

Geometria e Algebra Lineare / I parte — Scritto del 9/6/15 — Quesiti

Nome _____ Cognome ____ Matricola _ _ _ _

- **1.** Dato in $\{p(t) \in \mathbb{R}_{\leq 8}[t]: p'(-3) = p''(2) = 0\}$ un sistema di 13 generatori, quanti bisogna scartarne per avere una base?
- **2.** Se $f: \mathbb{C}^7 \to \mathbb{C}^4$ è lineare non surgettiva, che dimensione può avere $W \subset \mathbb{C}^7$ se $\mathbb{C}^7 = W \oplus \mathrm{Ker}(f)$?
- 3. Se $X = \{x \in \mathbb{R}^3 : 3x_1 + 5x_2 2x_3 = 0\}$ e $f : X \to X$ è data da $f(x) = \begin{pmatrix} x_1 x_2 + x_3 \\ x_1 + 3x_2 x_3 \\ x_1 + x_2 + x_3 \end{pmatrix}$, determinare $[f]_{\mathcal{B}}^{\mathcal{B}}$ dove $\mathcal{B} = (3e_1 + e_2 + 7e_3, 7e_1 3e_2 + 3e_3)$.
- **4.** Data $f: \mathbb{R}^2 \to \mathbb{R}^2$ lineare tale che $f\begin{pmatrix} 4 \\ -1 \end{pmatrix} = \begin{pmatrix} -3 \\ 1 \end{pmatrix}$ e $f\begin{pmatrix} 1 \\ 6 \end{pmatrix} = \begin{pmatrix} 2 \\ -3 \end{pmatrix}$, trovare $f^{-1}\begin{pmatrix} 3 \\ -8 \end{pmatrix}$.
- **5.** Calcolare i determinanti delle orlate di $\begin{pmatrix} 5 & -1 \\ -3 & 2 \end{pmatrix}$ in $\begin{pmatrix} 5 & 2 & -1 & 4 \\ -3 & 1 & 2 & 0 \\ 1 & 0 & -3 & 2 \end{pmatrix}$.
- **6.** Risolvere $(1-3i)z + (3+2i)\overline{z} = 3-5i$.
- 7. Posto $X = \{x \in \mathbb{R}^3 : 6x_1 + 2x_2 x_3 = 0\}$ e $Y = \operatorname{Span}(e_1 + e_2 + 6e_3)$, calcolare la proiezione su X di $-e_1 + 2e_2 + 4e_3$ rispetto alla decomposizione $\mathbb{R}^3 = X \oplus Y$.

Le risposte devono essere sinteticamente giustificate

Deve essere esibito il libretto o un documento. I telefoni devono essere mantenuti spenti. Questo foglio deve essere intestato immediatamente con nome, cognome e matricola. Questo foglio va consegnato alla fine della prima ora. Durante la prima ora non è concesso alzarsi né chiedere chiarimenti. Durante la prima ora sul tavolo è consentito avere solo i fogli forniti e la cancelleria.

Geometria e Algebra Lineare / I parte — Scritto del 9/6/15 — Esercizî

1. Al variare di $t \in \mathbb{R}$ considerare il sistema lineare seguente:

$$\begin{cases} (t+7)x + 4z + (t-3)w = 5\\ (t+2)x - y + 2z = 2\\ x + 2y - w = t - 1\\ -9y + tz + 4w = -2. \end{cases}$$

- (A) (4 punti) Provare che esistono due soli valori di t per i quali non è vero che il sistema ammette soluzione unica. Chiamare t_0 il valore minore e t_1 quello maggiore.
- (B) (2 punti) Provare che per $t = t_0$ il sistema è impossibile.
- (C) (3 punti) Trovare tutte le soluzioni del sistema per $t = t_1$.
- (D) (3 punti) Detta X la giacitura dello spazio delle soluzioni del sistema per $t = t_1$ e posto $Y = \operatorname{Span}(e_1 + e_3, e_2 + e_4)$, provare che si ha la decomposizione in somma diretta $\mathbb{R}^4 = X \oplus Y$ e trovare la relativa proiezione di $e_1 + e_4$ su X.
- 2. In \mathbb{R}^3 considerare i sottospazi aventi le seguenti equazioni cartesiane

$$X: 4x + 6y - 5z = 0 Y_t: \begin{cases} (1-t)x + (3t-1)y + (3-t)z = -t - 1\\ 2tx + (12-t)y + (t-6)z = t. \end{cases}$$

- (A) (3 punti) Provare che che $v = 19e_1 + 9e_2 + 26e_3$, $v_1 = -2e_1 + 3e_2 + 2e_3$ e $v_2 = 3e_1 + 8e_2 + 12e_3$ appartengono a X e che $\mathcal{B} = (v_1, v_2)$ è una base di X, quindi calcolare $[v]_{\mathcal{B}}$.
- (B) (3 punti) Trovare l'unico valore t_0 di t per il quale Y_t non è una retta.
- (C) (3 punti) Trovare equazioni parametriche di Y_t per t=-2 e per $t=t_0$.
- (D) (3 punti) Trovare equazioni parametriche di $X \cap Y_{t_0}$.

Geometria e Algebra Lineare / I parte — Scritto del 9/6/15 — Quesiti

Risposte

5. **\times**

- **1.** 6
- **2.** Tra 0 e 3
- **3.** $\frac{1}{4} \begin{pmatrix} 5 & 1 \\ 3 & 7 \end{pmatrix}$
- 4. $\begin{pmatrix} 7 \\ 17 \end{pmatrix}$
- **5.** −28 e 42
- **6.** $\frac{1}{3}(17i 19)$
- 7. $2e_1 + 5e_2 + 22e_3$

Geometria e Algebra Lineare / I parte — Scritto del 9/6/15 — Esercizî

Soluzioni

1.

- (A) $t_0 = -4 e t_1 = 2$
- (B) Tra le parti omogenee delle equazioni vale la relazione I = 10·II+23·III+4·IV che invece non vale per i termini noti
- (C) $e_1 e_3$ più il generato di due dei vettori $-4e_1 + 2e_2 + 9e_3$, $e_1 2e_3 + e_4$, $e_1 + 4e_2 + 9e_4$, $2e_2 + e_3 + 4e_4$
- (D) $\frac{1}{7}(3e_1 + 4e_2 4e_3 + 11e_4)$

2.

(A)
$$\begin{pmatrix} -5 \\ 3 \end{pmatrix}$$

(B)
$$t_0 = -3$$

(C)
$$Y_{(-2)} = \begin{pmatrix} -4\\1\\4 \end{pmatrix} + \operatorname{Span} \begin{pmatrix} -7\\2\\7 \end{pmatrix}$$

 $Y_{(-3)} = \begin{pmatrix} 3\\1\\0 \end{pmatrix} + \operatorname{Span} \left(\begin{pmatrix} 5\\2\\0 \end{pmatrix}, \begin{pmatrix} 0\\3\\5 \end{pmatrix} \right)$

(D)
$$-\begin{pmatrix} 2\\7\\10 \end{pmatrix} + \operatorname{Span}\begin{pmatrix} 7\\22\\32 \end{pmatrix}$$