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31. Time-development of explosion

1. Explosion

Stochastic differential equation
dX () = f(X(t)) dt + dB(t),
where
X (t) : particle momentum at time ¢,

dB(t
f(X(t)) . drift, % : random force

If
(i) f(x) grows faster than linear,
(ii) f(x) is repulsive, that is, zf(x) > 0,

then the process explodes successively :

P(explosion time is finite) = 1.



2. Survival rate

SDE implies forward Fokker-Planck equation
(FP-equation) for the probability density ¢ (¢, x)
of a particle momentum z at time ¢,

9 62 0
a(;5(75, x) = D@qﬁ(t, x) — a{f(x)qb(ta CU)}

Survival rate by time t is given by

P(t) .= /o:O o(t, x)dzx,

so that the time-development of the explo-
sions by

1— P(t).



3. Time-development of survival rate

We assume

(A1) f(x) grows faster than linear,

@2 _
A2 I r@ =

(A3) some technical conditions.

Thm. 1 If f(x) is attractive, then
P(t) =1,

that is, no explosions take place.

Thm. 2 If f(x) is repulsive, then P(t) de-
creases exponentially in time.



4. Idea of the proofs

(i) Change the variable from ¢(¢,z) to

Ot z) = (L, z) exp[—%U(x)]
where U'(z) = f(x).

(ii) Then, ¥ (t,x) satisfies the imaginary-time
Schrodinger equation,

9y(t,x)
ot

= Hy(t,x)
where

82

vy = 1D 1)

(iii) Since V(x) — oo, Hamiltonian H is self-
adjoint having CONS of eigenfunctions:

(Eg<E1<---<Ep<--+— 00).



(iv)

(v)

Expand the initial data as a series with re-
spect to the CONS {un(z)ln =0,1,---}.
Then,

Wt z) = e Mhyp(0,2) = i cne Pty ().

n=0

If f(x) is attractive, it is easy to show
that

Eg =0,
which implies that P(t) = 1.

If f(x) is repulsive, by WKB-approximation,

ug(x) ~ ﬁeXp[ZF /Ompo(x/)dac’]

with
po@) = {2 (V@) - o)}

it is shown that

Eq > 0,

which implies that P(¢) decreases expo-
nentially. |



§2. Solution by path integral

Construct a probability measure over a space
of paths s.t.

(i) The solution to the FP-equation is given
as a path integral with respect to the
measure,

(ii) probabilities are properly distributed not
only to the non-exploding paths but also
to the exploding ones.



1. Feynman-Kac-Nelson formula

(¢, )
= [* ayw(0,) [exo|~ [ V(x(s)yas|an*

w1 Wiener measure pinned at =z and y

Hence,

o(t.2) = [ dys(0,y)

—0

<[ x| S (U ~ U@~ [ VX ())ds|du?

(1) FKN-formula gives the information about
the measure for the non-exploding paths.

(2) It gives no information for the exploding
paths, because U(x) — oo as time approaches
to their exploding times.



2. Standard analysis vs Nonstandard

To get around this difficulty in standard anal-
VSIS,

(i) introduce a cutoff N into the momentum
space,

(ii) define a probability measure uy over a
path-space Py,

(iii) take the limit of uy and Py as N — co.
In nonstandard analysis, these procedures
at a stroke:

“cutoff at infinity can be introduced from the
beginning "

(i) discretize the time and the momentum,

(ii) assign a x-probability for each x-path sep-
arately,

(iii) apply Loeb measure theory to derive the
standard probability measure.



3. Definitions

£>0,6=12De, A= (D/ﬁ)1/2|log 5a|.

Def. 1 (1) Letw:{0,1,---,v—1} — {1, 1}
be internal, where v = [t/e].

(i) Sequence {X; |1 <k<v}:

( k—1
Xo + w(j)o Xl < A
x, = ) Xo j;o (5 (Xl < A)
\ +A ([ Xk > A).

(ii) X(s,w) : x-polygonal line with vertices
(0,9), (e, 1), -+, (ve,mv).

(iii) Z4(-,t:y,0) : the set of X(s,w).

(iv) X(s,w) “living path” :

Vs € [O,ve) |X(s,w)| < A.
X (s,w) “path dead at infinity” :

if not.



(2) If X(s,w) “living path”,

u(X (s,w))

= - exp | S{U(X (e, ) — U(X(0,0))

_ /OV6 *V(X(s,w))ds].

If X(s,w) “path dead at infinity”,

u(X (s,w))

1

— %expli{U(X(koe,w)) — U(X(Oaw))}

koe
—/OO *V(X(s,w))ds].
where ko = min{k | X(ke,w) = £A}.



Remark 1 :

exp[— /0”6 *V(X(s,w))ds] < exp(—ct).

Remark 2 : If f(x) is repulsive,

1
exp [EU(X(I/S, w))] is infinite.

If f(x) is attractive,

1
exp[EU(X(ua,w))] is less than 1.

Thm. 3 The total x-measure satisfies

u(@A(-,tiy,O)) ~ 1,

namely the standard Loeb measure derived
from the nonstandard measure  is a proba-
bility measure.



4. Solution to the FP-equation

Def. 2
Ua(t,z) = U(0,y)Ga(z,t:y,0)26
Y
with

1
Ga(w,t:y,0) = 37 p(X(5,w)),
X (s,w)

where sum is taken over 2 (x,t . y,0).

Thm. 4 U(t,x) = st Uy(t,z) is the solution
to the forward Fokker-Planck equation.



