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Basic papers
R. Chuaqui and P. Suppes,

Free-variable axiomatic foundations of infinites-
imal analysis: a fragment with finitary consis-
tency proof (1995)

‘A constructive system of NSA, meant to pro-

vide a foundation close to mathematical prac-
tice characteristic of theoretical physics.’

R. Sommer and P. Suppes,

Finite Models of Elementary Recursive Non-
standard Analysis (1996a)

Dispensing with the Continuum (1996b)

‘Simpler 4+ more versatile in allowing definition
by recursion.’



ERNA =

Elementary Recursive Nonstandard Analysis

‘By trading in the completeness axioms for ax-
ioms asserting the existence of infinitesimals,
we end up with a system that is actually more
constructive, and in many ways better matches
certain geometric intuitions about the number
line. (...) Many classical theorems that are
used in mathematical practice have versions
provable in ERNA.’



Introduction

Consistency of ERNA: courtesy
Herbrand's Theorem (1930)

If a set of quantifier-free formulas* is consis-
tent, it has a simple ‘Herbrand’ model and, if

it is not, its inconsistency will show up in some
finite procedure.

Hence: quantifier-free (sometimes artificial look-
ing) axioms.

*equivalently (removing or putting V's): universal sen-

tences (Vzi)...(Vz,)Q(x1,...,z,) with @ quantifier-
free.



Notation

1. N consists of the (finite) positive integers.

2. In a term 7'(51:1,...,3:;@), r1,...,TL dre the

-~
—

X
distinct free variables.



ERNA’'s language
(preview of meaning in [..])

connectives: A,—,V, —, <

quantifiers: V, d

an infinite set of variables

4 relation symbols:
= (binary)
< (binary)

7 (unary); notations for Z(xz): ‘z is in-
finitesimal’ or ‘x = O’

N (unary); notation for N(z): ‘z is hyper-
natural’



e 5 individual constant symbols:
o, 1,
w [infinite hypernatural], ¢ [= 1/w],

T: notation ‘z is undefined’ for ‘z =1' [e.q.
1/0 is undefined, 1/0 =T]; notation ‘z is
defined’ for ‘xz £17".

e function symbols:

— (unary) abs.val. | |, ceiling [ ], weight
| I lI[£p/qll = max{|p|, |q|} for p and ¢ #
O relatively prime hypernaturals, else un-
defined]

— binary +,—, ., /, " [¢"n = z™ for hypernat-
ural n, else undefined]

— for each k € N, k k-ary function symbols
mp; (4 = 1,...,k) [i-th projection of a
k-tuple Z]



— for each formula ¢ with m + 1 free vari-
ables, without quantifiers or terms in-
volving min, an m-ary function symbol
min, [Miny(&) = least hypernatural n
with p(n,Z); = 0 if there are none.]

— for each triple

(k,o(x1,. - y2m), T(21,. s Typ42))

with £k € N, ¢ and 7 terms not involv-
ing min, an (m-+ 1)-ary function symbol
reck_ [function obtained from o, T by re-
cursion, after the model

f(0,%) = o(Z),
fin+1,7) =7(f(n,%),n,T)

k restricts growth*]

*important for finitistic consistency proof



ERNA’s Axioms

axioms of first-order logic

axioms for hypernaturals, including
3. if x is hypernatural, then £ > 0

4. w is hypernatural.

definition: ‘x is infinite' stands for ‘xz #
OAl/x = Q'; ‘finite’ stands for ‘not infinite’;
‘z is natural’ stands for ‘x is hypernatural
and finite'.

axioms for infinitesimals, including
1. fz~0andy~=0, thenx+y~0

2. if x = 0 and y is finite, then .y = 0
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6. ex0

7. e=1/w.

e field axioms [defined elements constitute
an ordered field of characteristic zero with
absolute value function] including

r+ 0=z,
r+ (0—-=zx)=0,

if £ =0 then z.(1/x) = 1.

e Archimedean axiom: ... (easy)...

e theorem if x is defined, [z] is the least hy-
pernatural > x.

e power axioms: ... (easy)...



e projection axiom schema: ... (easy)...

e Wweight axioms: ... (artificial). ..

e theorem If p and q # 0O are relatively prime
hypernaturals®, then

| &= p/q|| = max{|p|, |q|}.

If  is not a hyperrationall, ||z| is unde-
fined.

e theorem If ||z|| and ||y|| defined,

|z 4yl < (T + [l=]D( + lylD,
lz7y[] < (1 4+ [lz])"(2 + lyll), etc.

*involves quantifiers
fquantifier-free: N'(p) — - N (p|z|)



e theorem If (&) is a term not involving w,
g, rec or min, then there exists a k£ € N such
that

- ]|
I (D) < 25",

where

[(z1, .. zn) ]| i= max{||lz],. .., [|[znll}
and

=2 22 (@)).
k 2's




e recursion axioms For kK € N, ¢ and 7 not
involving Z or min:

1.
reck (0,7) = o()
if o(&) defined and ||o(Z)|| < 2/‘4‘%”,
undefined if o(&) undefined, O otherwise.

2.
recij(n +1,%) = T(recfﬁT(n, Z),n,T)
if RHS defined and |RHS|| < 2/#n
undefined if RHS undefined, O otherwise.



axiom schema for internal minimum:
... (artificial). ..

theorem If ¢ does not involve Z or min,
and if there are hypernatural n’s such that
e(n,Z), Mminy(Z) is the least of these. If
there are none, miny,(Z) = 0.

corollary Proofs by hypernatural induction.
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e axiom schema for external™ minimum:
... (artificial). ..

e theorem Let ||Z|| be finite. If there are nat-
ural n's such that ¢(n,Z), miny(Z) is the
least of these. If there are none, min,(Z) =
0.

e corollary Proofs by natural induction.

*Z allowed in ¢

11



e axioms on (un)defined terms, including
1. 0,1,w,e are defined
2. x defined iff ||z|| defined

5. xy is defined iff x and y are defined and
y IS hypernatural.

7. if z is not a hypernatural, reck_(z,7) is
undefined.
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e theorem If z is defined, it is hyperrational.

Proof:

x defined iff ||x| defined (part of axiom on
(un)defined terms).

|z|| defined iff x hyperrational (part of theo-
rem).
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Remarks

‘Finitistic’ consistency proof within PRA
(Primitive Recursive Arithmetic), a good
approximation of Hilbert's Program (scut-
tled by Godel).

ERNA has proof-theoretic strength of ERA
(Elementary Recursive Arithmetic); hence
the name ‘ERNA".

no standard part function, results up to in-
finitesimals. (‘An infinitesimal difference is
as good as equality for physical purposes.’)
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Applications (in NSM2004 Proceedings):

e sup-up-to-infinitesimals for sets {z | f(z) >

0}

e /x (up to infinitesimals) for finite z > 0O

15



ERNA + TRANSFER

Notations:
n,m,k = hypernatural variables.

‘standard n’ = finite hypernatural = in N.

Abbreviation:
(V**'n)e(n)
stands for ERNA'’s
N(n)AN-Z(1/n) — o(n).

(Quantifier free, allowed in axiom below.)
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e [ransfer Axiom Schema

For every quantifier-free formula ¢(n) not
involving min,Z, w:*

e(n) vV (0 < min-, = finite)

By Thm above, min- is either O or least coun-
terexample to p(n). Hence TAS states

(V*'n > De(n) — (Yn > 1)e(n)

without quantifiers (required for Herbrand’s thm
in consistency proof).

e Metatheorem ERNA-4TAS has finitistic con-
sistency proof. (Finite iteration of the one

for ERNA.)

*min-, excludes min, consistency proof excludes 7,w
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Corollary: ‘multivariable’ transfer
(V*tn > 1)(V'm > 1)p(n, m)
— (Vn > 1)(Ym > 1)p(n,m)

Proof: TAS 4+ some kind of pairing func-
tions

Abbreviation: ‘xz standard’ for ‘x rational’
(£p/q with p and ¢ # 0 naturals).

Corollary: ‘general’ transfer

(V'z)p(z) — (Vo) e(x)
i.e. ERNA’s
(xz rational — p(x)) — (x defined — ©(x))

Proof: multivariable transfer + any de-
fined x is hyperrational.
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Applications

e characterization of Cauchy hypersequence
(not involving min,w,7):

(V) (FUN) (VPtn, m > N)(|sn — sm| < %)

<
sn ~ sm for all infinite m,n

e convergence-up-to-infinitesimals of Cauchy
hypersequences (not involving...) to any
infinitely indexed term.

e Ccharacterization of continuity (f not in-
volving. . .):

(VSt2) (vStk) (35 N) (vSty)

(1 =yl < 3 = 1) = @)l <)

<
f(x) =~ f(y) for all x =~y
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e sSup-up-to...of increasing bounded hyper-
sequences (not involving. . .):

s1 < s < -.- < M = finite

has s, as sup-up-to-infinitesimals*

e sup-up-to... principle: {x | p(x)} (¢ quantifier-
free, not involving. .. ) nonempty and finitely
bounded above has sup-up-to-infinitesimals
(highly nontrivial)

*sup is beyond PRA’'s strength
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GENERALIZING TRANSFER

compare
1
V) (0<z<1—=>1) true
xr
1
V) (O<z<1l——>1) true
I
to*
1 1
V)0 <z<1l—-=>14+2) true
Xr w
1 1
Vzx)(O<xz<1——>1+4 —) false for it
x w 14w
1 1
Vz)(0O<z<l—-—-Z1+—) true
xr w

*w disallowed in TAS
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Notation: to get ¢ from ¢: replace < with 3
unless between rationals.

e theorem For ¢ quantifier free, not involv-
ing. ..+ conditions:

(V'2)p(z) — (V2)@(2)

Remark: ¢ may contain w in terms like

1 1 1 1
wi=a(1-g+ g7t o)
. w . xQn—I—l
sing () 1= nzz:o(—l) (on 1)1
e example:

(Vt'n) (s, < s, = finite) — (Vn)(sn < sw)
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Future Research/Work in Progress

e [l>-transfer

(V') (3 ) e(z, y) — (Vo) Cy)e(z, y)

e Saturation (provable in ERNA? consistent
with ERNA?)

e Bolzano-Weierstrass theorem,...
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