ADbstract. Many interesting results in topology and
functional analysis are closely related to situations in
which two otherwise distinct topologies or uniformi-
ties coincide. In this talk, we consider a number of
pairs of infinitesimal relations and examine the conse-
quences of the condition that they coincide on certain
subsets of the underlying space. One example leads
to a new characterization of uniform spaces with in-
variant nonstandard hulls. Other applications include
external characterization of strong and weak com-

pactness in Banach spaces.
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Notation
(X,U): uniform space; ( *X,~).
(Z,d): a metric space; ( *Z,~).
F(X,Z2)={f: f: X —>Z} .
For each V C *F(X,Z), we define an
infinitesimal relation ~, on *X by

a~pb < fla)xf(b) VfeV.

and, when f(x) € ns( *Z) for each
r € X, we may define an infinitesimal
relation =~, on *X by

amyb o f(a)= f(b) VfeEV.




Problem
Investigate the consequences of conditions

such as:
e ~—=~, OF ~ ==, On asubset of *X.
And, assuming that YW C V, investigate the

condition

e ~, = ~y, On asubset of *X, or

e ~y = R~y On a subset of *X.
The most fruitful cases are when YV is a union
monad and W = %Y,




Example 1.
e X,Y: infinite sets; (Z,d) a metric space.
e ¢0: X XY = Z
e Foreach w € *Y, we have an internal function
by X — *Z;  ¢,(v) = To(v,w).
e In case *o(x,w) is near-standard, for each

x € X, we have a standard function
s X — YZ, ¢ (x) = “o(x,w).
e Similarly, for each v € *X, we define the

functions:
¢ Y — *Z and ¢,: Y — *Z.




For each a,b € *X, we define

a ~. b
by
¢,,(a) ~ ¢, (b) for all we W
and
a zW b
by

*¢.(a) ~ *¢_(b) forallweW



Problem
Given that V and W are union monads

with X CV and Y C W, investigate the

the consequences of conditions:
on V and on W.
on V and Ry

Some of our results concerning (1) have been
published. Our results concerning (2) were

presented at the 2004 conference in Aveiro,
Portugal.



Example 2.

e /\ is a set of pseudometrics on X.

e For each pe A, pe X, we have a function
p, : X — R given by p (z) = p(z,p)
Consider two infinitesimal relations on *X:
1.

a~b *o(a,b) ~0; (peN).

axb < “p(a)~ "p,(b); (pe€NDpEX).




on *X.

N
Q

In general, we have ~

Theorem. ~ =~ on pns( *X).

Definition
Let fin( *X) denote theset of all z € *X

such that *p(x,p) is limited for each p e A
and each p e X. We call the uniform space
(X,N\) an S-space if

~ = & on fin( *X).




Theorem. Every compact space is an S-
space.

Proof. We have

in @ compact space, we have

ns( *X) =pns( *X) =fin( *X) = *X.

Alternatively,

The uniform structure compatible with the
topology of a compact space is unique. Hence
we must have ~ = =~ on the entire *X.

This leads us to the following criterion.



Notation: Let C?®X) denote the set of
all bounded continuous functions on the uni-
form Hausdorff space (X,A) equipped with
the topology of uniform convergence on X.
Let A(X) denote the subalgebra of C(X)
consisting of those f € C(X) that are con-
stant on the complement of some compact
set in X.

Theorem. The uniform space (X,A) is an
S-space if A(X) is dense in CP(X).

Proof. This condition is equivalent to the
uniqueness of compatible uniform structures,
and is due to I. S. GAL, (1958).




T heorem. Every locally compact space
equipped with the uniformity . it inher-
its from its one-point compactification is an
S-space.

Proof. It is well known that U. is the coarsest
uniformity that is compatible with the topol-
ogy of X (Alice Dickson, 1952). Since, in
general, U. is finer than U, it follows that

U, = U



Theorem. Every pre-compact space is an
S-space.

Proof. We have ~ =~ on pns( *X), and,
in a pre-compact space, we have

pns( *X) =fin( *X) = *X.




Theorem. Every uniform space with invari-
ant nonstandard hulls is an S-space.

Proof. We have ~ =~ on pns( *X), and,

in a uniform space with invariant nonstandard
hulls, we have

pns( *X) = fin( *X).




Theorem. A uniform space (X,A\) is an S-space if
and only if it has invariant nonstandard hulls.

Proof. Fix pefin( *X), pe A, and ecRT. Let
F={BeP(X):pe "B},
and let
G={BeF: U, =U, on B}

Let {Fy,...,Fn} be a *—finite subset of *F that

contains F. Let G =nN}'_,F;. Then we have

0# G Cu(F) Cfin( *X).
Hence G e *G, and G # (0. Pick aset Beg.




There exist 6 € RT and p,,...,p, € X such that the
set

U = {{u,v) € B : max|p(u,p;) — p(v,p;)| < 8}.
IS contained in the set

V = {{u,v) € B?: p(u,v) < e}

Therefore, *Ulx] C *V[z]. Now let a; = °p(x,p;),
then a; e R. Let A= {v e B:max;la; —p(v,p;)| < %}.
Clearlyy, A C X and z € *A. From the latter, it
follows that A #= (. Pick a point ¢ € A. Since
*A C *Ulx] € *V[x], we have *p(x,q) < e. Hence
x € pns(*X), and the proof is finished.




