CRITICAL POINTS

Vítor Neves (João Paulo Teixeira, Manfred Wolff, Maria João Borges, Natália Martins)

> NSM2006 Pisa, May 30th

 $E \ is$ a Banach space & $f \in C^1(E, \mathbb{R})$

Palais-Smale condition

(**PS**) $f'(u_n) \to 0 \& (f(u_n)) \text{ bounded } \Rightarrow \exists u, (u_{k_n}) u_{k_n} \to u$

Theorem 1 If E is separable, (PS) is equivalent to $(\mathbf{PS})f(u)$ is finite & $f'(u) \approx 0 \implies u$ is near-standard.

$$K_c := f^{-1}(c) \cap f'^{-1}(0)$$

 $A_{\alpha} := f^{-1}(] - \infty, \alpha])$
 $N_{\delta} := K_c + B_{\delta}(0).$

Lemma 1 If f verifies (PS), then

1. $\forall c \in \mathbb{R}$ K_c is compact.

2.
$$\exists b, \hat{\varepsilon} > 0 \quad \forall x \in A_{c+\hat{\varepsilon}} \setminus (A_{c-\hat{\varepsilon}} \cup N_{\frac{\delta}{8}}) \quad ||f'(x)|| \ge b$$

The Beauty

Theorem 2 (Mountain Pass) If

$$f$$
 verifies (PS)

$$||e|| > \rho > 0$$
 & $\max\{f(0), f(e)\} < \inf_{||x|| = \rho} f(x)$
 $\Gamma = \{\gamma \in C^1([0, 1], E) | \gamma(0) = 0 \& \gamma(1) = e\},$

then

$$\inf_{\gamma \in \Gamma} \max_{t \in [0,1]} f(\gamma(t)) \quad is \ a \ critical \ value \ of \ f.$$

The Beast

Lemma 2 (Deformation)

Suppose f satisfies (PS). For all $c \in \mathbb{R}$, $\bar{\varepsilon} > 0$ and any neighborhood O of K_c , there exist $\varepsilon \in]0, \bar{\varepsilon}[$ and $\eta \in C([0,1] \times E, E)$ such that

1.
$$\eta(0,\cdot) = id_E$$

2.
$$\forall x | f(x) - c| > \bar{\varepsilon} \implies \forall t \in [0, 1] \quad \eta(t, x) = x$$

3.
$$\forall t \in [0,1] \quad \eta(t,\cdot) \text{ is a homeomorphism}$$

4.
$$\forall t \in [0, 1], x \in E \quad ||\eta(t, x) - x|| \le 1$$

5.
$$\forall t \in [0, 1], x \in E \quad f(\eta(t, x)) \le f(x)$$

6.
$$\eta(1, A_{c+\varepsilon} \setminus O) \subseteq A_{c-\varepsilon}$$

7.
$$K_c = \emptyset \implies \eta(1, A_{c+\varepsilon}) \subseteq A_{c-\varepsilon}$$

8. If f is even, than $\eta(t,\cdot)$ is odd.

$$0 < \varepsilon < \hat{\varepsilon} < \min \left\{ \bar{\varepsilon}, \frac{b\delta}{32}, \frac{b^2}{2}, \frac{1}{8} \right\}$$

The less beastly beast

Theorem 3 Suppose f satisfies (PS). If c is not a critical value of f, then

$$\forall \bar{\varepsilon} > 0 \ \exists \varepsilon \in]0, \bar{\varepsilon}[$$

1.
$$\forall x [||f(x) - c|| > \bar{\varepsilon} \quad \eta(1, x) = x$$

2.
$$\eta(1, A_{c+\varepsilon}) \subseteq A_{c-\varepsilon}$$
.

Lemma 3 Suppose E is an Hilbert space and let U be an open subset of E. Let $f \in C^1(U,\mathbb{R})$ and $x \in ns({}^*U)$. If $f'(x) \not\approx 0$, then for every $0 < \varepsilon \approx 0$, the following inequality holds:

$$f(x - \varepsilon f'(x)) < f(x) - \varepsilon \frac{\parallel f'(x) \parallel^2}{4}.$$

Lemma 4 Suppose E is an Hilbert space. Let $\gamma \in C([0,1], E)$ and $f \in C^1(E, \mathbb{R})$ such that

$$f \circ \gamma$$
 is not constant & 0 < $r < \max_{t \in [0,1]} ||f'(\gamma(t))||$.

For each function $\eta:[0,1]\to\mathbb{R}_0^+$, define

$$\gamma_{\eta}(t) := \gamma(t) - \eta(t)f'(\gamma(t))$$

and

$$V_r := \{t \in]0,1[\mid ||f'(\gamma(t))|| > r\}.$$

There exists a function $\delta_r \in C([0,1],[0,1])$ such that

$$\delta_r(0) = \delta_r(1) = 0$$

$$\forall t \in V_r \qquad \delta_r(t) > 0$$

$$\forall t \in V_r \qquad f(\gamma_{\delta_r}(t)) < f(\gamma(t))$$

and for all functions $\eta:[0,1]\to\mathbb{R}_0^+$,

$$\forall t \in [0,1] \ [\eta(t) \le \delta_r(t) \implies f(\gamma_\eta(t)) \le f(\gamma(t))].$$

(Very) Tame functionals

Lemma 5

- 1. The following conditions are equivalent
 - (a) $\lim_{\|x\|\to+\infty} f(x) = +\infty$ i.e. f is **coercive**
 - (b) $\forall x \in E \quad x \text{ is infinite} \qquad \Rightarrow \qquad f(x) \approx +\infty$
 - (c) $\forall x \in E \quad f(x) \text{ is finite } \forall f(x) < 0 \quad \Rightarrow \quad x \text{ is finite}$
- 2. If E is finite dimensional
 - (a) the above conditions are equivalent to

$$\forall x \in E \quad [f(x) \ is \ finite \quad \Leftrightarrow \quad x \ is \ finite]$$

(b) All coercive functionals verify (PS).

The Pet

Theorem 4 If

$$E \ is \ finite \ dimensional \ (say \ E = \mathbb{R}^n; \ n \in \mathbb{N})$$

$$f \ is \ coercive$$

$$\|e\| > \rho > 0 \ \& \ \max\{f(0), f(e)\} < \inf_{\|x\| = \rho} f(x)$$

$$\Gamma \ = \ \{\gamma \in C^1([0, 1], E) | \ \gamma(0) = 0 \ \& \ \gamma(1) = e\},$$

then

$$k_1 := \inf_{\gamma \in \Gamma} \max_{t \in [0,1]} f(\gamma(t))$$
 is a critical value of f .

f is coercive \Rightarrow may assume WLOG,

For some fixed real $r > ||e|| \quad \forall \gamma \in \Gamma \ \gamma([0,1]) \subseteq [-r,r]^n$;

Pick $N \in \mathbb{N}$ such that N > r + 1 and $M \in {}^{\star}\mathbb{N}_{\infty}$

$$h := \frac{1}{M} \approx 0$$

$$\mathcal{R} := {}^{\star}] - N, N[{}^{n} \cap h^{\star} \mathbb{Z}^{n}]$$

$$= \{a_{i} := -N + ih | 0 < i < 2NM\}^{n}\}$$

$$\subset {}^{*}\mathbb{R}^{n}$$

 \mathcal{R} is hyperfinite Define

$$e \in [x_e, x_e + \overrightarrow{h}] := \prod_{i=1}^n [x_{ei}, x_{ei} + h]$$

$$\mathcal{P} := \left\{ p(^*\mathbb{N}) \mid p \in^* \left((\mathbb{R}^n)^{\mathbb{N}} \right) \land p(^*\mathbb{N}) \subseteq \mathcal{R} \land p(1) = 0 \right.$$

$$\wedge \left[\exists \omega \in^* \mathbb{N} \ p(\omega) = x_e \land \forall n \in^* \mathbb{N} \ [n \ge \omega \Rightarrow p(n) = x_e] \right]$$

$$\wedge \left[\forall i \in^* \mathbb{N} \parallel p(i) - p(i+1) \parallel \le \sqrt{n}h \right] \right\}.$$

Claim 1: P is a hyperfinite set and

$$c := \min_{p \in \mathcal{P}} \max_{x \in p(\star \mathbb{N})} f(x).$$

is well defined.

 $(\mathcal{P} \text{ is an internal set of internal parts of the hyperfinite set } \mathcal{R})$

Claim 2: $c \approx k_1$.

Primo

$$k_1 < c \quad \lor \quad c \approx k_1$$

Pick
$$p \in \mathcal{P}$$
 $(p(\omega) = x_e)$ such that $c = \max_{x \in p(^*\mathbb{N})} f(x)$

fill in linearly between each p(i) and p(i + 1), i.e., define

$$\gamma(t) \; := \; \begin{cases} p(i) + \omega \left(t - \frac{i}{\omega}\right) \left(p(i+1) - p(i)\right) & \frac{i}{\omega} \leq t \leq \frac{i+1}{\omega} \\ \\ (0 \leq i \leq \omega - 1); \end{cases}$$

so that

$$\gamma \in {}^{\star} \Gamma$$
 & $k_1 \leq \max_{t \in {}^{\star}[0,1]} f(\gamma(t)) \approx c$

Secundo

Pick $\varepsilon \in]0,1], \ \gamma \in \Gamma$ such that

$$k_1 = \inf_{\gamma \in \Gamma} \max_{t \in [0,1]} f(\gamma(t)) \le \max_{t \in [0,1]} f(\gamma(t)) \le k_1 + \varepsilon$$

recall that

$$\gamma([0,1]) \subseteq \mathcal{R}.$$

Pick $\Omega \in^* \mathbb{N}_{\infty}$ such that

$$\left\|\gamma\left(\frac{i+1}{\Omega}\right) - \gamma\left(\frac{i}{\Omega}\right)\right\| \ < \ h \qquad (0 \le i \le \Omega - 1)$$

Define $p \in \mathcal{P}$ by

$$\begin{cases} \gamma\left(\frac{i-1}{\Omega}\right) \in [p(i), p(i) + \overrightarrow{h}[& p(i) \in \mathcal{R} \& i \in \{1, \dots, \Omega - 1\} \\ x_e & i \ge \Omega \end{cases}$$

Observe that indeed

$$||p(i+1) - p(i)|| \le \sqrt{n}h.$$

$$c \leq \max_{x \in p(^*\mathbb{N})} f(x) \approx \max_{t \in ^*[0,1]} f(\gamma(t)) < k_1 + \varepsilon$$
 so that

$$c < k_1 + \varepsilon;$$

Claim 3: $f^{-1}\Big|_{\mathcal{R}}(c)$ contains at least one almost critical point

If this **is not** the case,

$$\forall x \in \mathcal{R} \quad [f(x) = c \implies f'(x) \not\approx 0]$$

Let $p_{min} \in \mathcal{P}$ be such that

$$\max_{x \in p_{min}({}^{\star}\mathbb{N})} f(x) = \min_{p \in \mathcal{P}} \ \max_{x \in p({}^{\star}\mathbb{N})} f(x) = c.$$

Note that

$$[x \in p_{min}({}^*\mathbb{N}) \land f(x) = c] \Rightarrow [x \not\approx 0 \land x \not\approx e]$$

and let

$$\nu : \max\{i \in \mathcal{N} | f(p_{min}(i)) = c\}.$$

Primo

Internally partition $f^{-1}(c) \cap p_{min}({}^*\mathbb{N})$. Define recursively

$$i_1 := \min\{i | f(p_{min}(i)) = c\}$$

 $\overline{i_1} := \max\{j | \forall i [i_1 \le i \le j \Rightarrow f(p_{min}(i)) = c]\}$

$$i_{\ell+1} := \min\{i | \overline{i_{\ell}} < i \land f(p_{min}(i)) = c\}$$

$$\overline{i_{\ell+1}} := \max\{j | \forall i [\overline{i_{\ell}} \le i \le j \Rightarrow f(p_{min}(i)) = c]\}.$$

$$1 < i_1 \le \overline{i_1} < \cdots < i_{\kappa} \le \overline{i_{\kappa}} = \nu < \omega.$$
 With

$$C_j := \{p_{min}(i) | i_j \le i \le \overline{i_j}\}$$
 $(1 \le j \le \kappa),$ we have

$$f^{-1}(c) \cap p_{min}({}^{\star}\mathbb{N}) = \bigcup_{1 < j < \kappa}^{\bullet} C_j := \mathcal{C},$$

Lemma 6 Let $f \in C^1(\mathbb{R}^n, \mathbb{R})$ and define $b : \mathbb{R}^n \to \{1, 2, \dots, n\}$

$$b(x) := \max \left\{ k = 1, 2, \dots, n \mid \left| \frac{\partial f}{\partial x_k}(x) \right| = \max \left\{ \left| \frac{\partial f}{\partial x_i}(x) \right| : i = 1, 2, \dots, n \right\} \right\}.$$

If $a \in {}^{\star}\mathbb{R}^n$ is such that $f'(a) \not\approx 0$, then $\frac{\partial f}{\partial x_{b(a)}}(a) \not\approx 0$. Furthermore, if

$$u_{b(a)} = \begin{cases} -e_{b(a)} & \text{if } \frac{\partial f}{\partial x_{b(a)}}(a) > 0\\ e_{b(a)} & \text{if } \frac{\partial f}{\partial x_{b(a)}}(a) < 0 \end{cases}$$

then, $0 \not\approx \partial f_{u_{b(a)}}(a) < 0$.

Repartition the C_i the following way

$$\begin{aligned} m_{j,1} &:= & \max \big\{ m | \ \forall i \ [i_j \leq i \leq m \Rightarrow b(p(i)) = b(p(i_j))] \big\} \\ m_{j,\ell+1} &:= & \max \big\{ m | \ \forall i \ [m_{j,\ell} < i \leq m \Rightarrow b(p(i)) = b(p(m_{j,\ell}+1))] \big\} \end{aligned}$$

$$C_{j,1} &:= & \big\{ p(i) | \ i_j \leq i \leq m_{j,1} \big\} \\ C_{j,\ell} &:= & \big\{ p(i) | \ m_{j,\ell-1} < i \leq m_{j,\ell} \big\}.$$

For some specific sequence $(\chi_j)_{1 \leq j \leq \kappa}$,

$$1 < i_{1} \leq m_{1,1} < \cdots < m_{1,\chi_{1}} = \overline{i_{1}} < \cdots$$

$$< i_{\kappa} \leq m_{\kappa,1} < \cdots < m_{\kappa,\chi_{\kappa}} = \overline{i_{\kappa}} = \nu < \omega,$$

$$C_{j} = \bigcup_{1 \leq \ell \leq \chi_{j}} C_{j,\ell}$$
and
$$f^{-1}(c) \cap p_{min}({}^{*}\mathbb{N}) = \bigcup_{1 < j < \kappa} \bigcup_{1 < \ell < \chi_{j}} C_{j,\ell}$$

The function b defined in lemma 6 is constant on each $C_{j,\ell}$ by construction.

Secundo

Build $p^- \in \mathcal{P}$ for which $\max f(p^-(^*\mathbb{N})) < c$

- 1. Define a convenient multi-valued internal function $P: \{1, \dots, \omega\} \to \mathcal{R}$
 - (a) i. P outside C:

$$P(i) := \begin{cases} p_{min}(i) & p_{min}(i) \notin \mathcal{C} \\ p_{min}(i_j - 1) + hu_{b(p_{min}(i_j))} & i = i_j - 1 \\ p_{min}(\overline{i_j} + 1) + hu_{b(p_{min}(\overline{i_j}))} & i = \overline{i_j} + 1 \\ & (1 \le j \le \kappa), \end{cases}$$

P is 1-2 at the $i_j - 1$ and $\overline{i_j} + 1$.

ii. P inside C: First step

$$P(i) := \begin{cases} p_{min}(i) + hu_{b(p_{min}(i))} & p_{min}(i) \in \mathcal{C} \\ & (1 \le j \le \kappa), \end{cases}$$

The distances between consecutive points outside \mathcal{C} are not changed

(same happens with the points themselves); adding one point at each end of the C_j keeps the passage "into" and "out of" \mathcal{C} within the bound $\sqrt{n}h$. when $1 \leq j \leq \kappa$,

$$\begin{split} f(p(i) + hu_{b(p(i))}) &< c & (p(i) \in C_j) \\ f(p(i)) &< c & (p(i) \not\in \mathcal{C}) \\ f(p(i_j - 1) + hu_{b(p(i))}) &< f(p(i_j - 1)) < c \\ f(p(\overline{i_j} + 1) + hu_{b(p(\overline{i_j}))}) &< f(p(\overline{i_j} + 1)) < c. \end{split}$$

iii. P inside C: **Second step**.

Take care of passages from $C_{j,\ell}$ to $C_{j,\ell+1}$.

$$\begin{cases} p_{min}(i) := \alpha &= last \ element \ of \ C_{j,\ell} \\ p_{min}(i+1) := \beta &= the \ first \ element \ of \ C_{j,\ell+1}. \\ u_{b(\alpha)} \bot u_{b(\beta)} \end{cases}$$

because the relevant partial derivatives are S-continuous and non-infinitesimal at α and at β ; as their distance is at most $\sqrt{n}h$, α and β are vertices of an interval of the grid \mathcal{R} , say I. Define possibly one more image for one or both of the $P(\cdot)$ by:

$$\begin{cases} P(i) = \alpha + hu_{b(\beta)} & \text{if } u_{b(\beta)} \text{ points out of I} \\ P(i+1) = \beta + hu_{b(\alpha)} & \text{if } u_{b(\alpha)} \text{ points out of I} \end{cases}$$

Again

$$f(P(j)) \quad < \quad c \qquad \qquad (j=i,i+1)$$

2. Adequate shifts in i produce a function p^- for which $\max f(p^-({}^*\mathbb{N})) < c$, an impossibility.

Claim 4: k_1 is a critical value of f.

Theorem 5 ? Suppose E is (?Hilbert?) separable, $f: E \to \mathbb{R}$ is smooth, verifies the Mountain Pass geometry, verifies (PS), $N \in \mathbb{N}_{\infty}$ and

$$\exists r \notin \mathcal{O} \qquad f(S_r(0)) \cap \mathcal{O} = \emptyset$$

$${}^{\sigma}E \subset \mathbb{R}^N \subset {}^{*}E.$$

Then the nonstandard hull of $f_{|\mathbb{R}^N}$ has a critical point.

References

- [1] Martins, Natália: Nonstandard Analysis in Ordinary Differential Equations and Critical Point Theory (PhD Thesis) Univ. of Aveiro, 2006.
- [2] Martins, Natália & Neves, Vítor: The Mountain Pass Theorem without the Deformation Lemma. I Finite dimensional spaces, Dep. of Math., Univ. of Aveiro 2005.
- [3] Rabinowitz, Paul H.: Minimax Methods in Critical Point Theory with Applications to Differential Equations. CBMS Regional Conference, 65, AMS, Providence, Rhode Island, (1986).