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E is a Banach space &  f e CYE,R)

Palais-Smale condition

(PS)  f'(un) — 0 & (f(uy,))bounded = Fu, (ug, ) up, — u

Theorem 1 If E is separable, (PS) is equivalent to
(PS)f(u)is finite & f'(u) =0 = wisnear—standard.



K. = f7(e)n f7(0)
Aq :::ef_ld —-OO,Cﬂ)
Ny = K.+ B(s(O).

Lemma 1 If f verifies (PS), then

1.¥Vcee R K. is compact.
2.3b,e >0 Vore Aoz \ (AU Ng) | f'(z)]| > b

The Beauty

Theorem 2 (Mountain Pass)
If
f werifies (PS)

lel >p>0 &  max{£(0), f(e)} < inf f(x)

[z|l=p
I = {yeC0,1],E)] ~7(0) =0 & (1) = e},
then

inf max f(v(t)) s a critical value of f.
vel' t€[0,1]



The Beast

Lemma 2 (Deformation)

Suppose [ satisfies (PS). For all ¢ € R, € > 0 and any
neighborhood O of K., there exist ¢ € ]0,&] and
n e C([0,1] x E, E) such that

1. 7(0,-) = idp

2.V |f(x)—c| > =Vte|0,1] nt,x)==x
3.Vt € (0,1 n(t,-) is a homeomorphism

4. Vte 0,1,z e E |nt,x)—z| <1

5.vte 0,1,z € E  f(n(t,x)) < f(x)

0.1(1, Aec\ O) C Ace

TK.=0 = n(l,A4:) C A

8. If f is even, than n(t,-) is odd.

0 < € < € <mi éb6b21
min —_—, ., —
"327278

The less beastly beast

Theorem 3 Suppose f satisfies (PS). If ¢ is not a critical
value of f, then
Ve > 0 Je €0, ¢]

LV [[[f(x) —cl>& n(l,z) =2
2. 77(17 Ac—i—a) g Ac—a-



Lemma 3 Suppose E s an Hilbert space and let U be an
open subset of E. Let f € CYU,R) and x € ns(*U). If
f'(x) 2 0, then for every 0 < € = 0, the following inequality
o @ 2

flo— ef(a)) < fla) - el L8

Lemma 4 Suppose E is an Hilbert space. Let~y € C([0,1], E)
and f € CYE,R) such that

foy isnot constant & 0 <r< m{g}f 1f (v ().

For each function n : [0,1] — R7, define
T(t) = (t) —n(t) f(4(t)

and

= {t €0, 1[ | [If (v@)I > r}.
There exists a function d, € C([0,1],[0,1]) such that
5,(0) = 8,(1) = 0
YteV, 6,(t) >0
vt eV, fs(8) < f(y(D))
and for all functions n: [0,1] — Ry,

vt e [0,1] [n(t) <o.(t) = flw(t) <fiy@)]



(Very) Tame functionals
Lemma 5

1. The following conditions are equivalent
(a) im0 f(x) = +00 i.e. f is coercive
(b)Vx € E x is infinite = f(z) = +o0
(c)Vx e B f(x)is finiteV f(x) <0 =z 1is finite
2. If E 1s finite dimensional
(a) the above conditions are equivalent to
Vee E |[f(x)is finite <& xis finite]

(b) All coercive functionals verify (PS).

The Pet
Theorem 4 If

E is finite dimensional (say E =R"; n € N)
f is coercive

lel| > p >0 & max{f(0), f(e)} < ||in£pf(x)
I = {yeC'(0,1],E)] 7(0) = 0 & v(1) = e},
then

k1 = inf max f(y(t)) is a critical value of f.
vel' t€[0,1]



= may assume WLOG,
vy ely(0,1]) € [=rr]"

f is coercive

For some fized real r > ||e|

Pick N € N such that N > r +1 and M €*N
1

_%O
M

h =

R = *]— N,N['NR*Z"
{a; = =N +ih| 0 <i<2NM}"

C R"

R is hyperfinite
Define

n

e € [ZUG,ZCG—I—F[I: H[xei,:vei—kh[
i=1

P = {p(N) | pe (R)) A p(N)SR A p(1) =0
A [Hw € Npw)=z. AN Vn €N [n > w = p(n) = z.]

AV eN | pi) = pli+1) | < vk}

Clatm 1: P is a hyperfinite set and

¢ ‘= min max xT).
peEP pr(*N)f( )

15 well defined.

(P is an internal set of internal parts of the hyperfinite set R)



Clavm 2: c =~ k.
Primo
kk < c¢c V ¢~k
Pick p € P (p(w) = x,) such that ¢ = max f(x)

z€p(*N)
fill in linearly between each p(i) and p(i + 1), i.e., define

rp(i)+W<t—£>(p(i—l—l)—p(i)) éﬁtﬁ%
Y(t) = <

0<i<w-—-1);
so that
vyerl & k < max f(y(t) ~c

— ter]0,1]

Secundo
Pick € €]0,1], v € I" such that

ky = gtm[%f( (t) < m[goff( V() < ki +e

recall that
v(0,1]) € R.
Pick €2 €* N such that

() @) <r verza

Define p € P by

v () € [p(), p(i) + K[ pli) €R & i€ {l, -, Q—1}
T, i >0




Observe that indeed
Ip(i + 1) —p(3)|| < /nh.

Then
< ~ t)) < k
c < xg%)f(x) tg[%ﬁ]f(v( ) 1t
so that
c < ki+e¢;

Claim 3: f_l‘ (¢) contains at least one almost critical
R
point

If this is not the case,
VeeR |flz)=c = [f(z)#0]
Let pin € P be such that

max ) = min max xr) = c.
prmm(*N)f( ) pEP zep(*N) f( )

Note that
T € pnin(N) A flz)=¢ = [z#0 A z%¢
and let
v max{i € N| f(pnin(i)) = c}.



Primo
Internally partition f~1(c) N pyin(*N).
Define recursively
i = mindi] f(pin(i)) = c}
i = max{j| Vi [t1 <1 <= fpnnl(i) = [}

= min{i| i <i A f(pmin(i)) = c}
i = max{j| Vi [i7 <0< = Fpuinli) = .

Lo+1

1 <1 <11 < <i. < i =V < W
With

Cj = {pmin(9)] 1 <@ <453 (1<j <k),
we have

Lemma 6 Let f € CYR",R) and defineb: R" — {1,2,--- ,n}
b(z) = max{k: L,2,---,n |
of | of
a—xk(x)‘ = max{ axl(x)‘ ci=1,2,-- ,n}}
If a € *R" is such that f'(a) % 0, then %(a) % 0. Fur-
thermore, if

. Of
{—%) if o
Up(a) =

e 9
€b(a> Zf 8l’b(a)

SIS
~—
AV

then, 0% 0fuy,, (a) <0.



10

Repartition the C; the following way

m;; = max {m\ Vi [i; <i<m=bp(i)) = b(p(zj))]}
b

mje1 = max {m| Vi [m;, <i<m = b(p(i)) = b(p(m;,+ 1))]}
Cia = {p(@)]i; <i<myi}
Cje = {p(i)l mjer <i<mye}.

For some specific sequence (x;j)1<j<x:

1<i1§m1,1< <m1,X1=H<---
<l < oMy < < My, = s =V < w,

c; = C,
J 1<0<y; gl

and

f—l(c> mpmin(*N) — Ulgjgnulgﬁng Cj,€

The function b defined in lemma 6 is constant on each C,
by construction.
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Secundo

Build p~ € P for which max f(p~(*N)) < ¢

1. Define a convenient multi-valued internal function P :

{1,

,w} — R
(a) i. P outside C:
(pmm(i) pmin(i) §Z C
P(Z) = < p (Z_j ) ub<pmm( ])) ? Z_j
Prnin(tj + 1) + hay, iy 0=+ 1
\ (1<j<k),

1.

P is 1-2 at the 4; — 1 and ¢; + 1.

P inside C': First step

P(i) = Pmin (@) + P(p,,..(67)  Pmin(i) € C
| (1<j<k),

The distances between consecutive points outside C
are not changed

(same happens with the points themselves);

adding one point at each end of the C; keeps the
passage "into” and ”out of” C within the bound /nh.
when 1 < 5 <&,

< c (p(7) € C))
<c  (p@) ¢€C)

< flp(i; — 1)) <c
< fpF+ 1) <c



12

iii. P inside C': Second step.

Take care of passages from Cj, to Cj 1.

Pmin(l) == « = last element of Cj,
Pmin(t +1) =3 = the first element of C; 1.
Up(a) L U(5)

because the relevant partial derivatives are S-continuous
and non-infinitesimal at o and at 3; as their distance

is at most v/nh, a and 3 are vertices of an interval
of the grid 'R, say I. Define possibly one more image
for one or both of the P(-) by:

P(i) = o + huy gy if ) points out of 1
P(i+1) = B+ huy)) if uye) points out of I

Again
f(P() < ¢ (J=d,1+1)
2. Adequate shifts in ¢ produce a function p~

for which max f(p~(*N)) < ¢, an impossibility.

Clavm 4: ky is a critical value of f. O
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Theorem 5 7 Suppose E is (?Hilbert?)  separable,
f: E — R is smooth, verifies the Mountain Pass geome-
try, verifies (PS), N €* Ny and

IO f(S0)NO =0
K C RY C *E.

Then the nonstandard hull of f‘RN has a critical point.
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