Mountain Pass Theorems without Palais-Smale conditions

Natália Martins Universidade de Aveiro

May 2006

1. Mountain Pass Theorem of Ambrosetti-Rabinowitz

2. Obtaining almost critical points in real Hilbert spaces

3. Mountain Pass Theorems without Palais-Smale conditions

Mountain Pass Theorem of Ambrosetti-Rabinowitz

Mountain Pass Theorems without Palais-Smale conditions

Definition: Let E be a real Banach space. We say that $f\in C^1(E,\mathbb{R})$ satisfies the Palais-Smale condition ((PS) for short) if for all sequence $(u_n)_{n\in\mathbb{N}}$ in E,

$$(f(u_n))_{n\in\mathbb{N}}$$
 is bounded and $\lim_{n o\infty}f'(u_n)=0$

 $(u_n)_{n\in\mathbb{N}}$ has a convergent subsequence.

Mountain Pass Theorem of Ambrosetti-Rabinowitz

Mountain Pass Theorems without Palais-Smale conditions

Mountain Pass Theorem of Ambrosetti-Rabinowitz (1973): Let E be a real Banach space and $f \in C^1(E,\mathbb{R})$. Suppose that

1. there exist $x_1, x_2 \in E$ and $r \in \mathbb{R}^+$ such that $\parallel x_1 - x_2 \parallel > r$ and

$$k_0 := \max\{f(x_1), f(x_2)\} \ < \inf_{\|y-x_1\|=r} f(y);$$

- 2. $\Gamma:=\{\gamma\in C([0,1],E): \gamma(0)=x_1\wedge\gamma(1)=x_2\}$ and $k_1:=\inf_{\gamma\in\Gamma}\max_{t\in[0,1]}f(\gamma(t));$
- 3. f satisfies (PS).

Then $k_1 > k_0$ and k_1 is a critical value of f.

Mountain Pass Theorems without Palais-Smale conditions

Lemma 1: Suppose H is a real Hilbert space with norm $\|\cdot\|$ and let U be an open subset of H. Let $f \in C^1(U,\mathbb{R})$ and $x \in ns({}^*U)$. If $f'(x) \not\approx 0$, then for every $0 < \varepsilon \approx 0$, the following inequality holds:

$$f(x-\varepsilon f'(x)) < f(x) - \varepsilon \frac{\parallel f'(x) \parallel^2}{2}.$$

Mountain Pass Theorems without Palais-Smale conditions

Lemma 2: Let H be a real Hilbert space with norm $\|\cdot\|$. Suppose that $f\in C^1(H,\mathbb{R})$ satisfies the mountain pass geometry with respect to x_1 and x_2 . Let

$$\Gamma := \{ \gamma \in C([0,1], H) : \gamma(0) = x_1 \land \gamma(1) = x_2 \}$$

and

$$k_1 := \inf_{\gamma \in \Gamma} \max_{t \in [0,1]} f(\gamma(t)).$$

Then

$$egin{aligned} &orall \gamma \in {}^\star\Gamma \ \Big[\ [\ \gamma({}^\star[0,1]) \subseteq ns({}^\star H) \ \wedge \ \max_{t \in {}^\star[0,1]} f(\gamma(t)) pprox k_1 \ \Big] \end{aligned} \\ &\Rightarrow \ \exists t_0 \in {}^\star[0,1] \ \Big[\ f(\gamma(t_0)) pprox k_1 \ \wedge \ \parallel f'(\gamma(t_0)) \parallel pprox 0 \ \Big] \ \Big]. \end{aligned}$$

Mountain Pass Theorems without Palais-Smale conditions

Proof: Take $\gamma \in {}^{\star}\Gamma$ such that

$$\gamma(^\star[0,1]) \subseteq ns(^\star H) \quad \wedge \quad k_2 := \max_{t \in ^\star[0,1]} f(\gamma(t)) pprox k_1$$

and let $k_0 := \max\{f(x_1), f(x_2)\}.$

Then

$$k_0 < k_1 \leq k_2 \approx k_1.$$

Define

$$U := \{ t \in {}^{\star}[0,1] : k_1 \le f(\gamma(t)) \le k_2 \}$$

and

$$d := \min\{\|f'(\gamma(t))\| : t \in U\}.$$

Mountain Pass Theorems without Palais-Smale conditions

Suppose that $d \not\approx 0$.

Define

$$V := \left\{ \; t \in {}^\star[0,1] \; : \; \|f'(\gamma(t))\| > rac{d}{2} \;
ight\}$$

and

$$W := (\ {}^\star[0,1] \setminus V) \cup \{0,1\}.$$

Note that $U \subseteq V$, V is *open and W and U are *closed.

Moreover,

$$U\cap W=\emptyset$$
.

Mountain Pass Theorems without Palais-Smale conditions

Take $u \in {}^\star C([0,1],[0,1])$ such that

$$u(W) = \{0\}$$
 and $u(U) = \{1\}$.

Choose b such that

$$0 \leq \frac{2(k_2 - k_1)}{d^2} < b \approx 0$$

and define $\eta: {}^\star[0,1] o [0,b]$ by

$$\eta(t) := bu(t).$$

Define

$$\gamma_{\eta}(t) := \gamma(t) - \eta(t)f'(\gamma(t)).$$

Note that $\gamma_{\eta} \in {}^{\star}\Gamma$.

Mountain Pass Theorems without Palais-Smale conditions

We will prove

$$\forall t \in {}^\star[0,1] \quad f(\gamma_\eta(t)) < k_1.$$

Contradiction!

If $t \in W$, then

$$f(\gamma_{\eta}(t)) = f\Big(\gamma(t) - \eta(t)f'(\gamma(t))\Big) = f(\gamma(t)) < k_1,$$

because $\eta(t) = 0$ and $t \not\in U$.

Mountain Pass Theorems without Palais-Smale conditions

If $t \in U$, then

$$egin{array}{lll} f(\gamma_{\eta}(t)) &=& f(\gamma(t) - b f'(\gamma(t))) \ &<& f(\gamma(t)) - b rac{\parallel f'(\gamma(t)) \parallel^2}{2} \ &\leq& f(\gamma(t)) - b rac{d^2}{2} \ &<& f(\gamma(t)) - (k_2 - k_1) \ &\leq& k_1. \end{array}$$

If $t \in V \setminus U$, Lemma 1 and the definition of U imply

$$f(\gamma_{\eta}(t)) \leq f(\gamma(t)) - \eta(t) rac{\parallel f'(\gamma(t)) \parallel^2}{2} < k_1.$$

Mountain Pass Theorems without Palais-Smale conditions

Therefore, $d \approx 0$.

Hence, there exists $t_0 \in U$ such that $\parallel f'(\gamma(t_0)) \parallel \approx 0$, that is,

$$\exists t_0 \in {}^\star[0,1] \ \Big(\ f(\gamma(t_0)) pprox k_1 \wedge \ \parallel f'(\gamma(t_0)) \parallel pprox 0 \ \Big).$$

Mountain Pass Theorems without Palais-Smale conditions

Mountain Pass Theorem without Palais-Smale conditions in finite dimension: Let E be a finite dimensional real Banach space, $x_1,x_2\in E$ and $f\in C^1(E,\mathbb{R}).$ Suppose that

- 1. f satisfies the mountain pass geometry with respect to x_1 and x_2 ;
- 2. $\Gamma:=\{\gamma\in C([0,1],E): \gamma(0)=x_1\wedge\gamma(1)=x_2\}$ and $k_1:=\inf_{\gamma\in\Gamma}\max_{t\in[0,1]}f(\gamma(t));$
- 3. there exists $s \in \mathbb{R}^+$ such that $\parallel x_2 x_1 \parallel < s$ and if $\parallel x x_1 \parallel \geq s$ then $f(x) < k_1$.

Then k_1 is a critical value of f.

Mountain Pass Theorems without Palais-Smale conditions

Proof: Let $\gamma_0 \in {}^{\star}\Gamma$ be such that $k_1 \leq \max_{t \in {}^{\star}[0,1]} f(\gamma_0(t)) \approx k_1$.

We may assume that $\gamma_0(^*[0,1]) \subseteq \overline{\mathrm{B}}_s(x_1)$ and, since E is finite dimensional, $\gamma_0(^*[0,1]) \subseteq ns(^*E)$.

Therefore, by Lemma 2, there exists $t_0 \in {}^\star[0,1]$ such that

$$f(\gamma_0(t_0)) \approx k_1 \wedge \| f'(\gamma_0(t_0)) \| \approx 0.$$

The continuity of f and f' shows that $st(\gamma_0(t_0))$ is a critical point with value k_1 . \Box

Mountain Pass Theorems without Palais-Smale conditions

Example: Let $h(x,y)=[1-(x^2+y^2)]\exp^{-(x^2+y^2)}\arctan(x^2+y^2)$ for all $(x,y)\in\mathbb{R}^2.$

Clearly h is a C^1 functional, h(0,0)=0, h(1,0)=0,

$$\inf_{\|(x,y)\|=rac{1}{2}}h(x,y)>k_0:=\max\{h(0,0),h(1,0)\}=0$$

and

$$(x,y) \not\in B_2(0,0) \Rightarrow h(x,y) < 0 < k_1.$$

However, h does not satisfy (PS) condition:

$$(h(n,n))_{n\in\mathbb{N}}$$
 is bounded $\wedge \qquad rac{\partial h}{\partial x}(n,n) o 0 \qquad \wedge \qquad rac{\partial h}{\partial y}(n,n) o 0$

 $((n,n))_{n\in\mathbb{N}}$ does not contain a convergent subsequence.

Mountain Pass Theorems without Palais-Smale conditions

Mountain Pass Theorem without Palais-Smale conditions in Hilbert spaces: Let H be a real Hilbert space, $x_1, x_2 \in H$ and $f \in C^1(H, \mathbb{R})$. Suppose that

- 1. f satisfies the mountain pass geometry with respect to x_1 and x_2 ;
- 2. $\Gamma:=\{\gamma\in C([0,1],H): \gamma(0)=x_1\wedge\gamma(1)=x_2\}$ and $k_1:=\inf_{\gamma\in\Gamma}\max_{t\in[0,1]}f(\gamma(t));$
- 3. $\exists \gamma \in {}^{\star}\Gamma \ [\ \gamma({}^{\star}[0,1]) \subseteq ns({}^{\star}H) \ \land \ \max_{t \in {}^{\star}[0,1]} f(\gamma(t)) \approx k_1 \].$

Then k_1 is a critical value of f.

Mountain Pass Theorems without Palais-Smale conditions

Example: Let $h(x,y)=[1-(x^2+y^2)]\exp^{-(x^2+y^2)}\arctan(x^2+y^2)$ for all $(x,y)\in\mathbb{R}^2.$

We saw that this function satisfies the mountain pass geometry with respect to (0,0) and (1,0) and

$$(x,y) \not\in B_2(0,0) \Rightarrow h(x,y) < 0.$$

Since $k_1>0$, there exists $\gamma\in{}^\star\Gamma$ such that

$$\max_{t\in^{\star}[0,1]}h(\gamma(t))pprox k_1 \quad \wedge \quad \gamma(^{\star}[0,1])\subseteq \mathrm{B}_2(0,0)\subseteq ns(^{\star}\mathbb{R}^2).$$

Hence, h satisfies all the conditions of our theorem but do not satisfy (PS) condition.

- Antonio Ambrosetti and Paul H. Rabinowitz Dual variational methods in critical point theory and applications, J. Funct. Anal., 14, 349-381, 1973.
- Amaria do Rosário Grossinho and Stepan Agop Tersian An introduction to minimax theorems and their applications to differential equations, Nonconvex Optimization and Its Applications. 52. Dordrecht: Kluwer Academic Publishers. xii, 2001.
- ♣ Youssef Jabri The mountain pass theorem. Variants, generalizations and some applications, Encyclopedia of Mathematics and Its Applications 95.

 Cambridge: Cambridge University Press. xii, 2003.

Natália Martins

Natália Martins, Maria João Borges, Vítor Neves, Manfred Wolff e João Teixeira Mountain Pass Theorems without the Deformation Lemma. I. Finite dimensional spaces, Cadernos de Matemática CM05/I-36, Departamento de Matemática da Universidade de Aveiro, 2005.

Natália Martins 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18