A GENERAL FATOU LEMMA Peter A. Loeb, Yeneng Sun

SETUP

Let Ω be a non-empty internal set, \mathcal{A}_0 an internal algebra on Ω , and \mathcal{A} the σ -algebra generated by \mathcal{A}_0 .

Let J be a finite or countably infinite set. $\forall j \in J$, let $(\Omega, \mathcal{A}_0, \mu_{0j})$ and $(\Omega, \mathcal{A}, \mu_j)$ be internal and Loeb probability spaces.

From these generate $\bar{\mu}$ so that $\forall j, \mu_j << \bar{\mu}$. We may assume \mathcal{A} is $\bar{\mu}$ -complete.

Let Y be a separable Banach lattice, and X is its dual Banach space with the natural dual order (denoted by \leq) and lattice norm (i.e., $|x| \leq |z| \Rightarrow ||x|| \leq ||z||$).

Let P be any probability measure on (Ω, \mathcal{A}) .

Definition. A sequence $\{g_n\}_{n=1}^{\infty}$ of functions from (Ω, \mathcal{A}, P) to X is said to be weak* P-tight, if for any $\varepsilon > 0$, there exists a weak* compact set K in X such that for all $n \in \mathbb{N}$, $P(g_n^{-1}(K)) > 1 - \varepsilon$.

Definition. For each $x \in X$, $y \in Y$, the value of the linear functional x at y will be denoted by $\langle x, y \rangle$. A function f from (Ω, \mathcal{A}, P) to X is said to be Gelfand P-integrable if for each $y \in Y$, the real-valued function $\langle f(\cdot), y \rangle$ is integrable on (Ω, \mathcal{A}, P) .

Proposition. If $f:(\Omega,\mathcal{A},P)\longmapsto X$ is Gelfand P-integrable, then there is a unique $x\in X$ such that $\langle x,y\rangle=\int_{\Omega}\langle f(\omega),y\rangle\;P(d\omega)$ for all $y\in Y$. (That element x, called the Gelfand integral, will be denoted by $\int_{\Omega}f\;dP$.)

Proof. (Well-known): Let T(y) be the element of $L^1(P)$ given by $\omega \longmapsto \langle f(\omega), y \rangle$. By Closed Graph Theorem, $||T|| < \infty$, so $\left| \int_{\Omega} \langle f(\omega), y \rangle \ P(d\omega) \right| \leq \int_{\Omega} |\langle f(\omega), y \rangle| \ P(d\omega) \leq ||T|| \ ||y|| \ . \ \square$

Simplifying Assumption: \exists an increasing (perhaps constant) sequence $y_m \ge 0$ in Y with $\lim_{m\to\infty} \langle x, y_m \rangle = ||x|| \ \forall x \ge 0$ in X.

The assumption is valid when $X = \ell^1$ or $X = \mathcal{M}(S)$, the space of finite, signed Borel measures on a second-countable, locally compact Hausdorff space S.

The main result, stated here for a sequence of functions $g_n \ge 0$, is generalized with the assumption that each $n \in \mathbb{N}$, $g_n \ge f_n$ where the sequence $\langle f_n \rangle$ has appropriate properties.

Theorem. Let $\{g_n\}_{n=1}^{\infty}$ be a sequence of nonnegative functions from Ω to X.

Suppose $\forall j \in J$, each function g_n is Gelfand integrable on $(\Omega, \mathcal{A}, \mu_j)$, and the Gelfand integrals $\int_{\Omega} g_n d\mu_j$ have a weak* limit $a_j \in X$ as $n \to \infty$.

Then $\exists g: \Omega \mapsto X$ such that

- 1. for $\bar{\mu}$ -a.e. $\omega \in \Omega$, $g(\omega)$ is a weak* limit point of $\{g_n(\omega)\}_{n=1}^{\infty}$,
- **2.** the function g is Gelfand μ_j -integrable with $\int_{\Omega} g d\mu_j \leq a_j$ for each $j \in J$;
- **3.** the integral $\int_{\Omega} \langle g, y \rangle d\mu_j = \langle a_j, y \rangle$ for any $y \in Y$ and $j \in J$ for which $\{\langle g_n, y \rangle\}_{n=1}^{\infty}$ is uniformly μ_j -integrable;
- **4.** In particular, $\int_{\Omega} g \ d\mu_j = a_j$ for any $j \in J$ for which the sequence $\{\|g_n\|\}_{n=1}^{\infty}$ is uniformly μ_j -integrable.

Corollary. Let $\{f_n\}_{n=1}^{\infty}$ be a sequence of \mathcal{A} -measurable functions from Ω to a complete separable metric space Z.

Assume $\forall j \in J$, $\{\mu_j f_n^{-1}\}_{n=1}^{\infty}$ converges weakly to a Borel probability measure ν_j .

Then, there is an \mathcal{A} -measurable function f from Ω to Z such that $f(\omega)$ is a limit point of $\{f_n(\omega)\}_{n=1}^{\infty}$ for $\bar{\mu}$ -a.e. $\omega \in \Omega$, and $\mu_j f^{-1} = \nu_j$ for each $j \in J$.

Corollary. A simplified version of our theorem holds for functions taking values in \mathbb{R}^p , where the norm of each $x=(x^1,\ldots,x^p)$ in \mathbb{R}^p is given by $\sum_{i=1}^p |x^i|$.

For a more general theorem, the following consequence of the Simplifying Assumption about X must be added to the hypotheses.

Claim. $\forall j \in J, \{g_n\}_{n=1}^{\infty}$ is weak* μ_j -tight.

Proof. By an argument of H. Lotz using the Monotone Convergence Theorem,

$$\forall j \in J, \forall n \in \mathbb{N}, \left\| \int_{\Omega} g_n(\omega) d\mu_j \right\|$$

$$= \lim_{m \to \infty} \left\langle \int_{\Omega} g_n(\omega) d\mu_j, y_m \right\rangle$$

$$= \lim_{m \to \infty} \int_{\Omega} \left\langle g_n(\omega), y_m \right\rangle d\mu_j$$

$$= \int_{\Omega} \lim_{m \to \infty} \left\langle g_n(\omega), y_m \right\rangle d\mu_j = \int_{\Omega} \|g_n(\omega)\| d\mu_j.$$

The Gelfand integrals $\int_{\Omega} g_n d\mu_j$ converge in the weak*-topology, so by the Uniform Boundedness Principle $\exists M_j > 0$ such that $\forall n \in \mathbb{N}, ||\int_{\Omega} g_n d\mu_j|| \leq M_j$. Since

$$\forall n, k \in \mathbb{N}, \int_{\{\|g_n(\omega)\| \ge k\}} \|g_n\| d\mu_j \le M_j,$$

$$\mu_{i}\left(\left\{\omega\in\Omega:\left\|g_{n}\left(\omega\right)\right\|\geq k\right\}\right)\leq M_{i}/k.\ \square$$

EXAMPLES

We have an example showing that even for a single measure μ , there may be no function g if μ is Lebesgue measure on [0,1].

Here, we let $X = \ell^1$. An example of Liapounoff constructs an $h : [0,1] \to \ell^1$ such that for no $E \subset [0,1]$ is it true that for coordinate-wise integration,

$$\int_E h(t) dt = \frac{1}{2} \int_{[0,1]} h(t) dt.$$

We use the Liapounoff Theorem and $\forall n$ the first n components of h, to construct a sequence $g_n \geq 0$ satisfying the conditions of our theorem, but g can not exist by the Liapounoff example.

A modification of this first example shows that the corollary, even for \mathbb{R}^2 , can fail when the measures μ_j are multiples of Lebesgue measure on [0,1].

Lemma 1. Let X be a standard, separable metric space with metric ρ and the Borel σ -algebra \mathcal{B} . Fix $x_0 \in X$.

Let P_0 be an internal probability measure on (Ω, \mathcal{A}_0) with Loeb space (Ω, \mathcal{A}, P) .

Let h be an internal, measurable map from (Ω, \mathcal{A}_0) to $({}^*X, {}^*\mathcal{B})$.

Let ν be the internal probability measure on (*X, *B) such that $\nu = P_0 h^{-1}$.

Fix a standard tight probability measure γ on (X, \mathcal{B}) such that $\gamma \simeq \nu$ in the nonstandard extension of the topology of weak convergence of Borel measures on X.

Then the standard part ${}^{\circ}h(\omega)$ exists for P-almost all $\omega \in \Omega$ (where $h(\omega)$ is not near-standard, set ${}^{\circ}h(\omega) = x_0$). This function ${}^{\circ}h$ is measurable, and $\gamma = P({}^{\circ}h)^{-1}$.

Proof. For every standard, bounded, continuous real-valued f on X,

$$\int_{*X} *f \ d\nu \simeq \int_{*X} *f \ d^*\gamma = \int_X f \ d\gamma.$$

Let $K_0 = \emptyset$, and $\forall n \in \mathbb{N}$, let $K_n \supseteq K_{n-1}$ be compact in X with $\gamma(K_n) > 1 - \frac{1}{2n}$. $\forall j \in \mathbb{N}$,

$$V_n^j := \{ x \in X : \rho(x, K_n) < \frac{1}{j} \}$$

has the property that $\nu({}^*V_n^j) > 1 - \frac{1}{n}$, whence $\exists H \in {}^*\mathbb{N}_{\infty}$, with $\nu(V_n^H) > 1 - \frac{1}{n}$.

Now the monad $m(K_n) := \bigcap_{j \in \mathbb{N}} V_n^j$, and

$$h^{-1}[m(K_n)] = h^{-1}[\bigcap_{j \in \mathbb{N}} V_n^j] = \bigcap_{j \in \mathbb{N}} h^{-1}[V_n^j]$$

is measurable and $P\left(h^{-1}\left[m(K_n)\right]\right) \geq 1 - \frac{1}{n}$.

The standard part h is defined on $h^{-1}[m(K_n)]$, is measurable there, and takes values in K_n .

Therefore, h defines a measurable mapping from $\bigcup_n h^{-1}[m(K_n)]$ to $\bigcup_n K_n$, and

$$P\left(\bigcup_n h^{-1}[m(K_n)]\right) = 1.$$

Set $h = x_0$ on $\Omega \setminus \bigcup_n h^{-1}[m(K_n)]$.

With this extension, h is a measurable mapping defined on (Ω, \mathcal{A}, P) .

Finally, given a bounded, continuous, real-valued function f on X,

$$\int_{X} f \, dP(^{\circ}h)^{-1} = \int_{\Omega} f \circ ^{\circ}h \, dP$$

$$= \int_{\Omega} \operatorname{st}(^{*}f \circ h) \, dP$$

$$\simeq \int_{\Omega}^{*} f \circ h \, dP_{0} = \int_{*X}^{*} f \, d\nu$$

$$\simeq \int_{*X}^{*} f \, d^{*}\gamma = \int_{X} f \, d\gamma.$$

It follows that $\gamma = P(^{\circ}h)^{-1}$ on X. \square

Lemma 2. Let (X, ρ) be a separable metric space with the Borel σ -algebra \mathcal{B} .

Let P_0 be an internal probability measure on (Ω, \mathcal{A}_0) with Loeb space (Ω, \mathcal{A}, P) .

Fix an internal sequence $\{h_n : n \in {}^*\mathbb{N}\}$ of measurable maps from (Ω, \mathcal{A}_0) to $({}^*X, {}^*\mathcal{B})$.

Fix a nonempty compact $K \subseteq X$.

Then $\exists H \in {}^*\mathbb{N}_{\infty}$ and a P-null set $S \subset \Omega$ such that

if $n \leq H$ in \mathbb{N}_{∞} , while $\omega \notin S$, and $h_n(\omega)$ has standard part in K,

then for any standard $\varepsilon > 0$, there are infinitely many limited $k \in \mathbb{N}$ for which $\rho(h_k(\omega), h_n(\omega)) < \varepsilon$.

Proof. Given $l \in \mathbb{N}$ cover K with n_l open balls of radius 1/l. Let B(l,j) denote the nonstandard extension of the jth ball.

For each $i \in {}^*\mathbb{N}$, set $A_i(l,j) := \{\omega \in \Omega : h_i(\omega) \notin B(l,j)\}$.

$$\forall k \in \mathbb{N}$$
, choose $m_k(l,j) \in {}^*\mathbb{N}_{\infty}$ so that
$$P\left(\cap_{i=k}^{m_k(l,j)} A_i(l,j)\right) = P\left(\cap_{i=k,i\in\mathbb{N}}^{\infty} A_i(l,j)\right).$$

Set

$$S_k(l,j) := \left(\bigcap_{i=k,i\in\mathbb{N}}^{\infty} A_i(l,j)\right) \setminus \bigcap_{i=k}^{m_k(l,j)} A_i(l,j).$$

Fix $H \in {}^*\mathbb{N}_{\infty}$ with $H \leq m_k(l, j)$ $\forall l \in \mathbb{N}, \forall j \leq n_l$, and $\forall k \in \mathbb{N}$.

Let S be the P-null set formed by the union of the set $S_k(l,j) \ \forall l \in \mathbb{N}, \ \forall j \leq n_l, \ \forall k \in \mathbb{N}.$

Fix $n \in {}^*\mathbb{N}_{\infty}$ with $n \leq H$, and suppose $\operatorname{st}(h_n(\omega)) \in K$ but $\exists l \in \mathbb{N}$ for which there are at most finitely many limited $k \in \mathbb{N}$ for which ${}^*\rho(h_k(\omega), h_n(\omega)) < 2/l$.

Then for some $j \leq n_l$, $h_n(\omega) \in B(l,j)$, and by assumption there is a limited $k \in \mathbb{N}$ such that for all limited $i \geq k$, $h_i(\omega) \notin B(l,j)$. It follows that $\omega \in S_k(l,j) \subseteq S$. \square

Idea of Parts of Theorem's Proof.

Replace sequence $\{g_n\}$ with a subsequence so $\forall j \in J$, $\mu_j g_n^{-1}$ converges weakly to γ_j .

Lift and extend $\{g_n\}$ to $\{h_n\}$ and work with measures $\mu_{0j}h_n^{-1}$. Use Lemma 1 to show $\exists H \in {}^*\mathbb{N}_{\infty}$ so $g(\omega) := ({}^{\circ}h_H)(\omega)$ exists for $\overline{\mu}$ -a.e. $\omega \in \Omega$ and $\gamma_j = \mu_j ({}^{\circ}h_H)^{-1} \ \forall j \in J$.

Use Lemma 2 to show that for $\bar{\mu}$ -a.e. $\omega \in \Omega$, $g(\omega)$ is a weak* limit point of $\{g_n(\omega)\}_{n=1}^{\infty}$.