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a b s t r a c t

We investigate the problems of drift estimation for a shifted Brownianmotion and intensity
estimation for a Cox process on a finite interval [0, T ], when the risk is given by the energy
functional associated to some fractional Sobolev spaceH1

0 ⊂ Wα,2
⊂ L2. In both situations,

Cramér–Rao lower bounds are obtained, entailing in particular that no unbiased estimators
(not necessarily adapted) with finite risk in H1

0 exist. By Malliavin calculus techniques, we
also study super-efficient Stein type estimators (in the Gaussian case).

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we focus on two problems of nonparametric (or, more rigorously, infinite-dimensional parametric) statis-
tical estimation: drift estimation for a shifted Brownian motion and intensity estimation for a Cox process, on a finite time
interval [0, T ]. Our investigation stems from the articles [10,11], where N. Privault and A. Réveillac developed an original ap-
proach to these problems, by employing techniques fromMalliavin calculus to study Cramér–Rao bounds and super-efficient
‘‘shrinkage’’ estimators, originally developed by C. Stein in [5] and then expanded in [13], to fit in infinite-dimensional
frameworks. Such a combination of these two powerful techniques can be cast into a more general picture, where Malliavin
calculus tools provide insights in statistics and more generally, on probabilistic approximations: let us mention here the
monograph [8], which collects many results of the fruitful meeting of another great contribution of C. Stein (the so-called
Stein method) with Malliavin calculus, and other recent articles such as [2,4,7,12].

As in [10,11], here we assume that the unknown function to be estimated belongs to the Hilbert space H1
0 (0, T ) (which

is a reasonable choice, at least in the case of shifted Brownian motion, because of the Cameron–Martin and Girsanov
theorems) but we move further by addressing the following question, which is rather natural but has apparently not yet
been considered: what about estimators that also take values in H1

0? Indeed, in [10,11], estimators are seen as functions
with values in L2([0, T ], µ) (where µ is any finite measure) or, equivalently, the associated risk is computed with respect to
the L2 norm and not the (stronger) H1

0 norm.
To investigate this problem, we first provide Cramér–Rao bounds with respect to different risks, by considering the

estimation in the interpolating fractional Sobolev space H1
0 ⊂ Wα,2

⊂ L2, for α ∈ [0, 1]. It turns out that no unbiased
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estimator exists in H1
0 (Theorem 2.5) and even in Wα,2, for α ≥ 1/2 (Theorem 2.9). Although a bit surprising, these results

reconcile with the following intuition: since the estimator is a function of the realization of the process, whose paths also
do not belong to H1

0 (nor Wα,2, for α ≥ 1/2), it is ‘‘too risky’’ to estimate (without bias) the parameter on that scale of
regularity. Therefore, besides answering a rather natural question, our results highlight the delicate role played by the
choice of different norms in such estimation problems, and one might expect that similar phenomena might appear in
other situations, technically more demanding, e.g., stochastic differential equations.

As a second task, we study super-efficient ‘‘shrinkage’’ estimators in the spaces Wα,2. It is often suggested on heuristic
grounds that the ideal situation for the problem of estimation would be to have an unbiased estimator with low variance,
but that allowing for a little bias may allow one to find estimators with lower risks, in many situations: we strongly rely
on the recent extensions and combinations of the original approach by Stein with Malliavin calculus to these frameworks
developed in [10,11]. Using a similar approach, we give sufficient conditions for the existence of super-efficient estimators
in Wα,2, for α < 1/2, and we give explicit examples of such estimators, in the case of Brownian motion (Example 3.3). In
the case of Cox processes, although it is possible to define a suitable version of Malliavin calculus and provide sufficient
conditions for Stein estimators, we are currently unable to provide explicit examples.

The paper is organized as follows. In Section 2 we deal with drift estimation for a shifted Brownian motion, addressing
Cramér–Rao lower bounds with respect to risks computed in H1

0 and fractional Sobolev spaces. In Section 3, we discuss
super-efficient estimators. Finally, analogous results on intensity estimators for Cox processes are given in Section 4.

2. Drift estimation for a shifted Brownian motion

In this section, we fix T ≥ 0 and let X = (Xt)t∈[0,T ] be a Brownian motion (on the finite interval [0, T ]), defined on
some filtered probability space (Ω, F, (Ft)t∈[0,T ], P). Instead of choosing a fixed (infinite-dimensional) space of parameters
Θ , we simply notice that our arguments apply to any set Θ of absolutely continuous, adapted processes ut =

 t
0 u̇sds (for

t ∈ [0, T ]) such that

(1) (u̇t)t∈[0,T ] satisfies the conditions of Girsanov’s theorem;
(2) Θ contains the Cameron–Martin space H1

0 ;
(3) for any u ∈ Θ , v ∈ H1

0 , one has u + v ∈ Θ .

Let us recall thatH1
0 (= H1

0 (0, T )) is defined as the space of (continuous) functions of the form h(t) =
 t
0 ḣ(s)ds, for t ∈ [0, T ],

with ḣ ∈ L2(0, T ). In particular, we may let Θ = H1
0 .

For u ∈ Θ , we define the probability measure Pu
= LuP , with

Lu = exp
 T

0
u̇sdXs −

1
2

 T

0
u̇2
s ds


.

Girsanov’s theorem entails that, with respect to the probability measure Pu, the process Xu
t = Xt − ut is a Brownian motion

on [0, T ].
We address the problem of estimating the drift with respect to Pu on the basis of a single observation of X (of course,

repeated and independent observations can improve the estimates, but this amounts to a simple generalization). Such a
problem is of interest in different fields of application: for example, we can interpret X as the observed output signal of some
unknown input signal u, perturbed by a Brownian noise. Such a problem is investigated, e.g., in [10], where the following
definition is given.

Definition 2.1. Any measurable stochastic process ξ : Ω × [0, T ] → R is called an estimator of the drift u. An estimator of
the drift u is said to be unbiased if, for every u ∈ Θ , t ∈ [0, T ], ξt is Pu-integrable and one has Eu(ξt) = Eu(ut).

In this section, we forego the specification of ‘‘the drift u’’ and simply refer to estimators. Moreover, we refer to the
quantity Eu(ξt − ut) as the bias of the estimator ξ (whenever it is well-defined).

By introducing as a risk associated to any estimator ξ the quantity

Eu(∥ξ − u∥2
L2(µ)

) = Eu
 T

0
|ξt − ut |

2µ(dt)


, (1)

where µ is any finite Borel measure on [0, T ], Privault and Réveillac provide the Cramér–Rao lower bound stated next for
adapted and unbiased estimators [10, Proposition 2.1]. In what follows, Θ being the space of all absolutely continuous,
adapted processes, whose derivatives satisfy the conditions of Girsanov’s theorem.

Theorem 2.2 (Cramér–Rao Inequality in L2(µ)). For any adapted and unbiased estimator ξ , one has

Eu(∥ξ − u∥2
L2(µ)

) ≥

 T

0
tµ(dt), for every u ∈ Θ . (2)

Equality is attained by the (efficient) estimator û = X.
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Before giving our results, we briefly report the original proof in [10] but observe that the requirement made therein to
the effect that ξ is adapted is actually unnecessary.
Proof. The inequality follows from an application of the Cauchy–Schwarz inequality to the crucial identity

v(t) = Eu

(ξt − ut)

 T

0
v̇(s)dXu

s


, for t ∈ [0, T ], (3)

valid for every deterministic process v ∈ Θ (thus, v(t) =
 t
0 v̇(s)ds). Indeed, if we choose, for any t ∈ [0, T ], v̇(s) = 1[0,t](s),

then v(t) = t and
 T
0 v̇(s)dXu

s = Xu
t . We obtain, from (3),

t = Eu 
(ξt − ut)Xu

t


≤ Eu 

(ξt − ut)
21/2

Eu
{(Xu

t )2}1/2 = Eu
{(ξt − ut)

2
}
1/2

√
t,

since Xu is a Brownian motion under Pu. After dividing by
√
t and squaring on both sides, we integrate with respect to µ for

t ∈ [0, T ], to obtain (2).
In turn, to prove (3) we use the fact that, for every ε ∈ R, one has u + εv ∈ Θ , and hence

Eu+εv(ξt) = Eu+εv
{ut + εv(t)} = Eu+εv(ut) + εv(t), for t ∈ [0, T ].

We then differentiate with respect to ε, at ε = 0. Exchanging between differentiation and expectation is justified by the
finiteness of the left-hand side in (2), for µ-a.e. t ∈ [0, T ]; otherwise there is nothing to prove. We obtain

d
dε


ε=0

Eu+εv(ξt − ut) = E

(ξt − ut)

d
dε


ε=0

Lu+εv
T


= Eu


(ξt − ut)

 T

0
v̇(s)dXu

s


. �

Remark 2.3. Once again, let us stress the fact that in the above proof, ξ need not be adapted. Concerning the issue of
comparing adapted with non-adapted estimators, it would be desirable to argue that general (not necessarily adapted)
estimators cannot perform better than adapted ones, and the following argument might seem to go in that direction.
However, it does not allow us to conclude. Let ξ be any unbiased estimator and for u ∈ Θ , consider the optional projection
η of ξ , with respect to the probability Pu, so that ηt = Eu(ξt |Ft), for t ∈ [0, T ]. Then Eu(ηt) = ut and one has

Eu(|ηt − ut |
2) = Eu 

Eu(ξt − ut |Ft)
2

≤ Eu(|ξt − ut |
2).

However, this does not entail that η performs better that ξ , since η = ηu depends also on u; thus it is not an estimator. Note,
however, that if we keep ū ∈ Θ fixed, then ηū could be biased, i.e., Eu(ηū

t ) ≠ Eu(ut) for some u ∈ Θ , t ∈ [0, T ]. A similar
issue appears in [10].

Remark 2.4. Beyond the mean squared error, one can consider the risk defined by Lp norms, for p ∈ (1, ∞), viz. T

0
Eu(|ξt − ut |

p)µ(dt).

Again, by direct inspection of the proof in [10], applying Hölder’s inequality (with conjugate exponents (p, q)) instead of the
Cauchy–Schwarz inequality in (3), we obtain an inequality of the form

Eu(|ξt − ut |
p) ≥

|v(t)|p

cp/qq

 t
0 v̇2(s)ds

p/2 ≥
1

cp/qq
tp/2, for t ∈ [0, T ],

where cq = E(|Y |
q) is the qth moment of a N(0, 1) random variable Y . Integration with respect to µ then provides a

Cramér–Rao type lower bound. However, letting ξ = X , one has

Eu(|Xt − ut |
p) = Eu(|Xu

t |
p) = cptp/2, for t ∈ [0, T ].

Thus X is not an efficient estimator in Lp(Ω × [0, T ]) for p ≠ 2.

Let us recall that the Cameron–Martin spaceH1
0 is a Hilbert space, endowedwith the norm induced by the natural Sobolev

‘‘energy’’ functional, namely ∥h∥H1
0

= ∥ḣ∥L2(0,T ). For simplicity of notation, we extend such a functional identically to +∞

for any Borel curve h : [0, T ] → R that does not belong to H1
0 .

We observe that H1
0 is continuously included in C1/2(0, T ), the space of 1/2-Hölder continuous functions: since the paths

of the Brownian motion are not 1/2-Hölder continuous, we deduce that the process X is not H1
0 -valued (negligibility of the

Cameron–Martin space holds true also for abstract, infinite-dimensional, Wiener spaces). However, since the drift u takes
values in H1

0 , it is natural to look for an estimator ξ sharing this property. Our first result shows that, if we require ξ to be
unbiased, this is not possible, i.e., such an estimator ξ has necessarily infinite H1

0 risk.
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Theorem 2.5 (Estimators in H1
0 ). Let ξ be an estimator such that, for some u ∈ Θ , one has Eu(∥ξ − u∥2

H1
0
) < ∞. Then ξ is not

unbiased (in particular, the bias in not zero at u).

Before we address the proof for general, possibly non-adapted estimators, we give the following argument that exploits
Itô’s formula. Actually it is longer, but we feel that it has more of a stochastic flavor.

Proof (Case of Adapted Estimators). Arguing by contradiction, we assume that ξ is unbiased and the risk at u is finite, i.e.,
ξ − u ∈ L2(Ω, Pu

;H1
0 ). For every (deterministic) v ∈ H1

0 , arguing exactly as above for the deduction of (3), we obtain

v(t) = Eu
 t

0
(ξ̇s − u̇s)ds

 t

0
v̇(s)dXu

s


, for t ∈ [0, T ],

where stochastic integration reduces to the interval [0, t] because of the adaptedness assumption. Integrating by parts
(i.e., using Itô’s formula) we rewrite the random variable above as t

0

 s

0
v̇(r)dXu

r


(ξ̇s − u̇s)ds +

 t

0

 s

0
(ξ̇r − u̇r)dr


v̇(s)dXu

s .

The Itô integral has zero expectation, since ξ − u ∈ L2(Ω, Pu
;H1

0 ) ⊆ L2(Ω, Pu
; C1/2(0, T )) and v̇ ∈ L2(0, T ), hence the

integrand is an adapted and square-integrable process. Therefore, taking expectation, we obtain the analogue of (3) for the
study of H1

0 energy:

v(t) = Eu
 t

0

 s

0
v̇(r)dXu

r


(ξ̇s − u̇s)ds


, for t ∈ [0, T ].

Indeed, the Cauchy–Schwarz inequality and Itô’s isometry give

v(t)2 ≤ Eu
 t

0

 s

0
v̇(r)dXu

r

2
ds


Eu

 t

0
(ξ̇s − u̇s)

2ds


=

 t

0

 s

0
v̇2(r)dr


ds

 t

0
Eu

{(ξ̇s − u̇s)
2
}ds

=

 t

0
(t − s)v̇2(s)ds

 t

0
Eu

{(ξ̇s − u̇s)
2
}ds.

In particular, choosing t = T , we deduce

Eu(∥ξ − u∥2
H1
0
) ≥

v(T )2 T
0 (T − t)v̇2(t)dt

.

To reach a contradiction, it is enough to prove that for every constant c > 0, there exists v̇ ∈ L2(0, T ) such that the left-hand
side above is greater than c , i.e., T

0
v̇(t)dt

2

≥ c
 T

0
(T − t)v̇(t)2dt. (4)

Indeed, if we let v̇(t) = (T − t)−α for some 0 < α < 1, we get T

0
v̇(t)dt

2

=


T 1−α

1 − α

2

and
 T

0
(T − t)v̇2(t)dt =

T 2(1−α)

2(1 − α)
.

It is then sufficient to let α ↑ 1 to conclude. �

Remark 2.6. Instead of the explicit construction of v ∈ H1
0 above, to obtain a contradiction we can also use the following

duality result. On ameasure space (E, E, µ), suppose that g ≥ 0 is ameasurable function such that, for some constant c > 0,
the following condition holds:

E
fgdµ ≤ c


E
f 2dµ

1/2

, for every f ∈ L∞(µ), f ≥ 0.

Then g ∈ L2(µ) with ∥g∥L2(µ) ≤ c. The easy proof follows from considering the continuous, linear functional φ initially
defined on L∞

∩ L2(µ) by f →

E fgdµ and then applying Riesz’s theorem on its extension to L2(µ). In the proof above, a

contradiction immediately follows from (4), letting µ(dt) = (T − t)dt and g(t) = (T − t)−1.
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We now provide a complete proof of Theorem 2.5.

Proof (General Case). Arguing by contradiction, we assume that ξ is unbiased and the risk at u is finite, i.e., ξ − u ∈

L2(Ω, Pu
;H1

0 ). For every (deterministic) v ∈ H1
0 , arguing as above for the deduction of (3), we obtain instead

v(t) = Eu
 t

0
(ξ̇s − u̇s)ds

 T

0
v̇(s)dXu

s


, for t ∈ [0, T ].

Then we differentiate with respect to t ∈ [0, T ] (exchanging derivatives and expectation is ensured by the finite risk
assumption), and we obtain, for a.e. t ∈ [0, T ],

v̇(t) = Eu

(ξ̇t − u̇t)

 T

0
v̇(s)dXu

s


.

At this stage, the Cauchy–Schwarz inequality and Itô’s isometry together yield

|v̇(t)|2 ≤ Eu 
|ξ̇t − u̇t |

2  T

0
|v̇(s)|2ds, for a.e. t ∈ [0, T ]. (5)

From this inequality, we easily obtain a contradiction, arguing as follows. Let A ⊆ [0, T ] be a non-negligible Borel subset
such that


A E

u(|ξ̇t − u̇t |
2)dt < 1, which exists because of the finite risk assumption and uniform integrability (notice that

A does not depend upon v). Then, integrating the above inequality for t ∈ A, we obtain
A
|v̇(t)|2dt ≤


A
Eu(|ξ̇t − u̇t |

2)dt
 T

0
|v̇(t)|2dt,

for every v̇ ∈ L2(0, T ), in particular for every v̇ ∈ L2(A). Simply taking v̇ = 1A, we obtain the required contradiction. �

Actually, the result on the absence of unbiased estimators in H1
0 can be slightly strengthened, allowing for estimators

whose bias is sufficiently regular. We state it as a corollary (of the proof), remarking that similar deductions could be
performed also in the cases that we consider below.

Corollary 2.7. Let ξ be an estimator such that, for every u ∈ Θ , t ∈ [0, T ], ξt is Pu-integrable, and one has, for some
C = (Ct)t∈[0,T ] ∈ L2(0, T ) (possibly depending upon u ∈ Θ), d

dt
d
dε


ε=0

Eu+εv
{ξt − ut − εv(t)}

 ≤ Ct∥v∥L2(0,T ), a.e. t ∈ [0, T ], for every v ∈ H1
0 .

Then the H1
0 risk of the estimator ξ is infinite, i.e.,

Eu(∥ξ − u∥2
H1
0
)ds = ∞, for every u ∈ Θ .

Proof. We argue exactly as in the proof above, but we write

Eu+εv(ξt) = Eu+εv(ut) + εv(t) + bu+εv
t

where but = Eu(ξt − ut) is the bias. After differentiation with respect to ε and t , we obtain (5) with Eu(|ξ̇t − u̇t |
2) + C2

t in
place of Eu(|ξ̇t − u̇t |

2) and we conclude arguing as in the proof above. �

We address now analogous results for the intermediate spaces H1
0 ⊂ Wα,2

⊂ L2, for α ∈ (0, 1), defined as follows.

Definition 2.8. For α ∈ (0, 1), p ∈ (1, ∞), the fractional Sobolev space Wα,p(= Wα,p(0, T )) is defined as the space of
functions u ∈ Lp(0, T ) such that their ‘‘energy’’ functional is finite, i.e.,

∥u∥p
Wα,p

0
=

 T

0

 T

0

|ut − us|
p

|t − s|pα+1
dtds < ∞.

The notation Wα,p
0 , with subscript 0, is introduced here to distinguish the energy functional from the usual norm in the

theory of fractional Sobolev spaces, for which we refer throughout to the survey [3]. For our purposes, we need nothing
more than the definition above, but let us stress some further (well-known) facts. The spaceWα,p (endowed with a suitable
norm) interpolates between the Sobolev space W 1,p and Lp; for example, one has Wα′,p

⊆ Wα,p for 0 < α ≤ α′ < 1, and
Wα,2

⊆ H1, with

∥u∥2
Wα,2

0
≤ 2

 T

0
|u̇r |

2
 T

r

 r

0

1
|t − s|2α

dsdtdr ≤ Cα,T∥u∥2
H1
0
. (6)
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From this inequality, the above theorem for estimators in H1
0 could also be obtained from the next results. Moreover, if

αp > 1, then one can prove a continuous embedding ofWα,p(0, T ) into Cβ(0, T ), with β = α − 1/p.
Let us first consider the Cramér–Rao bound in the quadratic case.

Theorem 2.9 (Cramér–Rao Inequality in Wα,2). Let ξ be an unbiased estimator. For every α ∈ (0, 1), one has

Eu


∥ξ − u∥2
Wα,2

0


≥

 T

0

 T

0

1
|t − s|2α

dtds, for every u ∈ Θ .

Equality is attained by the (efficient) estimator ξ = X.

In particular, if an estimator ξ has finiteWα,2 risk for some α ∈ [1/2, 1) and some u ∈ Θ , then it is not unbiased. This is
consistent with the qualitative and informal fact that the paths of Brownian motion do not possess ‘‘half of a derivative’’ in
time, even measured in a L2 sense.

Proof. We introduce the notation ∆t = ξt − ut , for t ∈ [0, T ], so that, by Fubini’s theorem, we write

Eu


∥ξ − u∥2
Wα,2

0


=

 T

0

 T

0

Eu(|∆t − ∆s|
2)

|t − s|2α+1
dtds.

If ξ is an unbiased estimator and v ∈ H1
0 , we argue (once again) to obtain (3), and subtract the corresponding identities

for s, t ∈ [0, T ], thus

v(t) − v(s) = Eu

(∆t − ∆s)

 T

0
v̇(r)dXu

r


.

Hence, the Cauchy–Schwarz inequality and Itô’s isometry give the lower bound

Eu(|∆t − ∆s|
2) ≥

|v(t) − v(s)|2 T
0 v̇2(s)ds

, for s, t ∈ [0, T ].

We let v̇(r) = 1[s∧t,s∨t](r), so that

Eu(|∆t − ∆s|
2) ≥ |t − s| for s, t ∈ [0, T ].

The Cramér–Rao bound then follows, viz. T

0

 T

0

Eu(|∆t − ∆s|
2)

|t − s|2α+1
dtds ≥

 T

0

 T

0

1
|t − s|2α

dtds.

Finally, if ξ = X , then X − u = Xu, thus one has

Eu(|Xu
t − Xu

s |
2) = |t − s|, for s, t ∈ [0, T ].

Hence the Cramér–Rao lower bound is attained, i.e., T

0

 T

0

Eu(|Xu
t − Xu

s |
2)

|t − s|2α+1
dtds =

 T

0

 T

0

1
|t − s|2α

dtds. �

In the case of a general exponent p ∈ (1, ∞) (with q = p/(p − 1)), arguing similarly, we obtain the following bound, in
Wα,p. As above, we let cq = E(|Y |

q) be the qth moment of a standard Gaussian (Normal) random variable.

Theorem 2.10 (Cramér–Rao Inequality in Wα,p). Let ξ be an unbiased estimator. For every α ∈ (0, 1), p ∈ (1, ∞), one has

Eu

∥ξ − u∥p

Wα,p
0


≥

1

cp/qq

2T 1−pα+p/2

p{1 + p(1/2 − α)}max{0, (1/2 − α)}
.

Since

Eu(|Xu
t − Xu

s |
p) = cp|t − s|p/2,

the risk of the estimator ξ = X is given by T

0

 T

0

Eu(|Xu
t − Xu

s |
p)

|t − s|pα+1
dtds = cp

 T

0

 T

0

1
|t − s|pα+1−p/2

dtds.

As in Remark 2.4, we conclude that X is not an efficient estimator with respect to the risk inWα,p, for p ≠ 2.
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Remark 2.11. Before we conclude this section, we remark that all the bounds above can be generalized (at least) to the case
of a continuous Gaussian martingale, with quadratic variation process

 t
0 σ 2

s ds, t ∈ [0, T ] and also by introducing different
energies, such as T

0

 T

0

|u(t) − u(s)|p

|t − s|αp+1
µ(dt, ds),

whereµ is a measure on [0, T ] (a natural choice would be to takeµ somehow related to σ 2). However, we choose to restrict
the discussion to the case of the Brownianmotion, to limit technicalities and emphasize the role played by the norm chosen
to estimate the risk.

3. Super-efficient estimators

In this section, we address the problem of Stein type, super-efficient estimators for the drift of a shifted Brownianmotion,
with respect to risks computed in the Sobolev spaces introduced above.

For L2(µ)-type risks, super-efficient estimators in the form X + ξ were first studied in [10], using tools from Malliavin
calculus. Before we discuss their approach and our extension to Sobolev spaces, let us review some facts about Malliavin
calculus on the classical Wiener space (we refer to the monograph [9] for details), limiting ourselves to what is essential for
our purpose.

3.1. Malliavin Calculus on the Wiener space

In the framework of Section 2, i.e., if X = (Xt)t∈[0,T ] is a Brownian motion (on the finite interval [0, T ]), defined on
some filtered probability space (Ω, F, (Ft)t∈[0,T ], P), we introduce the space S of smooth functionals, as those in the form
F = φ


Xt1 , . . . , Xtn


for some t1, . . . , tn ∈ [0, T ] and φ ∈ C∞

b (Rn), n ≥ 1. The Malliavin derivative DF is then defined as the
L2(0, T )-valued random variable

DtF =

n
i=1

∂φ

∂xi


Xt1 , . . . , Xtn


1[0,ti](t), for a.e. t ∈ [0, T ].

For h ∈ L2(0, T ), we let DhF =
 T
0 DtFh(t)dt (in the classical Wiener space framework, this corresponds to differentiation

along the direction in H1
0 given by h̃(t) =

 t
0 h(s)ds, t ∈ [0, T ]: differently from the previous sections, we prefer to focus

on the space L2(0, T ) instead of H1
0 ). The Cameron–Martin theorem entails the following integration by parts formula for

smooth functionals.

Proposition 3.1. Let F ∈ S and h ∈ L2(0, T ). Then

E(DhF) = E

Fh∗


, (7)

where we let h∗
=

 T
0 h(s)dXs be the Itô(–Wiener) integral.

A straightforward consequence of the integration by parts formula above is closability for the operator D : S ⊂ L2(Ω) →

L2(Ω × [0, T ]). The domain of its closure defines the Sobolev–Malliavin space D1,2, on which the operator D extends
continuously.

Proposition 3.2 (Chain Rule). Let F1, . . . , Fn ∈ D1,2 and φ ∈ C1
b (Rn). Then φ(F1, . . . , Fn) ∈ D1,2 with

Dtφ(F1, . . . , Fn) =

n
i=1

∂φ

∂xi
(F1, . . . , Fn)DtFi, for a.e. t ∈ [0, T ].

3.2. Stein’s shrinkage estimators in fractional Sobolev spaces

In [10], Privault and Réveillac consider an estimator ξt = D1[0,t] ln F , t ∈ [0, T ], where F is any P-a.s. non-negative
random variable in D1,2 such that

√
F is ∆-superharmonic with respect to a suitable ‘‘Laplacian’’ operator, actually related

to the structure of the risk considered (which is not, in the Gaussian case, the usual Gross–Malliavin Laplacian). We show
that a similar approach leads to super-efficient estimators also in fractional Sobolev spacesWα,2, for α ∈ [0, 1/2) (of course,
this perturbative approach does not provide any information for larger values of α). Indeed, for every ξ = (ξt)t∈[0,T ], with
Eu(∥ξ∥

2
W2,α

0
) < ∞, we write

Eu(∥X + ξ − u∥2
Wα,2

0
) = Eu

∥X − u∥2
Wα,2

0
+ ∥ξ∥

2
Wα,2

0


+ 2


Eu [(ξt − ξs){(Xt − ut) − (Xs − us)}]µα(ds, dt),
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where we introduce the Borel measure µα(ds, dt) = 2(t − s)−2α−11{s<t}dsdt on [0, T ]
2. If ξt − ξs ∈ D1,2, for every s,

t ∈ [0, T ], with s < t , the integration by parts (7) for the Malliavin derivative (to be rigorous, we should write in what
follows Du, because the derivative is built with respect to the probability Pu, not P), entails

Eu [(ξt − ξs){(Xt − ut) − (Xs − us)}] = Eu
{(ξt − ξs)(Xu

t − Xu
s )}

= Eu
{(ξt − ξs)1∗

[s,t]} = Eu
{D̃s,t(ξt − ξs)},

where D̃s,tF = D1[s,t]

 t
s DrFdr . Hence, if we let ρ = Eu(∥X − u∥2

Wα,2
0

) denote the Cramér–Rao lower bound, we deduce that

Eu
∥X + ξ − u∥2

Wα,2
0


= ρ +


Eu

|ξt − ξs|
2
+ 2D̃s,t(ξt − ξs)


µα(ds, dt).

It is then convenient to introduce the following notion of Laplacian,

∆αF =


[0,T ]2

(D̃s,t)
2Fµα(ds, dt), (8)

initially defined on S. Arguing as in [10, Proposition 4.5], it is possible to show that ∆α : S ⊆ L2(Ω, Pu) → L2(Ω, Pu) is
closable and that the random variables G ∈ D1,2, with

D̃s,tG ∈ D1,2, for a.e. s, t ∈ [0, T ] and D̃2
s,tG ∈ L2


Ω × [0, T ]

2, P × µα


, (9)

belong to the domain of the closure, so that ∆αG is well-defined (actually, by the same expression as in (8)). Moreover, the
operator ∆α is of diffusion type, i.e., for every F1, . . . , Fn ∈ S, φ ∈ C2

b (Rn), the function φ ◦ F (we write F = (F1, . . . , Fn))
belongs to the domain of ∆α , and one has

∆α(φ ◦ F) =

n
i=1

∂φ

∂xi
(F)∆αFi +

n
i,j=1

∂2φ

∂xi∂xj
(F)Γα(Fi, Fj), P-a.e. in Ω , (10)

withΓα(Fi, Fj) =

[0,T ]2 D̃s,tFiD̃s,tFjµα(ds, dt), for all i, j ∈ {1, . . . , n} (theMalliavinmatrix associated to (Fi)ni=1). This identity,

by density, extends under natural integrability assumptions on F as well as on φ.
The operator ∆α enters in the picture if we assume that the process ξ is of the form ξt = D̃0,t ln F 2, t ∈ [0, T ], for some

P-a.e. positive random variable F ∈ D1,2, with G = ln F 2 satisfying (9). If we are in a position to apply the chain rule (10),
one then gets

∆α ln F 2
= 2

∆αF
F

−
2
F 2

Γα(F , F) =
2∆αF

F
−

1
2

Γα(ln F 2, ln F 2),

which can be explicitly written in terms of ξ as

4∆F
F

=


[0,T ]2


2D̃s,t(ξt − ξs) + |ξt − ξs|

2µα(ds, dt).

As a result, we obtain

Eu
∥X + ξ − u∥2

Wα,2
0


= ρ + 4Eu


∆αF
F


.

Therefore, in order to find super-efficient estimators, it is enough to prove the existence of some ξ (independent of u) that
can be written in terms of some F (possibly depending on u), with ∆αF ≤ 0 (i.e., super-harmonic) with strict inequality on
a set of positive Pu (or equivalently P) measure. In the case of shifted Brownian motion, we provide the following example.

Example 3.3. Let F be a random variable of the form of increments F = φ

Xt1 , . . . , Xtn − Xtn−1


, for some 0 = t0 < · · · <

tn ≤ T (with φ : Rn
→ Rn sufficiently regular, in order to perform all the computations below). Then, by (10), we can

express ∆αF in terms of ∇φ, ∇2φ, ∆α(δiX) and, for i, j ∈ {1, . . . , n},

Γα(δiX, δjX) =


[0,T ]2

D̃s,tδiXD̃s,tδjXµα(ds, dt),

with the notation δiX = Xti − Xti−1 .
Before we proceed further, we have to take into account that, with different probabilities Pu, the random variables may

have different derivatives DF = DuF and Laplacians ∆αF = ∆u
αF , since the calculus with respect to Pu is ‘‘modeled’’ on the

process Xu
= X − u. Thus, for h ∈ L2(0, T ), t ∈ [0, T ], one has

DhXt = DhXu
t + Dhut =

 t

0
h(s)ds + Dhut
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and ∆αXt = ∆αXu
t + ∆αut = ∆αut , provided that ut is sufficiently regular. To proceed further with computations, we

assume that the process u is deterministic, i.e., we restrict the space of parameters Θ to H1
0 only, so that Dhut = ∆αut = 0,

ruling out the problem of possible dependence upon u of the Malliavin calculus that we consider. Then (10) reduces to

∆αF =

n
i,j=1

∂2φ

∂xi∂xj
ai,j,

where, for i, j ∈ {1, . . . , n}, with t0 = 0,

ai,j =


[0,T ]2

 t

s
1[ti−1,ti](r)dr

 t

s
1[tj−1,tj](r)drµα(dt, ds).

Toprove that the symmetricmatrixA = (aij)ni,j=1 iswell-defined and invertible,we argue as follows: for every v = (vi)
n
i=1,

one has, using the notation ⟨Av, v⟩ =
n

i,j ai,jvivj,

⟨Av, v⟩ =


[0,T ]2

n
i,j

vivj

 t

s
1[ti−1,ti](r)dr

 t

s
1[tj−1,tj](r)drµα(dt, ds)

=


[0,T ]2

 t

s

n
i=1

vi1[ti−1,ti](r)dr

2

µα(dt, ds)

=


[0,T ]2

|ṽ(t) − ṽ(s)|2µα(dt, ds) = ∥ṽ∥
2
Wα,2

0
,

where we let

ṽ(t) =

 t

0

n
i=1

1[ti−1,ti](s)vids.

From this identity and (6) we deduce that A is well-defined, while non-degeneracy follows from the fact that, if ∥ṽ∥Wα,2
0

= 0,
then ṽ is constant, which cannot happen except when v = 0.

We let B = (bi,j)ni,j=1 be the inverse matrix of A, and consider the function defined, for all x ∈ Rn, by

φ(x) = ⟨Bx, x⟩a

for a suitable choice of a ∈ R. Then, by formally applying the chain rule in Rn, one gets
n
i,j

∂2φ

∂xi∂xj
ai,j = 2a{2(a − 1) + n} ⟨Bx, x⟩a−1 ,

which suggests the choice a ∈ (1−n/2, 0) (and n ≥ 3). However, for a in this range,φ is not C2
b (Rn) and in order to rigorously

conclude super-efficiency for an estimator in the form Xt + D̃0,t ln F 2, t ∈ [0, T ], we have to justify all the applications of
the chain rule above. Indeed, the only non-trivial step is to prove the following estimate, for every u ∈ H1

0 :

Eu 
⟨B(δX), (δX)⟩−1 < ∞.

In turn, this holds true because we may pass to the joint law of δX = (δiX)ni=1, which is Gaussian non-degenerate (possibly
non-centered) and the integrand can then be estimated from above by some constant times the function x → |x|−2 (here
the assumption n ≥ 3 plays a role, too).

Next, to prove, e.g., that ln F 2
∈ D1,2, with

Dt ln F 2
= 2a

n
i,j=1

bi,jδiX1[tj−1,tj](t)

⟨B(δX), (δX)⟩
, for a.e. t ∈ [0, T ],

it is sufficient to notice that, assuming this identity true, then we could estimate, by the Cauchy–Schwarz inequality, T

0
Eu(|Dt ln F 2

|
2)dt ≤ 4a2T trace(B)Eu 

⟨B(δX), (δX)⟩−1 .

This a priori estimate entails ln F 2
∈ D1,2, by suitably approximating the function z → ln z with smooth functions.

Similarly, to estimate E(∥ξ∥
2
Wα,2

0
), we apply the Cauchy–Schwarz inequality and deduce, for s, t ∈ [0, T ], with s < t ,

Eu(|D̃s,t ln F 2
|
2) ≤ 4a2(t − s) trace(B)Eu 

⟨B(δX), (δX)⟩−1 ,

which can be integrated with respect to µα (recall that α ∈ (0, 1/2)).
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In conclusion, the example above shows that, in the case of deterministic shifts, i.e., Θ = H1
0 , we are able to explicitly

build super-efficient Stein-type estimators. Although it seems plausible,we do not knowwhether this technique can actually
be extended to stochastic shifts; it would be even more interesting to provide super-efficient adapted estimators; see also
Remark 2.3.

4. Intensity estimation for the Cox process

In this section, we study the problem of Cramér–Rao lower bounds in the case of Cox processes (i.e., doubly stochastic
Poisson processes), as it is quite interesting to compare similarities and differences between the continuous and the jump
cases, the latter being in general less developed.

Let T ≥ 0 and let X = (Xt)t∈[0,T ] be a Poisson process defined on some filtered probability space (Ω, F, (Ft)t∈[0,T ], P),
with jump times (Tk)k≥1 (for k ≥ 1, we let Tk(ω) = T in the eventuality that no kth jump occurs). For the parameter space
Θ , we consider the set of all absolutely continuous, (strictly) increasing, F0-measurable processes u = (ut)t∈[0,T ] such that
their a.e. derivatives (u̇t)t∈[0,T ] satisfy the assumptions of Girsanov’s theorem for the Poisson process (the proofs work also
for slightly smaller sets). Given u ∈ Θ , we define the probability Pu

= LuP , where

Lu =

XT
k=1

u̇Tk exp

−

 T

0
(u̇s − 1)ds


.

Girsanov’s theorem entails that, with respect to the probability Pu, the process X is a Cox process with intensity (u̇t)t∈[0,T ];
see, e.g., [6, Section 8.4] for details on related doubly stochastic Poisson processes. Notice that Pu(A) does not depend on u
for A ∈ F0; thus, in particular, for t ∈ [0, T ], v ∈ Θ , ut is integrable with respect to Pv and its expectation Ev(ut) actually
does not depend on v.

We address theproblemof estimatingu, or equivalently the intensity ofX with respect to Pu, basedon a single observation
ofX . In the case of a deterministic intensity, i.e.,whenX is an inhomogeneous Poissonprocess, this is investigated, e.g., in [11].
By analogy with the case of shifted Brownian motion, we introduce the following definition.

Definition 4.1. Anymeasurable stochastic process ξ : Ω×[0, T ] → R is called an estimator of the intensity u. An estimator
of the intensity u is said to be unbiased if, for every u ∈ Θ , t ∈ [0, T ], ξt is integrable and it holds Eu(ξt) = E(ut).

As in the previous section, we omit to specify ‘‘of the intensity u’’ and simply refer to estimators.
Privault and Révelliac studied the estimation problem, in the case of deterministic intensities, w.r.t. the risk in L2(µ),

defined as in (1), for any finite Borel measure on [0, T ]. Their set of parameters Θ consists of all the spaces of deterministic
absolutely continuous, increasing processes u, see [11, Definition 2.1]. We briefly show how a similar argument indeed
applies as well to the case of stochastic intensities.

Theorem 4.2 (Cramér–Rao Inequality in L2(µ)). For any unbiased estimator ξ , it holds

Eu(∥ξ − u∥2
L2(µ)

) ≥

 T

0
Eu(ut)µ(dt), for every u ∈ Θ ,

and equality is attained by the (efficient) estimator ξ = X.

Proof. For every process v ∈ Θ , since ξ is unbiased we have

Eu+εv(ξt) = Eu+εv(ut + εvt) = Eu+εv(ut) + εEu+εv(vt), for t ∈ [0, T ].

Differentiating with respect to ε, as in [11, Proposition 2.3], we obtain the identity

Eu(vt) =
d
dε


ε=0

Eu+εv(ξt − ut)

= Eu

(ξt − ut)

 T

0

v̇s

u̇s
(dXs − u̇sds)


. (11)

By the Cauchy–Schwarz inequality and the fact that X is a Cox process with intensity u̇, we get, for t ∈ [0, T ],

Eu(vt)
2

≤ Eu
{(ξt − ut)

2
}Eu

 T

0

v̇2
s

u̇s
ds


.

Thus Eu
{(ξt − ut)

2
} ≥ Eu(ut) once we let v̇ = u̇1[0,t]. The thesis follows by integration with respect to µ. �
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In contrast to the case of Brownian motion, the lower bound depends on the parameter u ∈ Θ . This is quite natural in
view of the classical, finite-dimensional, Cramér–Rao lower bound, where the inverse of the Fisher information appears,
measuring the local regularity of the densities: when u is small, the density becomes very peaked and the bound becomes
trivial.

Since the intensity u ∈ Θ is absolutely continuous, also in this case we investigate lower bounds for the H1
0 risk and no

unbiased estimators exist. In the next result, we also collect the case of fractional Sobolev spacesWα,2, for α ∈ (0, 1).

Theorem 4.3. For any unbiased estimator ξ , α ∈ (0, 1), it holds

Eu(∥ξ − u∥2
Wα,2

0
) ≥ 2

 T

0
Eu(u̇r)

 T

r

 r

0

1
(t − s)2α+1

dsdtdr,

for every u ∈ Θ . There exists no unbiased estimator ξ with finite risk in Wα,2 for α ∈ [1/2, 1), as well as in H1
0 .

Proof. We subtract (11) for two different times s, t ∈ [0, T ], and apply the Cauchy–Schwarz inequality, which yields

Eu(|∆t − ∆s|
2) ≥

Eu(|vt − vs|)
2

Eu
 T

0
v̇2s
u̇s

ds
 .

Hence, taking v̇r = 1[s∧t,s∨t](r)u̇r , we find

Eu(|∆t − ∆s|
2) ≥ Eu(|ut − us|), for every s, t ∈ [0, T ].

If s < t , then the right-hand side above coincides with Eu(
 t
s u̇rdr). Integrating with respect to s, t ∈ [0, T ], with measure

|t−s|−2α−1dtds, we obtain the required inequality. To deduce that no unbiased estimatorswith finite risk exist, it is sufficient
to observe that the double integral equals +∞, for α ∈ [1/2, 1), and E(u̇r) > 0 for a.e. r ∈ [0, T ]. The case of H1

0 follows at
once from inequality (6). �

We end this section with some remark on the possibility of Stein-type super-efficient estimators in the case of Cox
processes.

Remark 4.4 (Malliavin Calculus for a Cox Process). It seems reasonable to develop a theory of differential calculus for Cox
processes, akin to that for Poisson processes introduced in [11]. In the setting of Section 4, we let (Xt)t∈[0,T ] be a Cox process
on (Ω, F, (Ft)t∈[0,T ], P), with intensity λ = (λt)t∈[0,T ] and jump times (Tk)k≥1. We then denote by S the space of random
variables F of the form

F = f01{XT=0} +

∞
n=1

1{XT=n}fn(T1, . . . , Tn),

where, for n ≥ 0, fn : Ω × Rn
→ R is bounded, measurable with respect to F0 × B(Rn) (i.e., its randomness depends only

on λ) and for every ω ∈ Ω , fn(ω; ·) is C∞

b (Rn) and symmetric, i.e., fn(ω; t1, . . . , tn) is left unchanged by any permutation
of the coordinates (t1, . . . , tn) and that, for every n ≥ 0, one has fn(ω; t1, . . . , tn) = fn+1(ω; t1, . . . , tn, T ), for ω ∈ Ω ,
t1, . . . , tn ∈ R.

For F ∈ S, we may let DF(ω) ∈ L2(0, T )

DtF = −

∞
n=1

1{XT=n}

n
k=1

1[0,Tk](t)
1

λTk
∂kfn(T1, . . . , Tn)λt ,

for a.e. t ∈ [0, T ].
One can prove the validity of the chain rule and an integration-by-parts formula, providing some notion of divergence,

thus defining Sobolev–Malliavin spaces in this setting. However, it is at present unclear how to use effectively such calculus
to produce super-efficient Stein-type estimators; see Remark 4.5.

Remark 4.5 (Stein Estimators for Cox Processes). In the case of Cox processes, nothing prevents us from performing similar
arguments as in Section 3.2 using, in place of Malliavin calculus, the calculus sketched in Remark 4.4. The case of Poisson
processes and L2(µ)-type risks is investigated in [11]. However, herewe currently face a strong limitation to provide explicit
examples, due to the possible dependence upon u (i.e., λ) of the Malliavin calculus. Let us remark that a similar limitation
is also present in [11] and perhaps, at least in the one-dimensional parametric cases considered in [11, Section 5] (or in
the recent paper [1] on spatial Poisson point processes) one might similarly provide explicit examples of super-efficient
estimators also with respect to Sobolev risks, but the general, infinite-dimensional parametric problemwould remain open.
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