Nonstandard Methods for Freimans Inverse Problems

Renling Jin

College of Charleston

Appetizers:

Nonstandard proofs of some well-known theorems in combinatorial number theory

Let (T, \leq_T) be a tree and T_{α} be the α -th level of T for every ordinal α . The height of T is the least ordinal α such that $T_{\alpha} = \emptyset$.

König's Lemma Suppose T is an infinite tree with height ω (the first infinite ordinal). Suppose T_n is finite for each $n \in \mathbb{N}$. Then T must have an infinite path.

Proof Let $T = \bigcup_{n \in \mathbb{N}} T_n$ where T_n is the n-th level of T. Then $^*T = \bigcup_{n \in ^*\mathbb{N}} ^*T_n$. Note that $^*T_n = T_n$ for every standard n. Let H be a hyperfinite integer and $t_H \in T_H$. Then $\{t \in T : t \leq ^*T t_H\}$ is an infinite path of T.

Ramsey's Theorem Given $f : [\mathbb{N}]^2 \mapsto 2$, then there is an infinite set $A \subseteq \mathbb{N}$ such that f is a constant function on $[A]^2$.

Proof Suppose the theorem is not true. Let H be a hyperfinite integer. For i = 0, 1 let $A_i \subseteq \mathbb{N}$ be maximal such that $f \upharpoonright [A_i \cup \{H\}]^2 \equiv i$. By the transfer principle, there is $c \in \mathbb{N} \setminus (A_0 \cup A_1)$ such that $f \upharpoonright [A_i \cup \{c\}]^2 \equiv i$. Now f(c, H) = i violates the maximality of A_i .

Background Music:

Freiman's Inverse Phenomenon

If A + A is "small", then A must have some arithmetic structure.

Let a.p. be an abbreviation for "arithmetic progression" and b.p. be an abbreviation for the union of two arithmetic progressions I and J with the same difference such that I + I, I + J, and J + J are pairwise disjoint.

.

Let A be a finite subset of \mathbb{N} and |A| = k. Suppose c is a constant independent of k. If

$$|A + A| \leqslant ck$$

then c is called a doubling constant of A.

Freiman's "Great" Theorem Let $c \ge 2$ be a constant. There exists another constant c' such that if |A| = k and

$$|A + A| \leqslant ck,$$

then A is a subset of a $\lfloor c - 1 \rfloor$ -dimensional arithmetic progression P and $|P| \leq c'k$.

Well-known Fact

For every finite A, $|A + A| \ge 2k - 1$ and if |A + A| = 2k - 1, then A is an a.p.

Freiman's "Little" Theorem Let |A| = k.

- (1) If k > 2 and |A+A| = 2k-1+b for $0 \le b \le k-3$, then A is a subset of an a.p. of length k+b.
- (2) If k > 6 and |A + A| = 3k 3, then A is either a subset of an a.p. of length 2k 1 or a b.p.
- (3) If k > 10 and |A + A| = 3k 2, then A is either a subset of an a.p. of length 2k + 1 or a subset of a b.p. of (combined) length k + 1.
- **Example** (a) Let $A = [0, k-2] \cup \{k+b-1\}$ for k > 2 and b < k-2. Then |A| = k, |A+A| = 2k-1+b and A is a subset of an a.p. of length k+b. Hence the upper bound of the length of a.p. containing A in (1) is optimal.
- (b) Let $A = [0, k-3] \cup \{k-1, 2k-2\}$ for k > 6. Then |A+A| = 3k-3 and A is a subset of an a.p. of length 2k-1. Note that A is not a subset of a b.p. of reasonable length. Let $A = [0, k-2] \cup \{k^2\}$. Then |A| = k, |A+A| = 3k-3, and A is a b.p. Note that A is not an a.p. of reasonable length.

Freiman's 3k-3+b **Conjecture** There is a K>0 such that if |A|=k>K and |A+A|=3k-3+b for $0 \le b \le \frac{k}{3}-3$, then A is either a subset of an a.p. of length 2k-1+2b or a subset of a b.p. of length k+b.

It can be shown that the upper bound of the length of the a.p. and the upper bound of the length of the b.p. containing A in the conjecture above are optimal.

Example Let k = 3n, m > 2n, and $A = [0, n - 1] \cup [m, m + n - 1] \cup [2m, 2m + n - 1]$. Then |A| = k,

$$|A + A| = 10n - 5 = 3k - 3 + \frac{k}{3} - 2,$$

and A is neither a subset of an a.p. of reasonable length nor a subset of a b.p. of reasonable length.

For an infinite set $A \subseteq \mathbb{N}$ let $A(n) = |A \cap [1, n]|$. The lower asymptotic density of A is defined by

$$\underline{d}(A) = \liminf_{n \to \infty} \frac{A(n)}{n}.$$

Kneser's Theorem Let $A, B \subseteq \mathbb{N}$ be infinite. If $\underline{d}(A+B) < \underline{d}(A) + \underline{d}(B)$, then there exists a g > 0 and $F, F' \subseteq [0, g-1]$ such that

(1)
$$A \subseteq F + g\mathbb{N}$$
 and $B \subseteq F' + g\mathbb{N}$ and

$$(2) \underline{d}(A) + \underline{d}(B) > \frac{|F| + |F'|}{g} - \frac{1}{g}.$$

Remark The theorem above indicates that if B = A and $\underline{d}(A + A) < 2\underline{d}(A)$, then A is a large subset of the union of |F|-a.p.'s of difference g.

Note that in Freiman's theorems, the structure can be pinpointed only when the doubling constant is ≤ 3 . However, if A is infinite, then either A has nice arithmetic structure or $\underline{d}(A+A) \geq 2\underline{d}(A)$, which implies that we can find an increasing sequence a_n such that

$$(A+A)(2a_n) \geqslant 4A(a_n) - \epsilon$$

for any arbitrary $\epsilon > 0$.

Main Course:

Nonstandard Cuts

An infinite proper initial segment U of \mathbb{N} is called a cut if $U+U\subseteq U$ (or U is a convex additive semi-group of non-negative integers). We often write n< U for $n\in U$ and write n>U for $n\in \mathbb{N}\setminus U$.

Example \mathbb{N} is the smallest cut. Let H be a hyperfinite integer. Then

$$U_H = \bigcap_{n \in \mathbb{N}} [0, \frac{H}{n}]$$

is the largest cut below H.

Note that if $x < U_H$, then $\frac{x}{H} \approx 0$ and if $x > U_H$, then $\frac{x}{H} > \epsilon$ for some standard positive ϵ .

Proposition Let U be a cut and $A \subseteq {}^*\mathbb{N}$ be internal.

- (1) Suppose $g \in \mathbb{N}$ and $G \subseteq [0, g-1]$. If $A \cap U \subseteq G + g * \mathbb{N}$, then there is H > U such that $A \cap [0, H] \subseteq G + g * \mathbb{N}$.
- (2) Let $\alpha \in \mathbb{R}$. Suppose for every $x \in U$ there is $y \in A$ with x < y < U such that $\frac{(A+A)(y)}{y} \geqslant \alpha$. Then there is a H > U in A such that $\frac{(A+A)(H)}{H} \geqslant \alpha$.

Proof The proposition follows from the fact that a set definable by a first-order formula with internal parameters is internal.

Lower U-Density of A

Let U be a cut and $A \subseteq {}^*\mathbb{N}$ be internal. The lower U-density of A is defined by

$$\underline{d}_{U}(A) = \sup \left\{ \inf \left\{ st \left(\frac{A(x)}{x} \right) : m < x < U \right\} : m < U \right\}.$$

Note that for $A \subseteq \mathbb{N}$ we have $\underline{d}_{\mathbb{N}}(^*A) = \underline{d}(A)$.

From now on we are only interested in the cut of the form U_H for some hyperfinite integer H. When H is clearly given, we will drop the subscript H and simply write U for U_H .

Key Lemma Let H be hyperfinite and $A \subseteq [0, H]$ be internal such that $0 \in A$ and $0 < \underline{d}_U(A) = \alpha < \frac{2}{3}$. Then one of the following is true.

- (1) There is g > 1 such that $A \cap U \subseteq gU$.
- (2) There is g > 1 and $a \in [1, g 1]$ with $2a \neq g$ such that $A \cap U \subseteq gU \cup (a + gU)$.
- (3) There is a positive standard real ϵ such that for every x < U, there is $y \in A$ with x < y < U and

$$\frac{(A+A)(2y)}{2y} \geqslant \frac{3}{2}\alpha + \epsilon.$$

The lemma above is a weak version of Kneser's theorem for U.

Theorem There exist $K \in \mathbb{N}$ and $\epsilon \in \mathbb{R}$, $\epsilon > 0$, such that if |A| = k > K and |A + A| = 3k - 3 + b for $0 \le b \le \epsilon k$, then A is either a subset of an a.p. of length 2k - 1 + 2b or A is a subset of a b.p. of length k + b.

Idea of Proof

First Step Suppose the theorem is not true. For each $n \in \mathbb{N}$ there is a counter-example A_n with $|A_n| = k_n > n$ and

$$|A_n + A_n| - 3k_n - 3 < \frac{1}{n}k_n.$$

Let N be a hyperfinite integer such that $A = A_N$ is a counter-example of the theorem with |A| being hyperfinite and $\frac{|A+A|}{|A|} \approx 3$. Without loss of generality we can assume

$$0 = \min A$$
, $H = \max A$, $gcd(A) = 1$, and $st\left(\frac{|A|}{H+1}\right) = \alpha > 0$.

Note that $\alpha \leq \frac{1}{2}$. We can also assume that α is the least number such that there is a hyperfinite counter-example of the theorem $A \subseteq [0, H]$ for some hyperfinite number H with $0, H \in A$, $\gcd(A) = 1$, and $st\left(\frac{|A|}{H+1}\right) = \alpha$.

Second Step Let $\beta = \underline{d}_U(A)$.

Case 1: $\beta \geqslant \frac{2}{3}$. Then there is N > U in A such that $[0, N] \subseteq A + A$ and $st\left(\frac{A(N, H)}{H - N + 1}\right) < \alpha$.

Case 2: $0 < \beta < \frac{2}{3}$. Then either (a) A + A has nice arithmetic structure in [0, N] for some N > U in A or (b) $(A + A)(2N) \geqslant (3 + \epsilon)A(N)$ for some N > U in A. If (a) is true, then we have a pan-handle to start a tedious verification process that A has the desired structure, which is not assumed to have. If (b) is true, then we can derive the conclusion that $\frac{|A+A|}{|A|} \geqslant 3 + \epsilon$ for some positive standard ϵ , which again leads to a contradiction.

Case 3: $\beta = 0$. Then we can consider the lower U-density of A from the right end of an interval [0, N] for some N > U in A instead.

Work in Progress

Improved Key Lemma Let H be hyperfinite, $A \subseteq [0, H]$ be internal, $0 \in A$, and $0 < \underline{d}_U(A) = \alpha < \frac{3}{8}$. Then one of the following is true.

- (1) There is g > 0 such that $A \cap U \subseteq gU$.
- (2) There is g > 0 and $a \in [1, g]$ such that $|\{0, a\}| + \{0, a\}| = 3 \mod g$ and

$$A \cap U \subseteq \{0, a\} + gU.$$

(3) There is g > 0 and $a, b \in [1, g - 1]$ such that $|\{0, a, b\} + \{0, a, b\}| = 5 \mod g$ and

$$A \cap U \subseteq \{0, a, b\} + gU.$$

(4) For every x < U there is $y \in A$ with x < y < U such that

$$(A+A)(2y) \geqslant \left(\frac{10}{3} + \epsilon\right)A(y).$$

Conjecture (hope to be settled soon) There is $K \in \mathbb{N}$ such that for any $0 < c < \frac{1}{3}$ and any A with |A| = k > K and

$$|A+A| = 3k - 3 + b$$

for $0 \le b \le ck$, A is either a subset of an a.p. of length 2k - 1 + 2b or a subset of a b.p. of length k + b.

Dessert:

Applications to Upper Asymptotic Density Problems

The upper asymptotic density of an infinite $A \subseteq \mathbb{N}$ is defined by

$$\overline{d}(A) = \limsup_{n \to \infty} \frac{A(n)}{n}.$$

What will be the structure of A when $\overline{d}(A+A)$ is small?

Fact Suppose $0 \in A$, gcd(A) = 1, and $\overline{d}(A) = \alpha \leq \frac{1}{2}$. Then $\overline{d}(A + A) \geqslant \frac{3}{2}\alpha$.

Example (1) If $A = 10\mathbb{N} \cup (3 + 10\mathbb{N})$, then $\overline{d}(A + A) = \frac{3}{2}\overline{d}(A)$.

(2) If

$$A = \bigcup_{n \in \mathbb{N}} [(1 - \alpha)2^{2^n}, 2^{2^n}]$$

for $\alpha \leqslant \frac{1}{2}$, then $\overline{d}(A) = \alpha$ and $\overline{d}(A + A) = \frac{3}{2}\alpha$.

Theorem Let $A \subseteq \mathbb{N}$ be such that $0 \in A$, gcd(A) = 1, $0 < \overline{d}(A) = \alpha < \frac{1}{2}$ and $\overline{d}(A + A) = \frac{3}{2}\alpha$. Then one of the following is true.

- (1) There is g > 1 and $a \in [1, g 1]$ such that $A \subseteq g\mathbb{N} \cup (a + g\mathbb{N})$ and $\frac{2}{g} = \alpha$.
- (2) For any increasing sequence a_n of positive integers with $\lim_{n\to\infty} \frac{A(a_n)}{a_n} = \alpha$ there exist $0 \leqslant c_n \leqslant b_n \leqslant a_n$ such that

$$\lim_{n\to\infty} \frac{c_n}{a_n} = 0,$$

$$\lim_{n\to\infty} \frac{A(b_n, a_n)}{a_n - b_n + 1} = 1, \text{ and}$$

 $A \cap [c_n + 1, b_n - 1] = \emptyset$ for each $n \in \mathbb{N}$.

There are also results about the structure of A when $\overline{d}(A) \geqslant \frac{1}{2}$ and $\overline{d}(A+A)$ achieves the least possible value. But they are less interesting.

Bordes' Theorem Let $0 \in A$ and gcd(A) = 1. There is $\alpha_0 > 0$ such that if $\overline{d}(A) = \alpha \leqslant \alpha_0$ and $\overline{d}(A+A) = \sigma \overline{d}(A)$ for some σ with $\frac{3}{2} \leqslant \sigma < \frac{5}{3}$, then one of the following is true.

- (1) There is g > 1 and $a \in [1, g 1]$ such that $A \subseteq g\mathbb{N} \cup (a + g\mathbb{N})$ and $\alpha \geqslant \frac{6}{(4\sigma 3)g}$.
- (2) There are sequences $0 \leqslant c_n \leqslant b_n \leqslant a_n$ such that a_n is increasing, $\lim_{n\to\infty} \frac{A(a_n)}{a_n} = \alpha$, $A \cap [c_n+1, b_n-1] = \emptyset$ for every $n \in \mathbb{N}$,

$$\lim_{n \to \infty} \frac{c_n}{a_n - b_n} \leqslant \frac{2\sigma - 3}{2\sigma - 2} \left(\frac{1}{2\sigma - 2} - \alpha \right)^{-1},$$

and

$$\lim_{n \to \infty} \frac{A(b_n, a_n)}{a_n - b_n + 1} \geqslant \left(\frac{1}{2\sigma - 2} + \left(\frac{1}{2\sigma - 2} - \alpha\right) \lim_{n \to \infty} \frac{c_n}{a_n - b_n}\right).$$

We hope to prove a common generalization of both theorems soon.

Fortune Cookie Reading:

Questo non e' un pollo alla Cantonese.