
NONSTANDARD MATHEMATICS

Pisa, Italy

May 2006

ERNA + TRANSFER

Sam Sanders and Chris Impens

University of Ghent, Belgium

(thanks to Ulrich Kohlenbach,

T.U. Darmstadt)

1



Basic papers

R. Chuaqui and P. Suppes,

Free-variable axiomatic foundations of infinites-
imal analysis: a fragment with finitary consis-
tency proof (1995)

‘A constructive system of NSA, meant to pro-
vide a foundation close to mathematical prac-
tice characteristic of theoretical physics.’

R. Sommer and P. Suppes,

Finite Models of Elementary Recursive Non-
standard Analysis (1996a)

Dispensing with the Continuum (1996b)

‘Simpler + more versatile in allowing definition
by recursion.’
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ERNA =

Elementary Recursive Nonstandard Analysis

‘By trading in the completeness axioms for ax-

ioms asserting the existence of infinitesimals,

we end up with a system that is actually more

constructive, and in many ways better matches

certain geometric intuitions about the number

line. (. . . ) Many classical theorems that are

used in mathematical practice have versions

provable in ERNA.’
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Introduction

Consistency of ERNA: courtesy

Herbrand’s Theorem (1930)

If a set of quantifier-free formulas∗ is consis-

tent, it has a simple ‘Herbrand’ model and, if

it is not, its inconsistency will show up in some

finite procedure.

Hence: quantifier-free (sometimes artificial look-

ing) axioms.

∗equivalently (removing or putting ∀’s): universal sen-
tences (∀x1) . . . (∀xn)Q(x1, . . . , xn) with Q quantifier-
free.
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Notation

1. N consists of the (finite) positive integers.

2. In a term τ(x1, . . . , xk︸ ︷︷ ︸
~x

), x1, . . . , xk are the

distinct free variables.
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ERNA’s language

(preview of meaning in [..])

• connectives: ∧,¬,∨,→,↔

• quantifiers: ∀, ∃

• an infinite set of variables

• 4 relation symbols:

= (binary)

≤ (binary)

I (unary); notations for I(x): ‘x is in-

finitesimal’ or ‘x ≈ 0’

N (unary); notation for N (x): ‘x is hyper-

natural’
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• 5 individual constant symbols:

0, 1,

ω [infinite hypernatural], ε [= 1/ω],

↑; notation ‘x is undefined’ for ‘x =↑’ [e.g.

1/0 is undefined, 1/0 =↑]; notation ‘x is

defined’ for ‘x 6=↑’.

• function symbols:

– (unary) abs.val. | |, ceiling d e, weight

‖ ‖ [‖±p/q‖ = max{|p|, |q|} for p and q 6=
0 relatively prime hypernaturals, else un-

defined]

– binary +,−, ., /,ˆ[x̂ n = xn for hypernat-

ural n, else undefined]

– for each k ∈ N, k k-ary function symbols

πk,i (i = 1, . . . , k) [i-th projection of a

k-tuple ~x]
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– for each formula ϕ with m+1 free vari-

ables, without quantifiers or terms in-

volving min, an m-ary function symbol

minϕ [minϕ(~x) = least hypernatural n

with ϕ(n, ~x); = 0 if there are none.]

– for each triple

(k, σ(x1, . . . , xm), τ(x1, . . . , xm+2))

with k ∈ N, σ and τ terms not involv-

ing min, an (m+1)-ary function symbol

reck
στ [function obtained from σ, τ by re-

cursion, after the model

f(0, ~x) = σ(~x),

f(n + 1, ~x) = τ(f(n, ~x), n, ~x)

k restricts growth∗]

∗important for finitistic consistency proof



ERNA’s Axioms

• axioms of first-order logic

• axioms for hypernaturals, including

3. if x is hypernatural, then x ≥ 0

4. ω is hypernatural.

• definition: ‘x is infinite’ stands for ‘x 6=
0∧1/x ≈ 0’; ‘finite’ stands for ‘not infinite’;

‘x is natural’ stands for ‘x is hypernatural

and finite’.

• axioms for infinitesimals, including

1. if x ≈ 0 and y ≈ 0, then x + y ≈ 0

2. if x ≈ 0 and y is finite, then x.y ≈ 0
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6. ε ≈ 0

7. ε = 1/ω.

• field axioms [defined elements constitute

an ordered field of characteristic zero with

absolute value function] including

x + 0 = x,

x + (0− x) = 0,

if x 6= 0 then x.(1/x) = 1.

• Archimedean axiom: . . . (easy). . .

• theorem if x is defined, dxe is the least hy-

pernatural ≥ x.

• power axioms: . . . (easy). . .



• projection axiom schema: . . . (easy). . .

• weight axioms: . . . (artificial). . .

• theorem If p and q 6= 0 are relatively prime

hypernaturals∗, then

‖ ± p/q‖ = max{|p|, |q|}.

If x is not a hyperrational†, ‖x‖ is unde-

fined.

• theorem If ‖x‖ and ‖y‖ defined,

‖x + y‖ ≤ (1 + ‖x‖)(1 + ‖y‖),

‖x̂ y‖ ≤ (1 + ‖x‖)̂ (1 + ‖y‖), etc.

∗involves quantifiers
†quantifier-free: N (p) → ¬N (p|x|)



• theorem If τ(~x) is a term not involving ω,

ε, rec or min, then there exists a k ∈ N such

that

‖τ(~x)‖ ≤ 2
‖~x‖
k ,

where

‖(x1, . . . , xn)‖ := max{‖x1‖, . . . , ‖xn‖}

and

2x
k := 2̂ (. . . 2̂ (2̂ (2̂ x)))︸ ︷︷ ︸

k 2’s

.



• recursion axioms For k ∈ N, σ and τ not

involving I or min:

1.

reck
στ(0, ~x) = σ(~x)

if σ(~x) defined and ‖σ(~x)‖ ≤ 2
‖~x‖
k ,

undefined if σ(~x) undefined, 0 otherwise.

2.

reck
στ(n + 1, ~x) = τ(reck

στ(n, ~x), n, ~x)

if RHS defined and ‖RHS‖ ≤ 2
‖~x,n+1‖
k ,

undefined if RHS undefined, 0 otherwise.
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• axiom schema for internal minimum:

. . . (artificial). . .

• theorem If ϕ does not involve I or min,

and if there are hypernatural n’s such that

ϕ(n, ~x), minϕ(~x) is the least of these. If

there are none, minϕ(~x) = 0.

• corollary Proofs by hypernatural induction.
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• axiom schema for external∗ minimum:

. . . (artificial). . .

• theorem Let ‖~x‖ be finite. If there are nat-

ural n’s such that ϕ(n, ~x), minϕ(~x) is the

least of these. If there are none, minϕ(~x) =

0.

• corollary Proofs by natural induction.

∗I allowed in ϕ

11



• axioms on (un)defined terms, including

1. 0,1, ω, ε are defined

2. x defined iff ‖x‖ defined

5. x̂ y is defined iff x and y are defined and

y is hypernatural.

7. if x is not a hypernatural, reck
στ(x, ~y) is

undefined.
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• theorem If x is defined, it is hyperrational.

Proof:

x defined iff ‖x‖ defined (part of axiom on

(un)defined terms).

‖x‖ defined iff x hyperrational (part of theo-

rem).
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Remarks

• ‘Finitistic’ consistency proof within PRA

(Primitive Recursive Arithmetic), a good

approximation of Hilbert’s Program (scut-

tled by Gödel).

• ERNA has proof-theoretic strength of ERA

(Elementary Recursive Arithmetic); hence

the name ‘ERNA’.

• no standard part function, results up to in-

finitesimals. (‘An infinitesimal difference is

as good as equality for physical purposes.’)
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Applications (in NSM2004 Proceedings):

• sup-up-to-infinitesimals for sets {x | f(x) >

0}

•
√

x (up to infinitesimals) for finite x ≥ 0
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ERNA + TRANSFER

Notations:

n, m, k = hypernatural variables.

‘standard n’ = finite hypernatural = in N.

Abbreviation:

(∀stn)ϕ(n)

stands for ERNA’s

N (n) ∧ ¬I(1/n) → ϕ(n).

(Quantifier free, allowed in axiom below.)
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• Transfer Axiom Schema

For every quantifier-free formula ϕ(n) not

involving min, I, ω:∗

ϕ(n) ∨ (0 < min¬ϕ = finite)

By Thm above, min¬ϕ is either 0 or least coun-

terexample to ϕ(n). Hence TAS states

(∀stn ≥ 1)ϕ(n) → (∀n ≥ 1)ϕ(n)

without quantifiers (required for Herbrand’s thm

in consistency proof).

• Metatheorem ERNA+TAS has finitistic con-

sistency proof. (Finite iteration of the one

for ERNA.)

∗min¬ϕ excludes min, consistency proof excludes I, ω
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• Corollary: ‘multivariable’ transfer

(∀stn ≥ 1)(∀stm ≥ 1)ϕ(n, m)

→ (∀n ≥ 1)(∀m ≥ 1)ϕ(n, m)

Proof: TAS + some kind of pairing func-

tions

• Abbreviation: ‘x standard’ for ‘x rational’

(±p/q with p and q 6= 0 naturals).

• Corollary: ‘general’ transfer

(∀stx)ϕ(x) → (∀x)ϕ(x)

i.e. ERNA’s

(x rational → ϕ(x)) → (x defined → ϕ(x))

Proof: multivariable transfer + any de-

fined x is hyperrational.
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Applications

• characterization of Cauchy hypersequence
(not involving min, ω, I):

(∀stk)(∃stN)(∀stn, m ≥ N)(|sn − sm| <
1

k
)

⇐⇒
sn ≈ sm for all infinite m, n

• convergence-up-to-infinitesimals of Cauchy
hypersequences (not involving. . . ) to any
infinitely indexed term.

• characterization of continuity (f not in-
volving. . . ):

(∀stx)(∀stk)(∃stN)(∀sty)

(|x− y| <
1

N
→ |f(x)− f(y)| <

1

k
)

⇐⇒
f(x) ≈ f(y) for all x ≈ y
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• sup-up-to. . . of increasing bounded hyper-

sequences (not involving. . . ):

s1 ≤ s2 ≤ · · · ≤ M = finite

has sω as sup-up-to-infinitesimals∗

• sup-up-to... principle: {x | ϕ(x)} (ϕ quantifier-

free, not involving. . . ) nonempty and finitely

bounded above has sup-up-to-infinitesimals

(highly nontrivial)

∗sup is beyond PRA’s strength
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GENERALIZING TRANSFER

compare

(∀stx)(0 < x < 1 →
1

x
> 1) true

(∀x)(0 < x < 1 →
1

x
> 1) true

to∗

(∀stx)(0 < x < 1 →
1

x
> 1 +

1

ω
) true

(∀x)(0 < x < 1 →
1

x
> 1 +

1

ω
) false for

ω

1 + ω

(∀x)(0 < x < 1 →
1

x
' 1 +

1

ω
) true

∗ω disallowed in TAS
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Notation: to get ϕ̃ from ϕ: replace < with /
unless between rationals.

• theorem For ϕ quantifier free, not involv-

ing. . . + conditions:

(∀stx)ϕ(x) → (∀x)ϕ̃(x)

Remark: ϕ may contain ω in terms like

πω := 4
(
1−

1

3
+

1

5
−

1

7
+ . . .−

1

2ω + 1

)
sinω(x) :=

ω∑
n=0

(−1)n x2n+1

(2n + 1) !

• example:

(∀stn)(sn ≤ sω = finite) → (∀n)(sn / sω)
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Future Research/Work in Progress

• Π2-transfer

(∀stx)(∃sty)ϕ(x, y) → (∀x)(∃y)ϕ(x, y)

• Saturation (provable in ERNA? consistent

with ERNA?)

• Bolzano-Weierstrass theorem,...
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