

Geometria e Algebra Lineare / II parte — Scritto del 9/6/15 — Quesiti

Nome _____ Cognome ____ Matricola _ _ _ _ _

1. Data $A \in \mathcal{M}_{3\times 3}(\mathbb{R})$ trovare $p_A(t)$ e gli autovalori di A sapendo che $\det(A) = 180$, $\operatorname{tr}(A) = -13$ e $p_A(1) = -154$.

2. Calcolare $\int\limits_{\alpha}\omega$ dove $\omega(x,y)=\frac{4x\,\mathrm{d}x+3y^2\,\mathrm{d}y}{1+2x^2+y^3}$ e $\alpha:[0,1]\to\mathbb{R}^2$ è data da $\alpha(t)=\left(\begin{array}{c}t^2+t^3\\3t^4\end{array}\right)$.

3. Trovare per ogni $t \in \mathbb{R}$ il segno in $\alpha(t)$ della curvatura di $\alpha : \mathbb{R} \to \mathbb{R}^2$ data da $\alpha(t) = \begin{pmatrix} t^3 - 6t \\ t^3 - 2t^2 \end{pmatrix}$.

4. Se $A, M \in \mathcal{M}_{3\times 3}(\mathbb{R})$ sono matrici ortogonali, vale l'uguaglianza $M^{-1} \cdot A \cdot M = \begin{pmatrix} \cos(\vartheta) & -\sin(\vartheta) & 0 \\ \sin(\vartheta) & \cos(\vartheta) & 0 \\ 0 & 0 & \varepsilon \end{pmatrix}$ e si sa che $\det(A) = +1$ e $\operatorname{tr}(A) = 1 + \sqrt{3}$, quanto valgono ϑ e ε ?

5. Determinare il tipo affine della quadrica $-3x^2 + 3y^2 - 8xy + 6xz - 2yz - 10x = 0$.

6. Calcolare curvatura e torsione nel punto $\alpha(0)$ della curva $\alpha(s) = \begin{pmatrix} s + 2s^2 + s^3 \\ -s + s^2 + 3s^3 \\ 2s - s^2 - s^3 \end{pmatrix}$.

7. Stabilire per quali $t \in \mathbb{R}$ il punto [t-2:3:5] appartiene alla retta di $\mathbb{P}^2(\mathbb{R})$ passante per [3:2:1] e [5:8:t+8].

Le risposte devono essere sinteticamente giustificate

Deve essere esibito il libretto o un documento. I telefoni devono essere mantenuti spenti. Questo foglio deve essere intestato immediatamente con nome, cognome e matricola. Questo foglio va consegnato alla fine della prima ora. Durante la prima ora non è concesso alzarsi né chiedere chiarimenti. Durante la prima ora sul tavolo è consentito avere solo i fogli forniti e la cancelleria.

Corso di Laurea in Ingegneria Civile, Ambientale ed Edile

Geometria e Algebra Lineare / II parte — Scritto del 9/6/15 — Esercizî

- **1.** Al variare di $s \in \mathbb{R}$ considerare la matrice $A_s = \begin{pmatrix} 5 & s^2 + 2 & 17 s^2 \\ 8 s & -14 s^3 & -16 \\ 5 s & -16 & 10 \end{pmatrix}$.
- (A) (2 punti) Stabilire per quali s esista una base ortonormale di \mathbb{R}^3 che diagonalizza A_s Indicare d'ora in poi con A la matrice A_s per il valore di s appena trovato.
- (B) (2 punti) Sapendo che $\det(A) = -5488$ e che A ha l'autovalore $\lambda_1 = 28$, trovare gli altri due (che sono interi); indicare tali autovalori con λ_2 e λ_3 in modo che $\lambda_2 < \lambda_3$.
- (C) (3 punti) Trovare autovettori v_2 e v_3 di A relativi agli autovalori λ_2 e λ_3 . (Nel fare il calcolo fare attenzione alle equazioni da usare e alle possibili semplificazioni; si otterranno comunque valori piuttosto grandi delle componenti, che però poi si possono ridurre a valori piccoli.) Partendo da v_2 e v_3 esibire quindi una base ortogonale di \mathbb{R}^3 costituita da autovettori di A.
- (D) (3 punti) Esibire la matrice P della proiezione ortogonale di \mathbb{R}^3 sul piano generato da v_2 e v_3 .
- (E) (2 punti) Provare che P soddisfa le proprietà caratterizzanti delle matrici delle proiezioni ortogonali.
- **2.** Al variare di $k \in \mathbb{R}$ considerare la matrice

$$A_k = \begin{pmatrix} 3k^2 + k - 7 & 3k^2 - 10 & -4k^2 - k + 10 \\ -2 & k + 1 & 2 - k \\ 2k^2 + k - 6 & 2k^2 + k - 6 & -3k^2 - 2k + 9 \end{pmatrix}.$$

- (A) (2 punti) Provare che $det(A_k) = -k^5 4k^4 + 3k^3 + 21k^2 27$.
- (B) (3 punti) Sapendo che A_k ha sempre l'autovalore $3-k-k^2$ trovare gli altri due.
- (C) (3 punti) Al variare di k in \mathbb{R} determinare le molteplicità algebriche degli autovalori di A_k .
- (D) (4 punti) Al variare di k in \mathbb{R} determinare le molteplicità geometriche degli autovalori di A_k , deducendone la diagonalizzabilità o meno di A_k .

Geometria e Algebra Lineare / II parte — Scritto del 9/6/15 — Quesiti

Risposte

$$5. \diamondsuit$$

1.
$$p_A(t) = t^3 + 13t^2 + 12t - 180$$
; $\lambda_{1,2,3} = -10, -6, 3$

2.
$$\ln(36) = 2\ln(2) + 2\ln(3)$$

3. Positiva per t < 1 e per t > 2, negativa per 1 < t < 2, nulla per t = 1 e per t = 2

4.
$$\vartheta = \pm \frac{\pi}{6}, \ \varepsilon = +1$$

5. Paraboloide iperbolico

6.
$$\kappa = \frac{\sqrt{35}}{3\sqrt{6}}, \ \tau = \frac{33}{35}$$

7.
$$t = 3 e t = -\frac{1}{2}$$

Geometria e Algebra Lineare / II parte — Scritto del 9/6/15 — Esercizî

Soluzioni

1.

(A)
$$s = -3$$

(B)
$$\lambda_2 = -14, \quad \lambda_3 = 14$$

(C)
$$v_1 = \begin{pmatrix} 1 \\ 5 \\ -4 \end{pmatrix}$$
, $v_2 = \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix}$, $v_3 = \begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix}$

(D)
$$\frac{1}{42} \begin{pmatrix} 41 & -5 & 4 \\ -5 & 17 & 20 \\ 4 & 20 & 26 \end{pmatrix}$$

(E) P è simmetrica e $P \cdot P = P$

2.

(A) Si eseguono nell'ordine queste sostituzioni:

la prima colonna con sé stessa meno la seconda;

la seconda riga con sé stessa più la prima;

la seconda riga con sé stessa meno la terza;

la terza colonna con sé stessa più la seconda.

Si trova allora direttamente $(k+3)(k^2-3)(3-k-k^2) = -k^5-4k^4+3k^3+21k^2-27$

(B)
$$k+3 e k^2-3$$

(C) k+3, k^2-3 , $3-k-k^2$ con m.a. 1 per k diverso da -2, 0, $\frac{3}{2}$, 3;

1 con m.a. 3 per k = -2;

3 con m.a. 2 e -3 con m.a. 1 per k = 0;

 $-\frac{3}{4}$ con m.a. 2 e $\frac{9}{2}$ con m.a. 1 per $k = \frac{3}{2}$; 6 con m.a. 2 e -9 con m.a. 1 per k = 3

(D) $k+3,\ k^2-3,3-k-k^2$ con m.g. 1 per k diverso da $-2,\ 0,\ \frac{3}{2},\ 3;$ diagonalizzabile;

1 con m.g. 2 per k = -2; non diagonalizzabile;

3 con m.g. 2 e -3 con m.g. 1 per k=0; diagonalizzabile;

 $-\frac{3}{4}$ con m.g. 2 e $\frac{9}{2}$ con m.g. 1 per $k=\frac{3}{2}$; diagonalizzabile; 6 con m.g. 1 e -9 con m.g. 1 per k=3; non diagonalizzabile