Abstract. Many interesting results in topology and functional analysis are closely related to situations in which two otherwise distinct topologies or uniformities coincide. In this talk, we consider a number of pairs of infinitesimal relations and examine the consequences of the condition that they coincide on certain subsets of the underlying space. One example leads to a new characterization of uniform spaces with invariant nonstandard hulls. Other applications include external characterization of strong and weak compactness in Banach spaces.

What happens when two infinitesimal Relations Coincide?

Nader Vakil

June 16, 2006

Notation

- (X,\mathcal{U}) : uniform space; $(*X,\simeq)$.
- (Z,d): a metric space; $(*Z,\simeq)$.
- $\bullet \quad \mathcal{F}(X,Z) = \{f: f: X \to Z\} \ .$
- For each $\mathcal{V} \subseteq {}^*\mathcal{F}(X,Z)$, we define an infinitesimal relation \simeq_v on *X by

$$a \simeq_{\mathcal{V}} b \quad \leftrightarrow \quad f(a) \simeq f(b) \quad \forall f \in \mathcal{V}.$$

and, when $f(x) \in \operatorname{ns}(\ ^*Z)$ for each $x \in X$, we may define an infinitesimal relation \approx_v on *X by

$$a \approx_{v} b \quad \leftrightarrow \quad ^{*\circ} f(a) \simeq \ ^{*\circ} f(b) \ \ \forall f \in \mathcal{V}.$$

Problem

Investigate the consequences of conditions such as:

 $\bullet \simeq = \simeq_v \text{ or } \simeq = \approx_v \text{ on a subset of } {}^*X.$

And, assuming that $\mathcal{W} \subseteq \mathcal{V}$, investigate the condition

- \bullet $\simeq_v = \simeq_w$ on a subset of *X , or
- \bullet $\approx_v = \approx_w$ on a subset of *X.

The most fruitful cases are when V is a union monad and $W = {}^{\sigma}V$.

Example 1.

- X, Y: infinite sets; (Z, d) a metric space.
 - \bullet $\phi: X \times Y \to Z$
 - For each $w \in {}^*Y$, we have an internal function
 - $\phi_w:\ ^*X
 ightarrow\ ^*Z;\ \ \phi_w(v)=^*\phi(v,w).$
 - In case $^*\phi(x,w)$ is near-standard, for each $x\in X$, we have a standard function
 - $^*\phi_{\widehat{w}}: \ ^*X \rightarrow \ ^*Z; \quad \phi_{\widehat{w}}(x) = {}^\circ\phi(x,w).$

 $^*\phi_{\widehat{v}}: \ ^*Y \rightarrow \ ^*Z$ and $\phi_v: \ ^*Y \rightarrow \ ^*Z$.

ullet Similarly, for each $v \in {}^*X$, we define the functions:

For each $a,b\in \ ^*X$, we define

$$a \simeq_W b$$

by

$$\phi_w(a) \simeq \phi_w(b)$$
 for all $w \in W$

and

$$a \approx_W^{} b$$

by

$$^*\phi_{\widehat{w}}(a) \simeq \ ^*\phi_{\widehat{w}}(b)$$
 for all $w \in W$

Problem

Given that V and W are union monads with $X\subseteq V$ and $Y\subseteq W$, investigate the the consequences of conditions:

- 1. $\simeq_{_{V}} = \simeq_{_{W}}$ on V and $\simeq_{_{X}} = \simeq_{_{V}}$ on W.
- 2. $\approx_{V}^{} = \approx_{W}^{}$ on V and $\approx_{X}^{} = \approx_{V}^{}$ on W.

Some of our results concerning (1) have been published. Our results concerning (2) were presented at the 2004 conference in Aveiro, Portugal.

Example 2.

- \bullet Λ is a set of pseudometrics on X.
- For each $\rho \in \Lambda$, $p \in X$, we have a function
- $\rho_p: X \to \mathbb{R} \quad \text{given by} \quad \rho_p(x) = \rho(x,p)$ Consider two infinitesimal relations on *X:
 - . .

$$a \simeq b \quad \leftrightarrow \quad {}^*\rho(a,b) \simeq 0; \quad (\rho \in \Lambda).$$

 $a \approx b \leftrightarrow {^*\rho_p(a)} \approx {^*\rho_p(b)}; \quad (\rho \in \Lambda, p \in X).$

2.

In general, we have $\simeq \subseteq \approx$ on *X.

Theorem. $\simeq = \approx$ on pns(*X).

Definition

Let fin(*X) denote the set of all $x \in X$ such that * $\rho(x,p)$ is limited for each $\rho \in \Lambda$ and each $p \in X$. We call the uniform space (X,Λ) an S-space if

$$\simeq = \approx$$
 on fin(*X).

Theorem. Every compact space is an S-space.

Proof. We have $\simeq = \approx$ on pns(*X), and, in a compact space, we have

$$ns(*X) = pns(*X) = fin(*X) = *X.$$

Alternatively,

The uniform structure compatible with the topology of a compact space is unique. Hence we must have $\simeq = \approx$ on the entire *X .

This leads us to the following criterion.

Notation: Let $C^b(X)$ denote the set of all bounded continuous functions on the uniform Hausdorff space (X,Λ) equipped with the topology of uniform convergence on X. Let A(X) denote the subalgebra of C(X) consisting of those $f \in C(X)$ that are constant on the complement of some compact set in X.

Theorem. The uniform space (X,Λ) is an S-space if A(X) is dense in $C^b(X)$. Proof. This condition is equivalent to the uniqueness of compatible uniform structures, and is due to I. S. GÁL, (1958). Theorem. Every locally compact space equipped with the uniformity \mathcal{U}_{\simeq} it inherits from its one-point compactification is an S-space.

Proof. It is well known that \mathcal{U}_{\simeq} is the coarsest uniformity that is compatible with the topology of X (Alice Dickson, 1952). Since, in general, \mathcal{U}_{\simeq} is finer than \mathcal{U}_{\approx} , it follows that $\mathcal{U}_{\approx} = \mathcal{U}_{\sim}$

Theorem. Every pre-compact space is an S-space.

Proof. We have $\simeq = \approx$ on pns(*X), and, in a pre-compact space, we have

$$pns(*X) = fin(*X) = *X.$$

Theorem. Every uniform space with invariant nonstandard hulls is an S-space.

Proof. We have $\simeq = \approx$ on pns(*X), and, in a uniform space with invariant nonstandard hulls, we have

$$pns(*X) = fin(*X).$$

Theorem. A uniform space (X, Λ) is an S-space if and only if it has invariant nonstandard hulls.

Proof. Fix $p \in \text{fin}(^*X)$, $\rho \in \Lambda$, and $\epsilon \in \mathbb{R}^+$. Let

$$\mathcal{F} = \{ B \in \mathcal{P}(X) : p \in {}^*B \},$$

and let

$$\mathcal{G} = \{ B \in \mathcal{F} : \mathcal{U}_{\simeq} = \mathcal{U}_{\approx} \text{ on } B \}.$$

Let $\{F_1, \ldots, F_n\}$ be a *-finite subset of * \mathcal{F} that contains \mathcal{F} . Let $G = \bigcap_{i=1}^n F_i$. Then we have

$$\emptyset \neq G \subseteq \mu(\mathcal{F}) \subseteq \text{fin}(\ ^*X).$$

Hence $G \in {}^*\mathcal{G}$, and $\mathcal{G} \neq \emptyset$. Pick a set $B \in \mathcal{G}$.

There exist $\delta \in \mathbb{R}^+$ and $p_1, \dots, p_n \in X$ such that the set

$$U = \{\langle u, v \rangle \in B^2 : \max_i |\rho(u, p_i) - \rho(v, p_i)| < \delta\}.$$

is contained in the set

$$V = \{\langle u, v \rangle \in B^2 : \rho(u, v) < \epsilon\}.$$

Therefore, ${}^*U[x] \subseteq {}^*V[x]$. Now let $a_i = {}^\circ\rho(x,p_i)$, then $a_i \in \mathbb{R}$. Let $A = \{v \in B : \max_i |a_i - \rho(v,p_i)| < \frac{\delta}{2}\}$. Clearly, $A \subseteq X$ and $x \in {}^*A$. From the latter, it follows that $A \neq \emptyset$. Pick a point $q \in A$. Since ${}^*A \subseteq {}^*U[x] \subseteq {}^*V[x]$, we have ${}^*\rho(x,q) < \epsilon$. Hence $x \in \operatorname{pns}({}^*X)$, and the proof is finished.