

ds

]
≥ En

[
Xn

τn

] − 2ε ≥ En
[
J n

t

] − 3ε ;

and, lettingn → ∞ ,

E

[
1
δ

∫ θ+δ

θ

(Xs ∧ c) ds

]
≥ E [Jt ] − 3ε .

Letting δ → 0 , one hasE [Xθ ∧ c] ≥ E[Jt ] − 3ε and soE[Zt ] ≥ E[Xθ] ≥
E[Jt ] − 3ε , which leads to a contradiction.

Remark 3.6 On checking the proof of the previous theorem, one can verify
that the convergenceXn=⇒SX is not strictly necessary, but it is sufficient that
Xn=⇒MZ X and that (3.1) and the assertion of Lemma 3.3 are satisfied. This
slight extension doesn’t seem to be very important since (3.2) is essentially
always verified in applications.

Remark 3.7 Theorem 3.5 gives a general result which includes the most usual
ways to approximate financial markets: e.g. the Cox–Ross–Rubinstein method is
a particular case of Example 4.4 below. Also the results of the paper [3] could
be viewed as a consequence of Theorem 3.5.

Remark 3.8 If the processesXn are left continuous in expectation, for every
t there exists a stopping timeσn ≥ t such thatEn[J n

t ] = En[Xn
σn ] (see [11]

Theorem 2.18): such a stopping time is calledt–optimal. In this case one can
verify that every limit law of (Xn, J n, σn) is the law of (X, J , θ) whereθ is a
t–optimal stopping time forX.

Remark 3.9 In Theorem 3.5 we have considered the Snell envelope ofX, but
for the American put in the Black and Scholes model we need to consider the
Snell envelope of e−rt (K − St )+. More general processes are also considered: for
instance, with a continuous cash flow ratec(t , x) and a terminal payoffH (t , x),
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the value of the American Option in a complete market is the Snell envelope of(∫ t

0

c(s, Xs)
S0(s)

ds +
H (t , Xt )

S0(t)

)
, whereS0(t) is the riskless asset.

One can easily extend the validity of Theorem 3.5 to these more general
situations by consideringR2–valued processes (Xn, Sn), and denoting byJ n the
Snell envelope ofSn with respect toFXn

: we suppose that (Xn, Sn)=⇒S(X, S)
and thatS is FX–adapted.

If the processesSn are positive and verify (3.1) and (3.2), and if, for ev-
ery limit law of (Xn, Sn, J n, τn) on D3 × [0, T], the pair

(
X, FX,S,J ,τ

)
verifies

hypothesis (H), then (Xn, Sn, J n)=⇒MZ (X, S, J ) and J is the Snell envelope of
S.

4 Remarks on condition (H)

To apply Theorem 3.5, the most intriguing step is to verify for the limit process
X that (X, FX,J ,θ) satisfies hypothesis (H).

This property is verified, for instance, ifX is markovian with respect to
the filtration FX,J ,θ: unfortunately, if everyXn is markovian with respect to
FXn,J n,τn

= FXn
, this property doesn’t hold for the limit for convergence in

distribution.
Nevertheless it is shown in [21] that, ifXn is a Markov process and the

transition probabilities satisfy some suitable regularity conditions, for every limit
law of (Xn, τn) the canonical processX is markovian with respect toFX,θ (see
[21] Lemma 4.1): their arguments may easily be extended to the situation that
we are interested in.

We study another condition, suitable for processes with independent incre-
ments. Processes with independent increments are obviously markovian, but we
don’t require any regularity condition for transition probabilities.

Theorem 4.1 Let (Xn, J n) be stochastic processes andτn be stopping times: we
suppose that Xn andτn are FXn

–adapted and that(Xn, J n, τn)=⇒MZ (X, J , θ). If,
for every n and s< t , (Xn

t − Xn
s ) is independent ofF Xn,J n,τn

s = F Xn
, then

(Xt − Xs) is independent ofF X,J ,θ
s .

Proof. We begin by observing that to every stopping timeτ we may associate
a stochastic process defined as the indicator function of the stochastic interval
[[τ, T]] , that is Zs(ω) = I{s≥τ (ω)}.

The paths of this process are of the typeI[a,T] (t) (with 0≤a≤T ) and (since
the functionsI[an,T] converge in measure toI[a,T] if and only if limn→∞ an = a)
it is obvious to conclude thatτn converges in distribution toθ iff Zn = I[[τn,T]]

converges in distribution toZ = I[[θ,T]] on the spaceD endowed with the MZ–
topology. So, if we consider the processesZn in place of the stopping timesτn ,
we have (Xn, J n, Zn)=⇒MZ (X, J , Z) on the spaceD3.

Let us consider a countable dense subsetT ⊂ [0, T] and a subsequence such
that the finite dimensional distributions of (Xn

t , J n
t , Zn

t )t∈T converge to those of
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(Xt , Jt , Zt )t∈T . Fix t1 < . . . < tk < s < t ∈ T and a bounded continuous
function g defined onR3k : we have, for everyn,

En
[
exp(iu(Xn

t − Xn
s )) g(Xn

t1 , . . . , Xn
tk , J n

t1 , . . . , J n
tk , Zn

t1 , . . . , Zn
tk )

]
=

En
[
exp(iu(Xn

t − Xn
s ))

]
. En

[
g(Xn

t1 , . . . , Xn
tk , J n

t1 , . . . , J n
tk , Zn

t1 , . . . , Zn
tk )

]
and this equality continues to hold if we letn tend to infinity. Using a monotone
class argument, we deduce that

E
[
exp(iu(Xt − Xs))|Gs

]
= E

[
exp(iu(Xt − Xs))

]
,

whereGs is theσ–field generated by the random variables (Xr , Jr , Zr ) with r < s
(i.e. (Xt − Xs) is independent fromGs ).

Considering the equalityF X,J ,Z
s = ∩r >sGr and the right continuity of the

paths, we conclude the proof.

Remark 4.2 In many methods of discretization, (Xn
t − Xn

s ) is not independent
of F Xn

s but, for everyε > 0 , there existsn0 such that forn > n0 , (Xn
t − Xn

s )
is independent ofF Xn

s−ε. It is obvious that in this case also, the conclusion of
Theorem 4.1 holds.

In general the stochastic processS, which represents the value of the risky
asset, does not have independent increments. Nevertheless we present some ex-
amples in which it is possible to apply Theorem 4.1.

Example 4.3 The processS satisfies the equationdSt = St− dXt , whereX is
a semimartingale with independent increments and∆Xt > −1 (see [13]) : the
filtrations generated byX and byS coincide (observe thatX satisfies the equation
dXt = (St−)−1 dSt ).

Taking a sequenceXn of stochastic processes such thatXn=⇒SX, it is well
known thatSn=⇒SS. If the increments of the processes (Xn) are independent (or
also asymptotically independent in the sense of Remark 4.2), and if the sequence
(Sn) satisfies (3.1) and (3.2), then Theorem (3.5) holds.

Example 4.4 Consider a market in which the risky asset satisfies the stochastic
differential equation

dSt = St−(µdt + σdWt + ϕdNt ) (4.5)

whereσ > 0 , ϕ > −1 , W is a Wiener process andN an independent Poisson
process with intensityλ ( when ϕ = 0, the model reduces to the Black and
Scholes model).

If ϕ /= 0, the market is not complete, but in [18] it is shown that, considering
another asset which satisfies a stochastic differential equation similar to (4.5),
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there exists an equivalent martingale probabilityP∗ with respect to which the
new market is complete. If we consider an American put on the asset (St ) with
strike priceK , the option price at timet is given byUt = u(t , St ), whereu(t , x) =
supt≤τ≤T E∗ [

er (t−τ ) (K − Sτ )+
∣∣ St = x

]
, τ being a stopping time.

We pose, forn ∈ N and for k
n T ≤ t < k+1

n T

Wn
t =


∑

j ≤k

Xj


 .

√
T
n

and N n
t =

∑
j ≤k

Yj

whereXj are independent Bernoulli r.v. (with mean 0 and variance 1) andYj are
independent Poisson r.v. with parameterλT

n .
It is easy to check that (Wn, N n)=⇒S(W, N ) and soSn=⇒SS ( Sn satisfies

(4.5) with W andN replaced byWn andN n). The filtration generated byS co-
incides with the one generated byW andN , and (by Remark 4.2) we can apply
Theorem 3.5 (the validity of (3.1) and (3.2) for the sequenceSn is straightfor-
ward).

The processesSn are in fact finite–time stochastic processes and therefore
their Snell envelopes can be explicitly computed: we recall that if (Zi )i =0,1,... ,N

is a stochastic process adapted to a finite filtrationF = (Fi )i =0,... ,N , its Snell
envelope (Ui ) is given by the formula:{

UN = ZN

Ui = max{Zi , E[Ui +1|Fi ]}
So one finds an explicit formula for the approximating option prices: this

formula contains a series which can be truncated with the required precision. For
the caseϕ = 0 this formula is exposed in [8] ; for the general case [25] illustrates
a similar approximation, but less convenient in practical computations.

Example 4.6 In the same situation as in the previous example, we consider a
sequence of stochastic processSn satisfying the equation

dSn
t = Sn

t−

(
µdt +

σdÑ n
t√

n
+ εdNt

)
(4.7)

whereN is a standard Poisson process andÑ n a compensated Poisson process
with intensityn.

In a similar way as in Example 4.4, one proves thatSn=⇒SS and that Theo-
rem 3.5 holds; for the practical computations of the Snell envelope of a process
of the form f (t , Sn

t ), one can utilize a discretization procedure as in 4.4.

Example 4.8 If we consider the Black and Scholes model and a sequence of
approximating processSn where the Wiener process is approximated by Markov
chains, it is shown in [20] that the sequence of critical pricessn(t) corresponding
to the approximating puts, converges uniformly tos(t), the critical price in the
Black and Scholes model.



Functional convergence of Snell envelopes 321

Since also in the case in whichS satisfies an equation of the form (4.5) the
critical price is smooth, it is possible to extend the method of [20] and prove (by
utilizing Remark 3.8) that, also in Examples 4.4 and 4.6, the sequence of critical
prices for the approximating models converges uniformly to the critical price of
the limit model.

5 Conditions for Skorokhod convergence

In this section we examine additional conditions which guarantee that the con-
vergence of Snell envelopes is with respect to the S–topology onD.

We consider a sequence (Xn) of stochastic processes satisfying the hypothesis
of Theorem 3.5: let, for everyn, J n = M n − An the Doob–Meyer decomposition
of the Snell envelopeJ n with respect toFXn

. We point out that, by property
(2.2), the processes (J n) are uniformly of class (D), and consequently also the
r.v. An

T are uniformly integrable (see [9]. chap. VII Theorem 16): so the se-
quence (J n, M n, An) is tight in D3 for the MZ–topology (see the Appendix) and
there exists a subsequence such that (J n, M n, An)=⇒MZ (J , M , A), whereM is a
martingale andA an increasing process.

Lemma 5.1 The sequence(An) is tight for the S–topology and therefore An=⇒SA.

Proof. Let τ be a stopping time for the filtrationFXn
ands > 0: sinceJ n − An

is a martingale, one has

En
[
An

τ+s − An
τ

]
= En

[
J n
τ − J n

τ+s

]
.

Given ε > 0, there exists, by (2.2), a stopping timeσ ≥ τ such thatEn
[
J n
τ

] ≤
En

[
Xn

σ

]
+ ε . Consequently

En
[
An

τ+s − An
τ

] ≤ En
[
Xn

σ

] − sup
ρ≥τ+s

En
[
Xn

ρ

]
+ ε

≤ En
[
Xn

σ

] − En
[
Xn

σ+s

]
+ ε ≤ En

[|Xn
σ − Xn

σ+s|
]

+ ε .

Since (Xn) satisfies (3.2), it is evident that (An) also satisfies (3.2) and (3.1) is
satisfied since the r.v.An

T are uniformly integrable. Therefore the sequence (An)
is tight for the S–topology.

Proposition 5.2 The limit process A is continuous.

Proof. We begin by observing that, for everyη > 0,

lim
n→∞ sup

τ∈P n

Pn {∆An
τ > η} = 0 , (5.3)

where P n is the set of all predictable strictly positive stopping times for the
filtration FXn

. Suppose it is possible that (5.3) were false: there exists a subse-
quencenk , two positive numbersε andη and, for everyk, a predictable stopping
time τ k such thatPnk

{
∆Ank

τ k > η
}

> 2ε .
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Let ρk be a stopping time such thatρk < τ k andPnk
{
ρk + 1

k ≥ τ k
}

> 1 − ε
(the existence of such a stopping time is due to the predictability ofτ k , see e.g.
[17] page 17). We remark that{

∆Ank

τ k > η , ρk +
1
k

≥ τ k

}
⊆

{(
Ank

ρk + 1
k

− Ank

ρk

)
> η

}

and soPnk

{(
Ank

ρk + 1
k

− Ank

ρk

)
> η

}
> ε, which is in contradiction with the prop-

erty (3.2) for the sequence (An).
Now let, for u > 0 , τn(u) be the predictable stopping time

τn(u) = inf {s > 0 : ∆An
s > u} ∧ T .

This stopping time is strictly positive because∆An
0 = An

0 = 0, and by (5.3) it is
evident that (τn(u)) converges in distribution toT.

By Theorem 5.12 of [16], foru in a dense subset of (0, +∞) ,
(
τn(u) , ∆An

τn(u)

)
converges in distribution to

(
τ (u) , ∆Aτ (u)

)
(whereτ (u) is defined forA in the

same way asτn(u) for An ) and this implies the continuity of the limit process
A.

Remark 5.4 Since the processA is continuous, it is predictable with respect to
the canonical filtration onD3, and thereforeJ = M − A is the Doob–Meyer de-
composition ofJ for the filtrationFJ ,M ,A. If the pair (J , FJ ,M ,A) satisfies property
(H) of (2.4), then it coincides with the decomposition with respect toFJ (see
2.7).

Theorem 5.5 Let (Xn) be a sequence of stochastic processes satisfying the hy-
pothesis of Theorem 3.5 and suppose that the Snell envelope J of the limit process
X is continuous: then(Xn, J n)=⇒S(X, J ).

Proof. Given the decompositionJ = M − A , M is a continuous martingale and
M n=⇒MZ M .

Aldous showed that, if the finite dimensional distributions of (M n) converge
to those ofM andM is a continuous martingale, thenM n=⇒SM (see [2] Propo-
sition 1.2).

The MZ–convergence implies the convergence of finite dimensional distribu-
tions only for a subsetT ⊂ [0, T] of full Lebesgue measure (see the Appendix),
but a careful analysis of the proof of [2] shows that, in fact, the author makes use
only of the property that (M n) converges in distribution toM for the topology
of convergence in measure (i.e. the MZ-topology) onD.

ThereforeM n=⇒SM and, since the limit processesJ , M andA are continu-
ous,J n=⇒SJ and (Xn, J n)=⇒S(X, J ).

The last theorem applies in particular to the Black and Scholes model: in this
case the approximations we have proposed in Examples 4.4 and 4.6 converge in
fact for the S–topology.
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6 Stability of the optimal hedging strategy for the Black and Scholes model

Let (S0
t , St ) be the asset prices in the Black and Scholes model, more precisely

the risky asset (St ) satisfies the equation{
dSt = µSt dt + σSt dWt

So = x

and letS0
t = ert be the riskless asset. Letβt = (S0

t )−1 be thediscounting coefficient
at time t . If Jt is the discounted price at timet of the American put option with
strike priceK , thenJ satisfies the equation (see [7] or [26]):

Jt = x +
∫ t

0
Px(u, Su) dS̃u −

∫ t

0
e−ru rKI{Su<s(u)} du ,

whereS̃u = Suβu , s(u) is the “critical price” at timeu , P(t , x) is the American
put value function and the derivativePx(t , x) is the “delta” of the American put.

In this formula, the process
(

x +
∫ t

0 Px(u, Su) dS̃u

)
0≤t≤T

represents the op-

timal discounted portfolio and
(∫ t

0 e−ru rKI{Su<s(u)} du
)

0≤t≤T
the consumption.

So this equality gives a formula for the optimal hedging strategy.
We consider a sequence (Sn) of stochastic processes and letS̃n

u = Sn
u βu:

we suppose that on (Ωn, F n, Pn) , there exists an equivalent probability such
that, whenΩn is endowed with this probability,Sn=⇒SS. It is evident that
(Sn, S̃n)=⇒S(S, S̃).

Let J n be the Snell envelope ofβt (K − Sn
t )+ (the discounted value of the

American put with respect toSn) and consider, for everyn, the Doob–Meyer
decompositionJ n = M n − An relative to the filtrationFSn

. We suppose that the
hypotheses of Theorem 3.5 are satisfied and so, by Theorem 5.5

(Sn, J n, M n, An)=⇒S(S, J , M , A)

whereJ = M − A is the Doob–Meyer decomposition ofJ .

Theorem 6.1 Suppose that for the limit law of(Sn, J n, M n, An) on the canonical
spaceD4 the pair (S, FS,J ,M ,A) satisfies condition (H) of (2.4). Then:
(a) if, for every n, the market represented by Sn is complete, and if Vn is the
optimal (discounted) hedging portfolio for Sn, then

(
V n

t − x −
∫ t

0
Px(u, Sn

u−) dS̃n
u

)
0≤t≤T

=⇒S0 ;

(b) further, in general

(
x +

∫ t

0
Px(u, Sn

u−) dS̃n
u − J n

t

)
0≤t≤T

=⇒S

(∫ t

0
e−ru rKI{Su<s(u)} du

)
0≤t≤T

.
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This means that the optimal hedging strategy for the Black and Scholes model
gives, to the limit, the optimal strategy in the case of complete markets and a
hedging strategy in the case of more general markets.

Proof. SinceJt = e−rt P(t , St ) andPx is strictly positive (see [26]), the filtrations
generated byJ and S coincide: so the pair (J , FJ ,M ,A) satisfies condition (H).
By Lemma 2.7,J = M − A is the Doob–Meyer decomposition ofJ with respect
to FS.

Hence the following relations hold:

Mt = x +
∫ t

0
Px(u, Su) dS̃u ;

At =
∫ t

0
e−ru rKI{Su<s(u)} du .

Moreover, the following property holds:(
St , x +

∫ t

0
Px(u, Sn

u−) dS̃n
u

)
0≤t≤T

=⇒S

(
St , x +

∫ t

0
Px(u, Su) dS̃u

)
0≤t≤T

.

The last equation is, for instance, a consequence of the converging result pre-
sented in [24] (taking into account that (Sn, S̃n)=⇒S(S, S̃), thatPx(t , .) is contin-
uous and bounded and that the martingalesS̃n satisfy condition c) of Proposition
3.2 in [24]).

We put Pn
t = x +

∫ t
0 Px(u, Sn

u−) dS̃n
u and Pt = x +

∫ t
0 Px(u, Su) dS̃u, and we

observe thatM = P.
Since all the limit processes are continuous, we have

(Sn, J n, M n, An, Pn)=⇒S(S, J , M , A, P).

Property (b) follows from (Pn − J n)=⇒S(P − J ) = A .
Property (a) follows on taking into account the fact that, if the markets are

complete, the martingaleM n represents the optimal hedging portfolio for the
approximating model and that (M n − Pn)=⇒S(M − P) = 0.

Example 6.2Let us consider the sequence of processesSn defined by the equation

dSn
t = Sn

t− (µdt + σdWt + εndNt )

whereN is a Poisson process andεn → 0. It is easy to check thatSn=⇒SS and
that condition (H) is satisfied: so we may apply part (b) of Theorem 6.1.

Further, it is possible (see [18]) to consider a second assetRn such that the
new market is complete. So(

V n
t − x −

∫ t

0
Px(u, Sn

u−) dS̃n
u

)
0≤t≤T

=⇒S0

whereV n is the optimal portfolio based on (Sn, Rn).
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Remark 6.3 The “delta” Px(t , x) is not known explicitly, and so numerical
approximations are needed: see for instance [7] p. 93 for an efficient analytic
approximation.

Theorem 6.1 should be compared with the deep results of the paper [13];
nevertheless, we remark that the methods of [13] cannot be applied to a “pertur-
bation” of the Black and Scholes model with a jump–diffusion as in Example 6.2.

7 Conclusions

The Snell envelope is stable for convergence in distribution, provided that a
further hypothesis is satisfied by the limit process: nevertheless this condition
(which has been stated in Sect. 2 under the name of hypothesis (H)) is usually
satisfied in the approximation–discretization methods considered in the literature.

Therefore a general convergence theorem is available (Theorem 3.5) which
furnishes a unified approach to several approximation results (for instance the
Cox–Ross–Rubinstein approach [8], or the Amin–Khanna results [3]).

Appendix

The MZ-topology

Let λ be the normalized Lebesgue probability measure on [0, T], and let w(t)
be a real Borel function defined on [0, T]: the pseudo–path ofw is the image
measure ofλ under the mappingt 7→ (t , w(t)).

The mapping which associates to a pathw its pseudo–path, restricted to
D, is injective and provides an imbedding ofD into the compact space of all
probabilities defined on the compact set [0, T]×[−∞, +∞]: the induced topology
on D is the pseudo–path or Meyer–Zheng topology. The Borelσ–field onD for
the MZ–topology, as for the S–topology, coincides with the canonicalσ–field
D .

Endowed with the MZ–topology,D is a metric (but not a Polish) space: so
(contrary to the case of S–topology) for a family of stochastic processes with
paths onD, the tightness condition is only a sufficient condition for relative
compactness for convergence in distribution.

The MZ–topology onD is in fact the topology of convergence in measure,
much weaker than the S–topology ([27], Lemma 1), but the original definition is
better adapted to give tightness conditions for supermartingales and quasimartin-
gales.

The following result has been used in Sect. 3 (see [27] page 262–263):

(A.1) Let (Xn) be a sequence of positive supermartingales uniformly L1–bounded
(that is supn En

[
Xn

0

]
= C < +∞). Then the family of distributionsPXn

is rela-
tively compact onD for the MZ–topology, and for every limit lawP, the canonical
process X is a positive supermartingale such thatE [X0] ≤ C .
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A similar result holds for a sequence (M n) of uniformly L1–bounded mar-
tingales such that, for every fixedt , the r.v. (M n

t ) are uniformly integrable ([27]
page 368), and for a sequence (An) of positive increasing processes which are
uniformly L1–bounded ([27] page 367).

Contrary to the case of S–topology, the MZ–topology on the product space
Dk = D

(
[0, T], Rk

)
is the product topology: so, given a family (Xi )i ∈I =

(Xi
1, . . . , Xi

k )i ∈I of Rk–valued stochastic processes, if each component (Xi
h)i ∈I is

tight for h = 1, . . . , k; then the vector stochastic processes (Xi )i ∈I are also tight.

Concerning the convergence of finite dimensional distributions, we have the
following result ([27] Theorem 6):

(A.2) Let (Xn) be a sequence of stochastic processes such that Xn=⇒MZ X : then
there exists a subsequence Xnk and a subsetT ⊂ [0, T] of full Lebesgue measure
such that the finite dimensional distributions of(Xnk

t )t∈T converge to those of
(Xt )t∈T .
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