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Mountain Pass Theorem of Ambrosetti-Rabinowitz
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Definition: Let E be a real Banach space. We say that f € C'(E,R)

satisfies the Palais-Smale condition ((PS) for short) if for all sequence

(un)nEN in E,

(f(4n))nen is bounded and lim f/'(u,) =0

"N —0C0

U

(un)nen has a convergent subsequence.
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Mountain Pass Theorem of Ambrosetti-Rabinowitz (1973): Let E be a
real Banach space and f € C!'(E,R). Suppose that

1. there exist 1,2 € E and » € Rt such that || z; — x5 ||> r and

ko := max{f(x1), f(z2)} < inf f(y);

|ly—za||=r
2. T:={y€C(0,1], E) : v(0) = 1 Av(1) = =2} and
k1 := infyer maxicio,1) f(7(2));
3. f satisfies (PS).

Then k1 > kg and k, is a critical value of f.

Natalia Martins 1231 56789101112 13 14 15 16 17 18



Obtaining almost critical points in real Hilbert spaces

Mountain Pass Theorems without Palais-Smale conditions

Lemma 1: Suppose H is a real Hilbert space with norm || - || and let U be
an open subset of H. Let f € C'(U,R) and = € ns(*U). If f'(x) % 0,
then for every 0 < € = 0, the following inequality holds:

I £ () |17
S

fl@—ef(z) < f(z) —¢
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Lemma 2: Let H be a real Hilbert space with norm || - ||. Suppose that

f € C'(H,R) satisfies the mountain pass geometry with respect to

and x,. Let

I':={y€C([0,1], H) : v(0) = 1 A v(1) = z2}

and

ky := inf ).
1 }Yrelrtren[gi]f(v( )

Then

vy €T [ [7(*[0,1]) C ns(*H) A max f(v(£) ~ ki |

= 3to €*[0,1] [ F(7(to)) = k1 A || F'(7(t0)) I 0] |.
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Proof: Take v €*T" such that

v(*[0,1]) C ns(*H) A ko := max f(v(t) = k1

and let kg := max{f(x1), f(x=2)}.

Then
ko < ki < ks = k.
Define
U:={t€*[0,1] : k1 < f(7(¥)) < k2}
and

d := min{[|f'(v(¢))ll : t € U}.
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Suppose that d % 0.

Define
Vo— { t €*[0,1] : ||/ (v@®)| > g }
and

W = ( *[0,1] \ V) U {0, 1}.

Note that U C V, V is *open and W and U are *closed.

Moreover,

UNW = 0.
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Take v € *C([0, 1], [0, 1]) such that

u(W) = {0} and u(U) = {1}.

Choose b such that

0 < 2k22k) p x~0

and define n : *[0,1] — [0, b] by

n(t) := bu(t).
Define

Yo (t) :=v(t) — n(t) F'(v(1)).

Note that ~,, € *I.

Natalia Martins 123456 7(8) 10 11 12 13 14 15 16 17 18



Obtaining almost critical points in real Hilbert spaces

Mountain Pass Theorems without Palais-Smale conditions

We will prove

vVt €*[0,1] f(n(t)) < k1. Contradiction!

If t € W, then

Fom(®) = F(7(&) = n@®) f (1(1)) = F(¥(t)) < ka,

because n(t) = 0and t € U.
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If t € U, then

Fm@®) = F(@) —bf (v(1)))

< f(v(#)) — b” f,(72(t)) I” (by Lemma 1)

IA

FOv() b
f(v(t)) — (k2 — k1)
k1.

IN A

If t € V \ U, Lemma 1 and the definition of U imply

RGOS

k1.
> 1

F(rm(t) < F(v(t)) —n(t)
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Therefore, d = 0.

Hence, there exists to € U such that || f'(v(to0)) ||~ O, that is,

3to €*[0,1] ( F(V(t0)) m k1 A || F/(4(t0)) =0 ). O
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Mountain Pass Theorem without Palais-Smale conditions in finite
dimension: Let FE be a finite dimensional real Banach space, 1,22 € F

and f € C'(E,R). Suppose that
1. f satisfies the mountain pass geometry with respect to x; and x5;
2. T:={y€C(0,1], E) : v(0) = 1 ANv(1) = 2} and
k1 := infyecr maxgc(o,1] F(v(%));
3. there exists s € RT such that || x2 — z; ||[< sand if ||z —z, ||> s
then f(x) < k1.

Then k; is a critical value of f.
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Proof: Let “Yo € *I" be such that kl S mMaX¢ex[0,1] f(")/()(t)) ~ kl'

We may assume that ~v¢(*[0,1]) C B,(x1) and, since E is finite
dimensional, ~v¢(*[0,1]) C ns(*E).

Therefore, by Lemma 2, there exists tg € *[0, 1] such that

f(r(to)) = ki A || f'(70(to)) lI= 0.

The continuity of f and f’ shows that st(vo(%o)) is a critical point with

value k;. []
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Example: Let h(z,y) = [1 — (x? + y?)] exp~ (@ +¥°) arctan(z? + y?) for
all (z,y) € R2.
Clearly h is a C* functional, h(0,0) = 0, h(1,0) = 0,

(ot h(,y) > ko := max{h(0,0), h(1,0)} = 0
LTyY)ll=—3

and
(x,y) € B2(0,0) = h(x,y) < 0 < kj.
However, h does not satisfy (PS) condition:

Oh Oh
(h(n,n))ney isbounded A —(n,n)—0 A —(n,n)—0
ox oy

((n,n))necn does not contain a convergent subsequence.
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Mountain Pass Theorem without Palais-Smale conditions in Hilbert
spaces: Let H be a real Hilbert space, ;1,2 € H and f € C'(H,R).
Suppose that

1. f satisfies the mountain pass geometry with respect to x; and x5;
2. T:={y€C(0,1],H) : v(0) = x1 Av(1) = 22} and

k1 := inf,cr maxic(o,1] F(y(@));
3. Iy €T [~(*[0,1]) C ns(*H) A maxico,1] f(v(t)) = k1 |.

Then k; is a critical value of f.
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Example: Let h(z,y) = [1 — (22 + y2)] exp~ & +¥°) arctan(z? + y?) for

all (z,y) € R2.
We saw that this function satisfies the mountain pass geometry with

respect to (0,0) and (1,0) and
(z,y) € B2(0,0) = h(z,y) <O.
Since k; > 0, there exists v €*T" such that

m[ax] h(v(t)) = ki A ~(*[0,1]) C B5(0,0) C ns(*R?).
tex[0,1

Hence, h satisfies all the conditions of our theorem but do not satisfy

(PS) condition.
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