Applications of S-measurability to regularity and limit theorems Pisa 2006

David A. Ross
Department of Mathematics
University of Hawaii
Honolulu, HI 96822, USA

ross@math.hawaii.edu www.math.hawaii.edu/~ross www.infinitesimals.org

May 2006

(Supplemented with some corrections and proofs, 30 May 2006)

- **1966** Robinson: defined S-measure O, used Egoroff's Theorem to prove that for a sequence f_n of measurable functions, the complement of a set characterizing uniform convergence of f_n has S-measure O.
- 1981 Henson, Wattenberg: Characterized S-measure in general, showed independently that the set above has S-measure O; Egoroff Theorem was easy corollary.
- **2002,4** R: Extended S-measurability, applied to sets and functions on non-topological measure space. (Theorems of Riesz, Radon-Nikodym)
- **Today** Application to regularity and limits, including Birkhoff Ergodic Theorem

1 Loeb measures, S-measures

Suppose X a set, \mathcal{A} is an algebra on XTwo natural algebras on X:

*
$$\mathcal{A}$$
 (=internal subsets of * X)
$$\mathcal{A}_{\bigcirc} = \{ {}^{*}A: A \in \mathcal{A} \}$$
 (="standard sets")

These lead to two distinct σ -algebras:

 ${\cal A}_{\rm S}=$ the smallest $\sigma-$ algebra containing ${\cal A}_{\rm O}$ ${\cal A}_{\rm L}=$ the smallest $\sigma-$ algebra containing * ${\cal A}$ (both normally external)

Recall:

If μ is a (finitely-additive) finite measure on (X, A) then

$$^*\mu: ^*\mathcal{A} \to ^* [O, \infty)$$

 $^{\circ*}\mu: ^*\mathcal{A} \to [O, \infty)$

 $(*X, *A, \circ *\mu)$ is an external, standard, f.a. finite measure space.

 $^{\circ*}\mu$ extends to a σ -additive measure μ_L on $(^*X,\mathcal{A}_L)$ (the Loeb space).

Of course,

- 1. We can also do this with any internal finitelyadditive *measure, not just those arising from standard measures.
- 2. μ_L is also a standard measure on \mathcal{A}_{S}

2 Properties of S-measures

1. $\forall E \in A_S$,

$$\mu_{L}(E) = \inf\{\mu(A) : E \subseteq {}^{*}A, A \in \mathcal{A}\}$$

$$= \sup\{\mu(A) : {}^{*}A \subseteq E, A \in \mathcal{A}\}$$

$$= \mu(\underbrace{X \cap E}_{:=S(E)})$$

- 2. If $f: X \to \mathbb{R}$ is \mathcal{A} -measurable, then ${}^{\circ *}f: {}^*X \to \mathbb{R}$ is $\mathcal{A}_{\mathcal{S}}$ -measurable
- 3. If $G: {}^*X \to \mathbb{R}$ is \mathcal{A}_{S} -measurable, and $g = G|_{X}$, then
 - (a) $g: X \to \mathbb{R}$ is A-measurable,
 - (b) $\mu_L(\{x \in {}^*X : {}^*g(x) \not\approx G(x)\}) = 0$
 - (c) For any p > 0, $G \in \mathcal{L}^p(\mu_L) \Leftrightarrow g \in \mathcal{L}^p(\mu)$ (with same integral)

Remarks:

- (a) S-measurability should be useless.
- (b) It seems to be a genuinely useful tool for applying Loeb measure methods to nontopological measure spaces.

3 Regularity

Theorem 1. Let (X, \mathcal{B}, μ) be a finite Borel measure on a Polish space (that is, X is a complete separable metric space, and \mathcal{B} is the Borel σ — algebra on X). Then μ is Radon (= compact inner-regular).

PROOF:

Fix a countable dense subset Γ of X.

If E is any closed subset of X, put

$$E' = \bigcap_{\epsilon \in \mathbb{Q}^+} \bigcup \{ {}^*B(\gamma, \epsilon) : \gamma \in \Gamma, B(\gamma, \epsilon) \cap E \neq \emptyset \}$$

Note: $E' \in \mathcal{B}_{S}$

Exercise: $E' = \operatorname{st}^{-1}(E)$ (Hint: for \subseteq , use completeness.)

Cor: For every $E \in \mathcal{B}$, $\operatorname{st}^{-1}(E) \in \mathcal{B}_{\mathcal{S}}$.

Let $E \in \mathcal{B}$ and $\epsilon > 0$.

$$\mu_L(\operatorname{st}^{-1}(E)) = \mu(X \cap \operatorname{st}^{-1}(E)) = \mu(E)$$

 $\exists A \in \mathcal{B} \text{ with } ^*A \subseteq \operatorname{st}^{-1}(E) \text{ and } \mu(A) \geq \mu(E) - \epsilon$

Put K = st(*A), note K is compact, $A \subseteq K \subseteq E$.

Therefore $\mu(K) \ge \mu(A) > \mu(E) - \epsilon$

4 Limits

EG

Lemma 1. (Fatou) Let $f_n \geq 0$ be a sequence of measurable functions on a finite measure space (X, \mathcal{A}, μ) . Put $\underline{f} = \lim_{N \to \infty} \inf_{n \geq N} f_n$ Then $\int \underline{f} d\mu \leq \int_{\mathbb{R}^n}^{\infty} f_n d^*\mu$ for any

infinite H

PROOF: Put

$$E = \{x \in {}^*X|^{\circ *}\underline{f}(x) = \lim_{\substack{N \to \infty \ n \ge N}} \inf_{\text{(standard indices)}} {}^{\circ *}f_n\}$$

Note $E \in A_S$ and $S(E^{\mathbb{C}}) = \emptyset$, so $\mu_L(E^{\mathbb{C}}) = 0$

Let $M, \epsilon > 0$ standard; then for any $x \in E$ there is a standard N with

$$\max\{{}^*\underline{f}(x), M\} \leq {}^*f^N(x) + \varepsilon \leq f_H(x) + \varepsilon$$

Then:

$$\int \max\{{}^{\circ*}\underline{f}(x), M\} d\mu_{L} = \int_{E}{}^{\circ} \max\{{}^{*}\underline{f}(x), M\} d\mu_{L}$$

$$\leq \int_{E}{}^{\circ}f_{H}(x) d\mu_{L} + \varepsilon \mu(X)$$

$$\leq \int_{E}{}^{\circ}f_{H}(x) d\mu_{L} + \varepsilon \mu(X)$$

Since $\max\{{}^{\circ*}\underline{f}(x),M\}$ is S-measurable, we can restrict to X, let $M\to\infty$, then let $\epsilon\to 0$, and obtain

 $\int \underline{f} d\mu \leq \int {}^{\circ} f_{H}(x) d\mu_{L}$

and this last term is either $^{\circ*}\int f_H d^*\mu$ (if f_H is S-integrable) or ∞ (if not).

Either way, this proves the inequality in the Theorem.

5 Ergodic Theorem

Kamae(1982): Essentially new nonstandard proof of Ergodic Theorem:

Theorem 2. Let (X, \mathcal{A}, μ) be a probability space, $T: X \to X$ measure preserving, and $f \in \mathcal{L}^1(\mu)$. Then $\lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} f(T^i x)$ exists almost surely, and the integral of this limit is $\int f d\mu$

Used deep von Neumann-Maharam structure theory to represent general dynamical system as a factor of a hyperfinite Loeb space with the canonical internal transformation.

Later 'standardized' (Katznelson, Weiss; McKean)

Problem: find other applications of the representation.

Remainder of lecture: 'wrong' solution - use Smeasurability to eliminate the Kamae representation, retain the essentially nonstandard nature of his proof.