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• M � <

Friedman’s 14th Problem: Let M |= PA

and let T be a completion of PA. Is there

N |= T such that M � <∼= N � <?

Pabion’s Theorem: For each uncountable

cardinal κ, M � < is κ-saturated iff M is

κ-saturated.

Bovykin, Kaye 02: Various partial results.
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• M �+, M �×

Tennenbaum’s Theorem: If M is nonstan-

dard, then +M and ×M are not computable.

For countable M , N , M � + ∼= N � + iff

M �× ∼= N �×.

Each M �+ has 2ℵ0 nonisomorphic expan-

sions to models of PA.

Theorem (RK, Nadel, Schmerl): There are

M, N such that M �+ ∼= N �+ and M �× 6∼=
N �×.
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• SSy(M) = {X ∩ N : X ∈ Def(M)}

For every M |= PA, (N, X) |= WKL0.

Scott Set Problem: Let (N, X) |= WKL0. Is

there M |= PA such that SSy(M) = X?

Kanovei’s Question: Is there a Borel model

M such that SSy(M) = P(N)?
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• Lt(M) = ({K : K ≺M},≺)

Mills’ Theorem: For every distributive lat-

tice L (satisfying certain immediate neces-

sary conditions) there is M |= PA such that

Lt(M) ∼= L.

Question: Is there a finite lattice which

cannot be represented as Lt(M)?
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• {Th(M,Cod(M/I)) : I ⊆end M}

For I ⊆end M ,

Cod(M/I) = {X ∩ I : X ∈ Def(M)}

I ⊆end M is strong iff (M,Cod(M/I)) |= ACA0

A countable recursively saturated M is arith-

metically saturated iff N is strong in M

(RK, Schmerl 95): Let T be a completion

of PA. If M , N are countable arithmetically

saturated models of T , then t.f.a.e:

(1) M ∼= N

(2) Lt(M) ∼= Lt(N)

(3) Aut(M) ∼= Aut(N)

Key: If M is arithmetically saturated, then

Aut(M) and Lt(M) know SSy(M).
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• Aut(M)

Schmerl’s Theorem: Let A be a linearly

ordered structure. There is M |= PA such

that Aut(M) ∼= Aut(A).

• If M |= PA is countable and recursively sat-

urated, and A is a countable linearly or-

dered structure, then there is K≺end M such

that Aut(K,Cod(M/K)) ∼= Aut(A).

• Th(Aut(M)) is undecidable.
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• It all works for PA∗

• Nonstandard satisfaction classes

S ⊆M is a truth extension iff for all ϕ(x)

(M, S) |= ∀x[〈pϕq , x〉 ∈ S ←→ ϕ(x)].

• Let M |= PA be countable. Then, M is

recursively saturated iff M has a truth ex-

tension such that (M, S) |= PA∗.

• “Kossak’s conjecture”

(model theory of countable recursively sat-

urated models of PA)= (model theory of

(M, S) |= PA∗, where S is a truth extension

for M)
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• Definable sets, inductive sets, classes

Ind(M) = {X ⊆M : (M, X) |= PA∗}

Class(M) = {X ⊆M : ∀a ∈M a∩X ∈ Def(M)}

Proposition. For every model M of PA∗,

Def(M) ⊆ Ind(M) ⊆ Class(M).

Proposition. If M is countable, then

Def(M) ⊂ Ind(M) ⊂ Class(M).
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• Undefinable inductive sets

Theorem. (Simpson 74) Let M |= PA∗ be

countable. There is X ∈ Ind(M) such that ev-

ery element of M is definable in (M, X). (Co-

hen forcing in arithmetic)

Theorem. (Enayat 88) There are nonstan-

dard models M |= PA such that for every X ∈
Class(M) \Def(M), every element of M is de-

finable in (M, X).

Theorem. (Schmerl 05) Let {An}n<ω be a

collection of inductive subsets of a countable

model M . Then, there is X ∈ Ind(M) such

that An ∈ Def(M, X), for each n. (Forcing

with perfect trees)
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• A digression

Definition. A subset of X a model M is large

if every element of M is definable in (M, a)a∈X.

Proposition. All unbounded definable sets are

large.

Lemma. (Schmerl) For every unbounded X ∈
Def(M) and every a ∈ M there are an un-

bounded definable Y ⊆ X and a Skolem term

t(x) such that for all x ∈ Y , t(x) = a.

Proposition. Every countable recursively sat-

urated model of PA has an unbounded induc-

tive subset which is not large.
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• Classes and reals

Keisler, Schmerl 91:

M −→ Q(M) −→ RM

RM = {D⊆end Q(M) : D ∈ Def(M)}

RM −→ R̂M Scott completion

A cut I of an ordered field F is Dedekindean if

for each positive δ ∈ F there is x ∈ I such that

x + δ > I.

A field F is Scott complete is every Dedekindean

cut of F has a supremum in F .

(D. Scott, 69) Every ordered field field F has

a unique extension F̂ which is Scott complete

and F is dense in F̂ .
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X ∈ Class(M) 7→ Σi∈X2−(i+1)

For each a ∈M , sa = Σi∈a∩X2−(i+1).

IX = {x ∈ RM : ∃a ∈M(x < sa)} is Dedekindean.

sup(IX) = r(X).

Proposition. For any model M of PA, RM is

real closed and |R̂M | = |Class(M)|.

Proposition. RM is Scott complete iff

Class(M) = Def(M).
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Definition. M is rather classless if Def(M) =

Class(M)

Theorem. (Schmerl 81) Let T be a com-

pletion of PA∗ in a countable language L. Then,

for every cardinal κ with cf(κ) > ℵ0, T has a

κ-like rather classless model.

Theorem. (Kaufmann 77 (♦), Shelah 78)

There is a recursively saturated rather classless

ω1-like model of PA.

Theorem. (Schmerl 02) For all regular λ <

µ, there is rather classless M |= PA such that

|M | = µ and |M | is λ-saturated.
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• Conservative extensions

Definition. The extension M ≺ N is con-

servative if for every X ∈ Def(N), X ∩ M ∈
Def(M).

Theorem. (MacDowel-Specker 61) Every

model of PA∗ for countable language has a con-

servative elementary (end) extension.

Theorem. (Mills 78) Every countable non-

standard model M |= PA has an expansion to a

model of PA∗ with no conservative extension.

Theorem. (Enayat 06) There is X ⊆ P(N)

such that (N, X) has no conservative extension.
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Let T be a completion of PA.

p(v) is unbounded if (v > t) ∈ p(v) for each
closed Skolem term t.

Theorem. (Gaifman, 65-76) For p(v) ∈ S1(T )
t.f.a.e.

• p(v) is minimal

• p(v) is indiscernible and unbounded

• p(v) is rare and end-extensional

• p(v) is selective and definable

• p(v) is 2-indiscernible and unbounded [Schmerl]

• p(v) is strongly indiscernible and unbounded
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• If p(v) is a minimal type of Th(M), then

for every linearly ordered set (I, <) M has a

canonical I-extension generated over M by

a set of (indiscernible) elements realizing

p(v).

• A problem: If M ≺end N and N is recur-

sively saturated, then the extension is not

conservative.

• A way out: Minimal types of Th(M, S),

where S is a truth extension of M .
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