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Abstract. The main result of the paper is a stability theorem for the Snell en-
velope under convergence in distribution of the underlying processes: more pre-
cisely, we prove that if a sequenc¥") of stochastic processes converges in
distribution for the Skorokhod topology to a processand satisfies some addi-
tional hypotheses, the sequence of Snell envelopes converges in distribution for
the Meyer—Zheng topology to the Snell envelopeXofa brief account of this
rather neglected topology is given in the appendix). When the Snell envelope
of the limit process is continuous, the convergence is in fact in the Skorokhod
sense.

This result is illustrated by several examples of approximations of the Ameri-
can options prices; we give moreover a kind of robustness of the optimal hedging
portfolio for the American put in the Black and Scholes model.
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1 Introduction
If (S) is the risky asset price in the Black and Scholes model, it is well known

(see e.g. [7] or [26]) that the discounted price at titnef the American put
option with strike priceK is given by
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J = esssufg [e " (K — S,)" 7] ,

t<o<T

whereo is a stopping time with values irt,[T], r is the istantaneous interest
rate and the conditional expectation is with respect to the unique equivalent
probability measure for whick = e S is a martingale. More precisely, the
stochastic process is the Snell envelope of the process'dK — S)*, i.e. the
smallest supermartinga such that, for every, z; > e " (K — S)".

It is natural to ask whether the Snell envelope is stable for a convergence
of stochastic processes, i.e. X" converges toX in some sense, do the Snell
envelopes of (t, X"") converge to the Snell envelope foft, X;) ?

Discrete—time approximations to continuous-time models (see e.g. [10]) are
frequently used in Mathematical Finance, and are based on stability results for
convergence in distribution.

The celebrated Cox—Ross—Rubinstein simplified approach to the American
Option price (see [8]) is justified by the convergence of Snell envelopes for
the binomial approximation to the Black and Scholes model; paper [3] gives a
stability theorem of Snell envelopes in the framework of diffusion processes and
paper [6] investigates the same problem by non—standard techniques.

General results are contained in papers [21] and [22] of Lamberton and
Pags: they have proved that K" converges in distribution on the space
D = D(0,T]; R) (of regular right continuous paths) endowed with the Sko-
rokhod topology, then (denoting k' andJ the Snell envelopes df(t, X") and
f(t, X;) respectively), under additional conditiod§ converges tal.

In this paper we extend the result of Lamberton andeBagoving that, iX"
converges in distribution t& whenD is endowed with the Skorokhod topology,
under suitable additional conditions the stochastic proceksesnverge in dis-
tribution toJ if D is endowed with a weaker topology, namely the Meyer-Zheng
topology (a brief account of this topology will be given in the appendix).

The motivation for the use of the pseudo—paths or Meyer—Zheng topology,
less commonly used than the well known Skorokhod topology, is essentially the
convenience of the tightness/compactness criteria for laws of semimartingales.

We recall that a familyX' of stochastic processes with paths on the sfizce
is said to be tight if the family of the probability distributions of the processes
X' is tight, that is if, for everye > 0, there exists a compakt in D such that,
for everyi , P (Xi € K) > 1—¢; so, by the theorem of Prokhorov, this family
is relatively compact for convergence in distribution.

As it will be shown in Sect. 3, the sequencHE') of the Snell envelopes of
a sequence of uniformly integrable stochastic processes is tight (and therefore
relatively compact) for the Meyer—Zheng topology, while this result seems not
to be true in general for the Skorokhod topology.

Naturally, when it is possible to show directly that the sequeiltés rel-
atively compact for the Skorokhod topology, our convergence theorem is valid
also for this more habitual topology; this is the case, as we will show, if the
Snell envelope of the limit proces$ is continuous.
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The importance of obtaining a convergence result of the whole Snell envelope
as a stochastic process will be evident in Sect. 6, where a kind of robustness of
the optimal hedging portfolio will be proved for the Black and Scholes model.

2 Notations and preliminary results

Given a stochastic basis2(.7 ,F = (%)o<i<1 , P) with the usual assumptions,
we will consider real valued adapted stochastic proce¥ses(Y;)o<t<t With
cadlag (the French notation for “right continuous with left-hand limits”) paths
(we refer to [17] for definitions and properties concerning “General Theory of
Stochastic Processes”).

We indicate byFY the smallest (right continuous) filtration with respect to
which Y is adapted, and b" the distribution ofY on the canonical space
D = D([0, T]; R) of cadlag paths. IfX is the canonical process of coordinate
projections onD, thenD = (ZA)o<i<7 is the filtration generated b¥X and

We will consider onD, besides the usual Skorokhod topology referred to as
the S—topology ([17] is the best reference for our purposes) , the MZ—topology
introduced by Meyer and Zheng in [27] . We refer to the Appendix for the
definition and a brief account of the main properties of the MZ—topology.

We will use the notatiory, =°Y (respectivelyy,, =M Y ) to indicate that
the probabilitiesPY" converge strictly ta®¥ when the spac® is endowed with
the S (respectively the MZ) —topology.

LetY be a positive stochastic process of class (D) (i.e. the random variables
Y.-, for every stopping time-, are uniformly integrable) : the Snell envelope of
Y is the smallest supermartingalesuch that, for every, J > Y;. Since the
paths ofY are right continuous, it is known (see, for instance, [11] or [23]) that,
for every stopping time-,

J; = esssufi[Y,| 7] (2.1)
7<0o<T
whereco varies in the set of stopping times with values inT]. Moreover one
has, for every stopping time andA € .7,

/JTd]P’: sup [ Y,dP (2.2)
A

7<o<T JA
(see [23] page 258).

The following lemma guarantees that the law of the Snell envelopewith
respect to the proper filtratioRY depends only on the law of .

Lemma 2.3 Let J be the Snell envelope of Y with respect to the filtralidn
andJ be the Snell envelope of the canonical process X vithenprovided with
the probabilityPY : thenJ=J o Y .
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Proof. It is easy to see thal o Y is a supermartingale onX .7, FY,P) such
thatyoY > X, oY = Y, and sojioY > J. Conversely, for every stopping
time o on (D, D) with 0 > t, sinces o Y is a stopping time orf? with respect
to the filtrationFY , we have

E” [X,] = E¥[X, 0 Y] = EF[Yooy] < EF[J].

Then 3 . .
Ef[dioY] =E" [X] = sup EF [X,] < EF[3]
t<o<T

and hence, for every fixeg J.oY = J; . The equality between stochastic processes
is a consequence of the right continuity of the paths.

The following hypothesis was introduced byé&Bmaud and Yor in the paper
[5] under the name of hypothesis (H).

Definition 2.4 Let Y be a stochastic process adapted to a filtraftonthe pair
(Y, F) satisfies hypothesis (H) if eveRf —martingale is arF—martingale.

This condition is studied in detail in [5] : it is shown, in particular, thaYif
is Markovian with respect to the filtratioR, then {/, F) satisfies (H).

Lamberton and Pagp also use this condition ([22] p. 349) : they show that
the following is a sufficient condition for (H).

(2.5) there exists a dense subsét C [0, T] such that, forevery > 1, t3,. ..,
th,t €.7 and for every bounded continuous function definedR8n one has

E[h(Yy, -, YA = Eh(Yy, ..., YOI Z ']

The following lemma has already been proved in [22] ; we will present the
proof for the sake of completeness.

Lemma 2.6 If (Y,F) satisfies hypothesis (H), the Snell envelopes of Y with
respect to the filtration&Y andF coincide

Proof. LetJ andZ respectively be the Snell envelopes with respedt'tdo F :
sinceJ is anF—supermartingale with > Y;, we havel; > Z; . Conversely, it is
easy to check thak[Z .7 Y] is an FY—supermartingale bigger th&{Y;|.7 Y] =
Y, and soE[Z|.Z Y] > J: in particularE[Z] > E[J]. We have necessarily
Zt = ‘Jt .

More precisely we will be interested in the Snell envelope of a stochastic
process of the forni (t,Y;) with respect to the filtration generated bYy: it is
immediate to modify Lemmas 2.3 and 2.6 to this situation.

Lemma 2.7 If Y is a supermartingale of class (D) arf¥, F) satisfies (H), the
Doob—Meyer decompositions of Y with respedEfoand F coincide.

Proof. Let us writeY in the formY =M — A, whereM is anF"—martingale
and A an increasing predictable process wih = 0 : sinceM is also anF—
martingale andA is predictable with respect t6, the result is a consequence of
the uniqueness of the Doob—Meyer decomposition.
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3 The convergence result

In this section we consider a sequene€') of positive stochastic processes,
satisfying the following hypotheses:

(3.1) the processefX") are uniformly of class (D), i.e. the r.¢X"), forn € N
and 7 stopping time for the filtratiof" , are uniformly integrable;

(3.2) for everye > 0, there existp € N and § > 0 such thatif n> ny, 0 <
s < § and T is an.7 X" —stopping time, we have

E" [|X£+S—X£H <e.

(we require that all stopping times take values inTp, but it is technically
convenient to regard each procééss extended to [Groo) by puttingX; = Xr
for t > T : this enables us to writ&?,s instead ofX7 ) .1 ).

Hypothesis (3.2) is known as the “Aldous tightness criterion” and (together
with the condition that all r.v.X") , for t fixed, are tight orR , a condition which
is obviously implied by (3.1)) guarantees the tightness of the Bsfor the
S—topology (see [1] page 365).

Lemma 3.3 Givene > 0, there existy > 0 and rp € N such that, for every
n>ny, 0 <4 <+ and every stopping time one has

T+
s e

E" [X"] — E" <e.

Proof. Due to the inequalities

T+
A

1 §
< 5/0 E" XM, — X"[] ds;

the assertion is an evident consequence of (3.2).

5
5| B xpe—xr] as

]En [Xn] _ ]EFI —

T

Lemma 3.4 Givene > 0, there exists a C> O such that, forevery > 0,c > C
and every stopping time one has

1 T+6

g / XQdS] — €.

Proof. By hypothesis (3.1), for everm € N every stopping time andc
sufficiently large, we have

1

T+
E" S/ (X' Ac)ds| > E"

" X" Ac] > EN[XI] - e
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By considering that

1

T+ 1 1
E" —/ (X&' Ac) ds :—/E“[X;LS/\C] ds,
0/, d Jo
one immediately concludes the proof.

Now we consider the pairsX(',J"), whereJ" is the Snell envelope ak"
for its natural filtrationFX": by property (3.1), the positive supermartingalés
are uniformlyL'-bounded. The sequenc¥(J") is tight in D? = D([0, T], R?)
for the MZ—topology (see the Appendix) and so there exists a subsequence such
that X",JM)==M%(X,J). (Here and in the sequel, for the sake of simplicity of
notations, we will assume that indices have been renamed so that the whole
sequence converges).

Let us now consider, for every, a stopping timer" with respect to the
filtration FX", and the law of X", J", 7") on D2 x [0, T]: these laws are evidently
tight for the product topology, iD? is endowed with the MZ—topology.

Let (X,J,0) be the canonical process &t x [0, T] andDY = .7 %79 pe
the smallest right continuous filtration such tht ) are adapted and is a
stopping time (i.eZ’ = Nsst o {Xy, du, {# < ul;u < s}).

There exists a subsequence and a probaldllityn D? x [0, T] such that

(X",3", mM=M4(X, 3, 7)

(this notation means that the probabiliti&$' """ converge strictly taQ for the
product topology specified above).

Theorem 3.5 Suppose that ¥==°SX , that (3.1) and (3.2) are verified and that,
for any stopping time™" for FX" and every limit law of(X",J", ") on D? x

[0, T], the pair (X,F*):) satisfies the hypothesis (H) of definition 2.2: then
(X", IM==M2(X, J) where J is the Snell envelope of X .

Proof. We can suppose thak[,J")=M#(X,J) (by considering if necessary a
subsequence), and we begin by observing that, for etvery
E[X] < liminf_o E" [J"] .

In fact, J being a positive supermartingale, we have

1 t+§
E[J] =sup sup E lé/ (JS/\c)ds] ,
t

c>00<6<T—t

(and the same equality for evedy'): the functionsw +— % ftt+5(w(s) A c)ds are
continuous onD for the MZ—topology and consequently — E[J] is lower—
semicontinuous for MZ—convergence.

On D?, the pair K,F*”) satisfies hypothesis (H) (one can consider, for
instance, the sequence of stopping timés T): consequently the Snell envelope
of X with respect toF*, denoted byZ , coincides with the one obtained with
respect to the filtratiofr*- .
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J is anF*’—supermartingale witld, > X; for everyt (and soJ; > Z): to
complete the proof it is enough to prove that, for evenyE[Z;] > E[J].

E[}] — E[Z]

Suppose this inequality is not true for a particulaand lets = 7

> 0.

For everyn, we can choose by (2.2) a stopping tirfewith values in {, T]
such thatE" [X%] > E" [J"] —e.

We can suppose thax(,J", 7M)==M?(X, J, §): we remark that, by 2.3 and
2.6, the Snell envelopes &f on D? with respect tdF*J and onD? x [0, T] with
respect toF*-¢ have the same distribution.

By Lemmas 3.3 and 3.4, it is possible to determjne 0,C > 0 andng € N
such that, for < § < v, ¢ > C andn > ng, one has

T+
E" %/ (X8 Ac) ds} >E" [Xh] -2 > E"[§"] —3¢;

and, lettingn — oo,

0

Letting 0 — 0, one hasE[Xg Ac] > E[X] — 3¢ and soE[Z] > E[Xs] >
E[J] — 3¢, which leads to a contradiction.

0+6
E[/ Xsnc)ds| > E[J] — 3.
(4

Remark 3.6 On checking the proof of the previous theorem, one can verify
that the convergenc¥"==-SX is not strictly necessary, but it is sufficient that
X"==MZx and that (3.1) and the assertion of Lemma 3.3 are satisfied. This
slight extension doesn’t seem to be very important since (3.2) is essentially
always verified in applications.

Remark 3.7 Theorem 3.5 gives a general result which includes the most usual
ways to approximate financial markets: e.g. the Cox—Ross—Rubinstein method is
a particular case of Example 4.4 below. Also the results of the paper [3] could
be viewed as a consequence of Theorem 3.5.

Remark 3.8 If the processeX" are left continuous in expectation, for every
t there exists a stopping time” > t such thatE"[J"] = E"[X[.] (see [11]
Theorem 2.18): such a stopping time is caltegbptimal. In this case one can
verify that every limit law of K",J", ") is the law of K,J,#) whereé is a
t—optimal stopping time fokX.

Remark 3.9 In Theorem 3.5 we have considered the Snell envelop¥,dut

for the American put in the Black and Scholes model we need to consider the
Snell envelope of €'(K — S)*. More general processes are also considered: for
instance, with a continuous cash flow ra{g, x) and a terminal payofH (t, x),
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the value of the American Option in a complete market is the Snell envelope of

te(s, Xs) H(t Xt))
~=2ds + : , WhereSy(t) is the riskless asset.
(] 5o D >0

One can easily extend the validity of Theorem 3.5 to these more general

situations by considering?>~valued processe¥X[, S"), and denoting byl" the
Snell envelope oB" with respect toFX": we suppose that{(", S")==5(X, S)
and thatS is FX—adapted.

If the processes" are positive and verify (3.1) and (3.2), and if, for ev-
ery limit law of (X",S",J",7") on D x [0, T], the pair (X, F*:57:7) verifies
hypothesis (H), thenX", S",JM==M4(X,S,J) andJ is the Snell envelope of
S.

4 Remarks on condition (H)

To apply Theorem 3.5, the most intriguing step is to verify for the limit process
X that (X, F¥-%) satisfies hypothesis (H).

This property is verified, for instance, K is markovian with respect to
the filtration F*~-¢: unfortunately, if everyX" is markovian with respect to
X" = BX" | this property doesn’t hold for the limit for convergence in
distribution.

Nevertheless it is shown in [21] that, K" is a Markov process and the
transition probabilities satisfy some suitable regularity conditions, for every limit
law of (X", 7") the canonical proces$ is markovian with respect t6%¢ (see
[21] Lemma 4.1): their arguments may easily be extended to the situation that
we are interested in.

We study another condition, suitable for processes with independent incre-
ments. Processes with independent increments are obviously markovian, but we
don’t require any regularity condition for transition probabilities.

Theorem 4.1 Let(X",J") be stochastic processes andbe stopping times: we
suppose that Xand 7" are FX"—adapted and thagx",J", 7")==MZ(X, J, §). If,
for every n and s< t, (X" — X) is independent of X" """ = .7 X", then
(X — Xs) is independent of %0 .

Proof. We begin by observing that to every stopping timeve may associate
a stochastic process defined as the indicator function of the stochastic interval
[7’7 T]I , that is Zs(w) = I{Szr(w)}-

The paths of this process are of the typer;(t) (with 0<a <T) and (since
the functionsl,, 1] converge in measure g, 1 if and only if lim,_, . a, = a)
it is obvious to conclude that, converges in distribution té iff Z" = I 1
converges in distribution t@ = Ijp 1] on the spacéd endowed with the MZ—
topology. So, if we consider the proces&8sin place of the stopping times',
we have X",J",Z")=M#(X,J,Z) on the spac®?.

Let us consider a countable dense subget- [0, T] and a subsequence such
that the finite dimensional distributions of{, J", Z");c converge to those of
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X, d,Ziher- Fixty < ... <ty < s <t e.7 and a bounded continuous
function ¢ defined onR3*: we have, for every,

En [eXpGU(th 7xsn))g(xtr1]7 7Xtr:7‘]tr117"' a‘]tEthTa"' 7Zt:)] =

E" [expuX” — XM)] .E" [gO4, ..., X030, ..., 30,20, ..., ZD)]

and this equality continues to hold if we lettend to infinity. Using a monotone
class argument, we deduce that

E [eXpQU(Xt - Xs))|'~(§s] =E [eXPGU(Xt - Xs))] )

where % is theo—field generated by the random variabl¥s, (;, Z;) withr <'s
(i.e. X — Xs) is independent fronis; ).

Considering the equalityZ*?% = N,~s% and the right continuity of the
paths, we conclude the proof.

Remark 4.2 In many methods of discretizationX{ — XJ') is not independent
of 7;X but, for everye > 0, there exist3y such that fom > ny, (X" — X[")

is independent ofZ*_. It is obvious that in this case also, the conclusion of
Theorem 4.1 holds.

In general the stochastic proceSswhich represents the value of the risky
asset, does not have independent increments. Nevertheless we present some ex-
amples in which it is possible to apply Theorem 4.1.

Example 4.3 The processS satisfies the equatiod§ = S_ dX;, whereX is
a semimartingale with independent increments ati] > —1 (see [13]) : the
filtrations generated b} and byS coincide (observe thaf satisfies the equation
dX =(§-)"*ds).
Taking a sequenc¥" of stochastic processes such thdt==-°SX, it is well
known thatS"==-SS. If the increments of the processe¢"] are independent (or
also asymptotically independent in the sense of Remark 4.2), and if the sequence
(S") satisfies (3.1) and (3.2), then Theorem (3.5) holds.

Example 4.4 Consider a market in which the risky asset satisfies the stochastic
differential equation

dS = S_(udt + odW, + pdN,) (4.5)

whereo > 0, ¢ > —1, W is a Wiener process arld an independent Poisson
process with intensityA ( when ¢ = 0, the model reduces to the Black and
Scholes model).

If ¢ # 0, the market is not complete, but in [18] it is shown that, considering
another asset which satisfies a stochastic differential equation similar to (4.5),
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there exists an equivalent martingale probabilfty with respect to which the
new market is complete. If we consider an American put on the aSgewith
strike priceK, the option price at timeis given byU; = u(t, S), whereu(t, x) =
SUR<, 7 E* [€077 (K —S)"|S =x] , 7 being a stopping time.

We pose, fom € N and for KT <t < KT

T
W = Xi \/7 and N"=) Y
t ng; j n t ng; j
whereX; are independent Bernoulli r.v. (with mean 0 and variance 1)¥arate
independent Poisson r.v. with parameidlr.

It is easy to check that{",N™==S(W,N) and soS"==SS ( S" satisfies
(4.5) withW andN replaced byW" andN"™). The filtration generated b$ co-
incides with the one generated By andN, and (by Remark 4.2) we can apply
Theorem 3.5 (the validity of (3.1) and (3.2) for the seque8€ds straightfor-
ward).

The processeS§" are in fact finite—time stochastic processes and therefore
their Snell envelopes can be explicitly computed: we recall thaZi %1, n
is a stochastic process adapted to a finite filtrakor (9%)i=... n . its Snell
envelope ;) is given by the formula:

...

{ UN - ZN
Ui max{Z , E[U;.1| 7]}

So one finds an explicit formula for the approximating option prices: this
formula contains a series which can be truncated with the required precision. For
the casep = 0 this formula is exposed in [8] ; for the general case [25] illustrates
a similar approximation, but less convenient in practical computations.

Example 4.6 In the same situation as in the previous example, we consider a
sequence of stochastic procedssatisfying the equation

odNP

vn

whereN is a standard Poisson process &l a compensated Poisson process
with intensityn.

In a similar way as in Example 4.4, one proves t83t=°SS and that Theo-
rem 3.5 holds; for the practical computations of the Snell envelope of a process
of the formf (t,§"), one can utilize a discretization procedure as in 4.4.

dag" = §" (udt+ +5dM> 4.7

Example 4.8 If we consider the Black and Scholes model and a sequence of
approximating procesS" where the Wiener process is approximated by Markov
chains, it is shown in [20] that the sequence of critical prig€s) corresponding

to the approximating puts, converges uniformlys{o), the critical price in the
Black and Scholes model.
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Since also in the case in which satisfies an equation of the form (4.5) the
critical price is smooth, it is possible to extend the method of [20] and prove (by
utilizing Remark 3.8) that, also in Examples 4.4 and 4.6, the sequence of critical
prices for the approximating models converges uniformly to the critical price of
the limit model.

5 Conditions for Skorokhod convergence

In this section we examine additional conditions which guarantee that the con-
vergence of Snell envelopes is with respect to the S—topologp.on

We consider a sequenck'|) of stochastic processes satisfying the hypothesis
of Theorem 3.5: let, for evergr, J" = M" — A" the Doob—Meyer decomposition
of the Snell envelope” with respect toF*". We point out that, by property
(2.2), the processed ) are uniformly of class (D), and consequently also the
r.v. AT are uniformly integrable (see [9]. chap. VII Theorem 16): so the se-
quence J",M", A") is tight in D* for the MZ—-topology (see the Appendix) and
there exists a subsequence such tdat K", AM)==M*(J, M, A), whereM is a
martingale andA an increasing process.

Lemma 5.1 The sequenc@") is tight for the S—topology and thereforéA=SA.

Proof. Let 7 be a stopping time for the filtratioR*" ands > 0: sinceJ" — A
is a martingale, one has

BN (AL, — A] = BN (7 - 3]
Givene > 0, there exists, by (2.2), a stopping tiree> 7 such thatE" [J"] <
E" [XD] +&. Consequently

E" [Als — A < E"[X]] — sup E" [X]] +¢
p>T+S
<E[XD] — BM[XM] +e < B [IXD - Xo] +e.

Since ") satisfies (3.2), it is evident thaA¥) also satisfies (3.2) and (3.1) is
satisfied since the rAAT are uniformly integrable. Therefore the sequen&® (
is tight for the S—topology.

Proposition 5.2 The limit process A is continuous.

Proof. We begin by observing that, for every> 0,
lim sup P" {AA! >n} =0, (5.3)

N—=00 rcn
where &”" is the set of all predictable strictly positive stopping times for the
filtration FX". Suppose it is possible that (5.3) were false: there exists a subse-
guenceny, two positive numbers andn and, for everyk, a predictable stopping
time 7% such thatP™ { AAY > n} > 2¢.
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Let p* be a stopping time such that < 7% andP™ {pk +1 > 7%} > 1—¢
(the existence of such a stopping time is due to the predictability pee e.g.
[17] page 17). We remark that

1
{AA:kk >, pf 2 Tk} C {(A,”JL% —AZkk) > 17}

and soP™ A;';+% - AZt) > TI} > &, which is in contradiction with the prop-
erty (3.2) for the sequencd).
Now let, foru > 0, 7"(u) be the predictable stopping time

"(u)=inf{s>0: AA; > u} AT.

This stopping time is strictly positive becauged] = A = 0, and by (5.3) it is
evident that £"(u)) converges in distribution t@.

By Theorem 5.12 of [16], fou in a dense subset of (80) , (7"(u), AAL, )
converges in distribution t¢r(u), AA.w)) (wherer(u) is defined forA in the
same way as"(u) for A") and this implies the continuity of the limit process
A

Remark 5.4 Since the procesA is continuous, it is predictable with respect to
the canonical filtration o3, and therefore) =M — A is the Doob—Meyer de-
composition ofJ for the filtrationF?-M-A, If the pair 0, F?-MA) satisfies property
(H) of (2.4), then it coincides with the decomposition with respecEFto(see
2.7).

Theorem 5.5 Let (X") be a sequence of stochastic processes satisfying the hy-
pothesis of Theorem 3.5 and suppose that the Snell envelope J of the limit process
X is continuous: theX", J")==-S(X, J).

Proof. Given the decompositiod =M — A, M is a continuous martingale and
MN=MZ\

Aldous showed that, if the finite dimensional distributions ") converge
to those oM andM is a continuous martingale, thén"==5SM (see [2] Propo-
sition 1.2).

The MZ—convergence implies the convergence of finite dimensional distribu-
tions only for a subse?” C [0, T] of full Lebesgue measure (see the Appendix),
but a careful analysis of the proof of [2] shows that, in fact, the author makes use
only of the property thatM ") converges in distribution ttM for the topology
of convergence in measure (i.e. the MZ-topology)lan

ThereforeM "==SM and, since the limit processdsM andA are continu-
ous,J"==5J and K", JM==5(X, J).

The last theorem applies in particular to the Black and Scholes model: in this
case the approximations we have proposed in Examples 4.4 and 4.6 converge in
fact for the S—topology.
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6 Stability of the optimal hedging strategy for the Black and Scholes model

Let (S°,S) be the asset prices in the Black and Scholes model, more precisely
the risky assetg) satisfies the equation

dS = uSdt+oSdW
S = X
and letS? = €' be the riskless asset. Lgt = (S°) ! be thediscounting coefficient

at timet. If J; is the discounted price at tinteof the American put option with
strike priceK, thenJ satisfies the equation (see [7] or [26]):

t t
J=x+ / Py(u,§)dSs, — / e Kl {Si<s(u)} du,
0 0

whereS, = S8, s(u) is the “critical price” at timeu, P(t,X) is the American
put value function and the derivatiw(t, x) is the “delta” of the American put.

In this formula, the proceséx + fot Px(u7SJ)dSJ)0< — represents the op-
<t<

timal discounted portfolio an{ L e K| du) the consumption.
p o tssydu) p

So this equality gives a formula for the optimal hedging strategy.

We consider a sequenc&") of stochastic processes and Qi = §'0u:
we suppose that onf{",.7 ", P") , there exists an equivalent probability such
that, when2" is endowed with this probabilityS"==-"°S. It is evident that
(S",8M==5(S, S).

Let J" be the Snell envelope gk(K — §")* (the discounted value of the
American put with respect t8") and consider, for everm, the Doob—Meyer
decomposition)” = M" — A" relative to the filtrationFS". We suppose that the
hypotheses of Theorem 3.5 are satisfied and so, by Theorem 5.5

(8", 3", M", AN==5(S,3, M, A)
whereJ =M — A is the Doob—Meyer decomposition af
Theorem 6.1 Suppose that for the limit law ¢8",J", M ", A") on the canonical
spaceD* the pair (S, FS7'M-A) satisfies condition (H) of (2.4). Then:

(a) if, for every n, the market represented by iS complete, and if ¥ is the
optimal (discounted) hedging portfolio foi"Sthen

t
(Vt” —X - / Px(u,ST)d§T> =50;
0 0<t<T

(b) further, in general

t t
(x +/ Px(u,SjL)déT - J{‘) =S (/ e "rKl g, <su)} du) .
0 0<t<T 0 0<t<T
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This means that the optimal hedging strategy for the Black and Scholes model
gives, to the limit, the optimal strategy in the case of complete markets and a
hedging strategy in the case of more general markets.

Proof. SinceJ; = e "P(t,S) andPy is strictly positive (see [26]), the filtrations
generated byl and S coincide: so the pairJ(, F**MA) satisfies condition (H).
By Lemma 2.7J =M — A'is the Doob—Meyer decomposition éfwith respect
to FS.

Hence the following relations hold:

t
My :x+/ P, S) d& |
0

t
A = /O e’r”rKI{SKS(u)} du.

Moreover, the following property holds:

t t
(s,x+/ Px(u,ST_)dé?) =S <s,x+/ Px(u,sJ)déu) |
0 0<t<T 0 0<t<T

The last equation is, for instance, a consequence of the converging result pre-
sented in [24] (taking into account th&", S")==5(S, S), thatP,(t, .) is contin-
uous and bounded and that the marting&lesatisfy condition c) of Proposition
3.2 in [24)).

We putP = x + [1 Pe(u, §0_)d§} and P, = x + [, Py(u, ) dS,, and we
observe thaM =P.

Since all the limit processes are continuous, we have

(S", 3", M", A" PM==5(S,J, M, A,P).

Property (b) follows from " — J")==S(P — J) = A.

Property (a) follows on taking into account the fact that, if the markets are
complete, the martingal®" represents the optimal hedging portfolio for the
approximating model and thabM(™ — P")==S(M — P) = 0.

Example 6.2Let us consider the sequence of proce&edefined by the equation
ds" = S (udt + odW +endN)

whereN is a Poisson process amgl — 0. It is easy to check th&"==°SS and
that condition (H) is satisfied: so we may apply part (b) of Theorem 6.1.

Further, it is possible (see [18]) to consider a second &5etich that the
new market is complete. So

t
(Vt“ —X —/ PAu,Sj‘)déj‘) =50
0 o<t<T

whereV" is the optimal portfolio based ors{, R").



Functional convergence of Snell envelopes 325

Remark 6.3 The “delta” Px(t, x) is not known explicitly, and so numerical
approximations are needed: see for instance [7] p. 93 for an efficient analytic
approximation.

Theorem 6.1 should be compared with the deep results of the paper [13];
nevertheless, we remark that the methods of [13] cannot be applied to a “pertur-
bation” of the Black and Scholes model with a jump—diffusion as in Example 6.2.

7 Conclusions

The Snell envelope is stable for convergence in distribution, provided that a
further hypothesis is satisfied by the limit process: nevertheless this condition
(which has been stated in Sect. 2 under the name of hypothesis (H)) is usually
satisfied in the approximation—discretization methods considered in the literature.
Therefore a general convergence theorem is available (Theorem 3.5) which
furnishes a unified approach to several approximation results (for instance the
Cox—Ross—Rubinstein approach [8], or the Amin—Khanna results [3]).

Appendix
The MZ-topology

Let A be the normalized Lebesgue probability measure o JJ0and letw(t)
be a real Borel function defined on,[D]: the pseudo—path oy is the image
measure of\ under the mapping — (t, w(t)).

The mapping which associates to a pathits pseudo—path, restricted to
D, is injective and provides an imbedding Bf into the compact space of all
probabilities defined on the compact setTdx [—oo, +oc]: the induced topology
on D is the pseudo—path or Meyer—Zheng topology. The Berdield onD for
the MZ—topology, as for the S—topology, coincides with the canoruedield

Endowed with the MZ—topologyD) is a metric (but not a Polish) space: so
(contrary to the case of S—topology) for a family of stochastic processes with
paths onD, the tightness condition is only a sufficient condition for relative
compactness for convergence in distribution.

The MZ—-topology onD is in fact the topology of convergence in measure,
much weaker than the S—topology ([27], Lemma 1), but the original definition is
better adapted to give tightness conditions for supermartingales and quasimartin-
gales.

The following result has been used in Sect. 3 (see [27] page 262—-263):

(A.1) Let(X") be a sequence of positive supermartingales uniforrhiypbunded
(that issup, E" [X] = C < +c0). Then the family of distribution8*” is rela-

tively compact o for the MZ—topology, and for every limit la®; the canonical
process X is a positive supermartingale such tH§Xy] < C.
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A similar result holds for a sequenc® (') of uniformly L'*~bounded mar-
tingales such that, for every fixddthe r.v. (M") are uniformly integrable ([27]
page 368), and for a sequend®') of positive increasing processes which are
uniformly L'-bounded ([27] page 367).

Contrary to the case of S—topology, the MZ-topology on the product space
DK = D ([0, T],R¥) is the product topology: so, given a familKi(ic, =
(Xi,..., Xie of Rk—valued stochastic processes, if each componéptd is
tight for h = 1,... ,k; then the vector stochastic process¥¥); are also tight.

Concerning the convergence of finite dimensional distributions, we have the
following result ([27] Theorem 6):

(A.2) Let(X") be a sequence of stochastic processes such that¥4 X : then
there exists a subsequenc®nd a subset”” C [0, T] of full Lebesgue measure
such that the finite dimensional distributions (™), converge to those of

Xrter -
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