RELATIVE SET THEORY

Karel Hrbacek

Department of Mathematics The City College of New York

This is a report on a work in progress. Partial results are in

- (1) Internally iterated ultrapowers, in: Nonstandard Models of Arithmetic and Set Theory, ed. by A. Enayat and R. Kossak, Contemporary Math. 361, AMS, Providence, R.I., 2004.
- (2) Stratified analysis?, in: Proceedings of the International Conference on Non standard Mathematics NSM2004, Aveiro 2004, 13 pages; accepted.

Hilbert:

We know sets before we know their elements.

Elementary theory:

We work in **ZFC** extended by a new binary "precedence" predicate \sqsubseteq .

 $y \sqsubseteq x$ reads "y is accessible to x". We also write $y \in \mathbf{v}(x)$ for $y \sqsubseteq x$ and read it "y is at level x".

We postulate: (o) $x \in \mathbf{v}(x)$

- (i) $y \in \mathbf{v}(x) \Rightarrow \mathbf{v}(y) \subseteq \mathbf{v}(x)$
- (ii) $(\forall x)(\exists n \in \mathbf{N})(\mathbf{v}(x) = \mathbf{v}(n))$
- (iii) $(\forall m, n \in \mathbf{N})(m \le n \Rightarrow m \in \mathbf{v}(n))$
- (iv) $(\forall m \in \mathbf{N})(\exists n \in \mathbf{N})(\mathbf{v}(m) \subset \mathbf{v}(n))$
- $(\mathbf{v}) \mathbf{v}(m) \subset \mathbf{v}(n) \Rightarrow (\exists k) (\mathbf{v}(m) \subset \mathbf{v}(k) \subset \mathbf{v}(n)).$

Transfer Principle. If $x_1, \ldots, x_n \in \mathbf{v}(\alpha) \cap \mathbf{v}(\beta)$ then $\mathcal{P}(x_1, \ldots, x_n; \mathbf{v}(\alpha))$ iff $\mathcal{P}(x_1, \ldots, x_n; \mathbf{v}(\beta))$.

The coarsest level containing x_1, \ldots, x_n is $\mathbf{v}(x_1, \ldots, x_n) = \mathbf{v}(\langle x_1, \ldots, x_n \rangle)$; hence $\mathcal{P}(x_1, \ldots, x_n; \mathbf{v}(x_1, \ldots, x_n))$ iff $\mathcal{P}(x_1, \ldots, x_n; \mathbf{v}(\alpha))$ provided $x_1, \ldots, x_n \in \mathbf{v}(\alpha)$.

Predicates of the form $\mathcal{P}(x_1,\ldots,x_n;\mathbf{v}(x_1,\ldots,x_n))$ are called *acceptable*.

(Previously defined acceptable predicates may occur in \mathcal{P} .)

De finition Principle. If \mathcal{P} is acceptable then $B := \{x \in A : \mathcal{P}(x, A, \overline{p}; \mathbf{v}(x, A, \overline{p}))\}$ is a set and $B \in \mathbf{v}(A, \overline{p})$. Similarly, if \mathcal{P} is acceptable and $(\forall x \in A)(\exists! y) \mathcal{P}(x, y, A, \overline{p}; \mathbf{v}(x, A, \overline{p}))$ then $F(x) = y \Leftrightarrow x \in A \land \mathcal{P}(x, y, A, \overline{p}; \mathbf{v}(x, y, A, \overline{p}))$ defines a function and $F \in \mathbf{v}(A, \overline{p})$.

De finition.

- (a) $x \in \mathbf{R}$ is α -limited iff |x| < n for some n in $\mathbf{N} \cap \mathbf{v}(\alpha)$.
- (b) $h \in \mathbf{R}$ is α -infinitesimal iff $h \neq 0$ and $|h| < \frac{1}{n}$ for all n in $\mathbf{N} \cap \mathbf{v}(\alpha)$.
- (c) x is α -infinitely close to y iff x-y is α -infinitesimal or 0. (Notation: $x \approx_{\alpha} y$.)

Standardization Principle for Real Numbers.

For every α -limited $x \in \mathbf{R}$ there is $r \in \mathbf{R} \cap \mathbf{v}(\alpha)$ such that $x \approx_{\alpha} r$.

This r is unique; we call it the α -shadow of x and denote it $\mathbf{sh}_{\alpha}(x)$.

Proposition.

- (1) If $x, y \in \mathbf{R}$ are α -limited then x + y, x y, xy are α -limited.
- (2) If h, k are α -infinitesimal and $x \in \mathbf{R}$ is α -limited then h + k, h k, xh are α -infinitesimal.
 - (3) $z \in \mathbf{R}$ is α -infinitesimal iff $\frac{1}{z}$ is α -unlimited.
 - $(4) \approx_{\alpha}$ is an equivalence relation.

If $x_1 \approx_{\alpha} y_1$ and $x_2 \approx_{\alpha} y_2$ then $x_1 + x_2 \approx_{\alpha} y_1 + y_2$. If x_1, x_2 are α -limited then also $x_1 x_2 \approx_{\alpha} y_1 y_2$.

Proposition. Let $x, y \in \mathbf{R}$ be α -limited.

- (0) x is α -infinitesimal iff $\mathbf{sh}_{\alpha}(x) = 0$.
- (1) $x \leq y$ implies $\mathbf{sh}_{\alpha}(x) \leq \mathbf{sh}_{\alpha}(y)$.
- (2) $\mathbf{sh}_{\alpha}(x+y) = \mathbf{sh}_{\alpha}(x) + \mathbf{sh}_{\alpha}(y)$.
- (3) $\mathbf{sh}_{\alpha}(x-y) = \mathbf{sh}_{\alpha}(x) \mathbf{sh}_{\alpha}(y)$.
- (4) $\mathbf{sh}_{\alpha}(xy) = \mathbf{sh}_{\alpha}(x) \mathbf{sh}_{\alpha}(y)$.
- (5) If y is not α -infinitesimal then $\mathbf{sh}_{\alpha}(\frac{x}{y}) = \frac{\mathbf{sh}_{\alpha}(x)}{\mathbf{sh}_{\alpha}(y)}$.

Proposition.

- (a) If $x \in \mathbf{R}$ is α -infinitesimal and $\beta \sqsubseteq \alpha$ then x is β -infinitesimal.
- (b) Every α -limited natural number is in $\mathbf{v}(\alpha)$.
- (c) If y is α -infinitesimal then there is an α -infinitesimal x such that y is x-infinitesimal.

Example: CONTINUITY.

De fition. f is continuous at x iff $y \approx_{\langle f, x \rangle} x$ implies $f(y) \approx_{\langle f, x \rangle} f(x)$.

Equivalently, f is continuous at x iff $y \approx_{\alpha} x$ implies $f(y) \approx_{\alpha} f(x)$, for some or all α such that $f, x \in \mathbf{v}(\alpha)$.

De finition.

f is uniformly continuous iff for all $x, y \in \text{dom } f$, $y \approx_f x$ implies $f(y) \approx_f f(x)$.

Let $\vec{s} := \langle s_n : n \in \mathbf{N} \rangle$ be an infinite sequence of reals. $r \in \mathbf{R}$ is a *limit* of \vec{s} iff $r = \mathbf{sh}_{\vec{s}}(s_n)$ for all \vec{s} -unlimited n.

Let $\vec{f} := \langle f_n : n \in \mathbf{N} \rangle$ be an infinite sequence of real valued functions with common domain $A \subseteq \mathbf{R}$. $f_n \to f$ pointwise iff for all $x \in A$ and all $\langle \vec{f}, x \rangle$ -unlimited n, $f_n(x) \approx_{\langle \vec{f}, x \rangle} f(x)$. $f_n \to f$ uniformly iff for all x and all \vec{f} -unlimited n, $f_n(x) \approx_{\vec{f}} f(x)$.

Proposition. The limit of a uniformly convergent sequence of continuous functions is continuous.

Proof. Let $f = \lim_{n \to \infty} f_n$; we note first that if $\vec{f} \in \mathbf{v}(\alpha)$ then also $f \in \mathbf{v}(\alpha)$, by Definition Principle. For $x, x' \in A$, $|f(x') - f(x)| \le |f(x') - f_{\nu}(x')| + |f_{\nu}(x') - f_{\nu}(x)| + |f_{\nu}(x) - f(x)|$. If $x' \approx_{\alpha} x$ then $x' \approx_{\nu} x$ for some α -unlimited ν . Now the middle term is ν -infinitesimal, by continuity of f_{ν} , hence also α -infinitesimal, and the other two are α -infinitesimal by definition of uniform convergence. So $f(x') \approx_{\alpha} f(x)$. \square

Proof of equivalence with the standard definition of continuity:

- \Rightarrow : Given $\epsilon > 0$ fix α such that $f, x, \epsilon \in \mathbf{v}(\alpha)$. Let δ be α -infinitesimal. If $|y x| < \delta$ then $y \approx_{\alpha} x$, so $f(y) \approx_{\alpha} f(x)$ and hence $|f(y) f(x)| < \epsilon$.
- \Leftarrow : Fix α such that $f, x \in \mathbf{v}(\alpha)$. Let $x' \in \text{dom } f, x' \approx_{\alpha} x$; we have to show that $f(x') \approx_{\alpha} f(x)$ Given $\epsilon \in \mathbf{v}(\alpha)$, $\epsilon > 0$, there exists δ such that
- (*) $(\forall y \in \text{dom } f)(|y x| < \delta \Rightarrow |f(y) f(x)| < \epsilon)$. We take one such δ and fix β so that $f, x, \epsilon, \delta \in \mathbf{v}(\beta)$. Then there exists $\delta \in \mathbf{v}(\beta)$ such that (*); hence by Transfer, there exists $\delta \in \mathbf{v}(\alpha)$ such that (*). As |x' x| is α -infinitesimal, we have $|x' x| < \delta$, hence $|f(x') f(x)| < \epsilon$. This is true for all $\epsilon \in \mathbf{v}(\alpha)$, proving $f(x') \approx_{\alpha} f(x)$. \square

Example: DERIVATIVE.

De finition.

f is differentiable at x iff there is an $\langle f, x \rangle$ -standard $L \in \mathbf{R}$ such that $\frac{f(x+h)-f(x)}{h} - L$ is $\langle f, x \rangle$ -infinitesimal, for all $\langle f, x \rangle$ -infinitesimal $h \neq 0$.

If this is the case, $f'(x) := L = \mathbf{sh}_{\langle f, x \rangle} \left(\frac{f(x+h) - f(x)}{h} \right)$.

Proposition. If f is differentiable at x then f is continuous at x.

Proof By definition, for any $\langle f, x \rangle$ -infinitesimal h, f(x+h) - f(x) = Lh + kh where k is $\langle f, x \rangle$ -infinitesimal. This value is $\langle f, x \rangle$ -infinitesimal. \square

Proposition. (l'Hôpital Rule)
If $\lim_{x\to a} |g(x)| = \infty$ and $\lim_{x\to a} \frac{f'(x)}{g'(x)} = d \in \mathbf{R}$ then $\lim_{x\to a} \frac{f(x)}{g(x)} = d$.

Proof (after Benninghofen and Richter). We can assume that a=0 (replace x by x-a). Fix α so that $f,g,d\in \mathbf{v}(\alpha)$. Let x be α -infinitesimal and y be x-infinitesimal. By Cauchy's Theorem, there is η between x and y (hence, η is α -infinitesimal) such that $\frac{f(y)-f(x)}{g(y)-g(x)}=\frac{f'(\eta)}{g'(\eta)}\approx_{\alpha} d$. Now factor

$$d \approx_{\alpha} \frac{f(y) - f(x)}{g(y) - g(x)} = \frac{f(y) - f(x)}{g(y)} \times \frac{g(y)}{g(y) - g(x)} = \left(\frac{f(y)}{g(y)} - \frac{f(x)}{g(y)}\right) \left(1 - \frac{g(x)}{g(y)}\right)^{-1}$$
 and observe that $\frac{f(x)}{g(y)} \approx_{\alpha} 0$, $\frac{g(x)}{g(y)} \approx_{\alpha} 0$.

 $(\lim_{x\to 0} |g(x)| = \infty$ implies that for all α -infinitesimal z, g(z) is α -unlimited. By transfer to x-level, for all x-infinitesimal z, g(z) is x-unlimited. As y is x-infinitesimal, $\frac{f(x)}{g(y)}$ and $\frac{g(x)}{g(y)}$ are x-infinitesimal.)

It follows that the first factor is α -infinitely close to $\frac{f(y)}{g(y)}$ and the second to 1. From properties of infinitesimals we conclude that $\frac{f(y)}{g(y)} \approx_{\alpha} d$.

Every α -infinitesimal y is x-infinitesimal for some α -infinitesimal x. Hence $\frac{f(y)}{g(y)} \approx_{\alpha} d$ holds for every α -infinitesimal y, and we are done. \square

FRIST:

 $Language: \in, \sqsubseteq (binary).$

$$\mathbb{S}_{\alpha} := \mathbf{v}(\alpha) = \{x : x \sqsubseteq \alpha\}; \text{ in particular } \mathbb{S} := \mathbb{S}_0.$$

 $x \sqsubseteq_{\alpha} y \equiv (x \sqsubseteq \alpha \land y \sqsubseteq \alpha) \lor x \sqsubseteq y.$

Let φ be any \in - \sqsubseteq -formula; φ^{α} denotes the formula obtained from φ by replacing each occurrence of \sqsubseteq by \sqsubseteq_{α} .

Axioms:

ZFC (Separation and Replacement for \in -formulas only).

Strati feation: \sqsubseteq is a dense linear preordering with a least element 0 and no greatest element.

Boundedness: $(\forall x)(\exists A \in \mathbb{S}_0)(x \in A)$

Transfer: For any α , $(\forall \overline{x} \in \mathbb{S}_0)(\varphi^0(\overline{x}) \Leftrightarrow \varphi^{\alpha}(\overline{x}))$.

Standardization:

$$(\forall \overline{x})(\forall x \in \mathbb{S}_0) \ (\exists y \in \mathbb{S}_0) \ (\forall z \in \mathbb{S}_0) (z \in y \iff z \in x \land \varphi^0(z, x, \overline{x})).$$

Idealization:

For any
$$0 \sqsubset \alpha$$
, any $A, B \in \mathbb{S}_0$ and any \overline{x} , $(\forall a \in A^{\text{fin}} \cap \mathbb{S}_0)(\exists x \in B)(\forall y \in a) \varphi^{\alpha}(x, y, \overline{x})$ $\Leftrightarrow (\exists x \in B)(\forall y \in A \cap \mathbb{S}_0) \varphi^{\alpha}(x, y, \overline{x}).$

In these axioms φ can be any \in - \sqsubseteq -formula, not just an \in -formula as usual. 0 can be replaced by any $\beta \sqsubseteq \alpha$: **FRIST** is *fully relativized*.

Theorem. FRIST is a conservative extension of ZFC. In fact, FRIST has a standard core interpretation in ZFC.

Example: LEBESGUE MEASURE on [0,1].

 \mathcal{B} is the algebra generated by all left-closed right-open intervals.

$$l([a,b)) = b - a$$
 for $a < b$.
 $l(b) = \sum_{k=1}^{n} l(I_k)$ if $b = \bigcup_{k=1}^{n} I_k \in \mathcal{B}$ and the I_k are mutually disjoint.

Proposition. Let $X \subseteq [0,1]$, $X \in \mathbf{v}(\alpha)$, and $\alpha \sqsubseteq \beta$. X is Lebesgue measurable iff there exist $b_1, b_2 \in \mathcal{B}$ such that $b_1 \subseteq \mathbf{sh}_{\beta}^{-1}(X) \subseteq b_2$ and $l(b_2) - l(b_1)$ is α -infinitesimal. $\mathbf{sh}_{\alpha}(l(b_1)) = \mathbf{sh}_{\alpha}(l(b_2))$ is the Lebesgue measure of X.

Example: HIGHER DERIVATIVES.

We assume that $f, x \in \mathbf{v}(\alpha)$ and f'(y) exists for all $y \approx_{\alpha} x$.

If f''(x) = L exists, then $L \approx_{\alpha} \frac{f(x+2h)-2f(x+h)+f(x)}{h^2}$ holds for all $h \approx_{\alpha} 0$, $h \neq 0$. However, the converse of this statement is false; existence of $L \in \mathbf{R} \cap \mathbf{v}(\alpha)$ with the above property does not imply that f''(x) exists.

Proposition. Assume that $f, x \in \mathbf{v}(\alpha)$ and f'(y) exists for all $y \approx_{\alpha} x$. Then f''(x) exists iff there is a $L \in \mathbf{R} \cap \mathbf{v}(\alpha)$ such that

$$L \approx_{\alpha} \frac{f(x+h_0+h_1)-f(x+h_0)-f(x+h_1)+f(x)}{h_0h_1}$$

for all $h_0 \approx_{\alpha} 0$, $h_1 \approx_{h_0} 0$, $h_0, h_1 \neq 0$. If this is the case, f''(x) = L.

Proposition. Assume that $n, f, x \in \mathbf{v}(\alpha)$ and $f^{(n-1)}(y)$ exists for all $y \approx_{\alpha} x$. Then $f^{(n)}(x)$ exists iff there is $L \in \mathbf{R} \cap \mathbf{v}(\alpha)$ such that

$$L \approx_{\alpha} \frac{1}{h_0 \dots h_{n-1}} \sum_{i} (-1)^{i_0 + \dots + i_{n-1}} f(x + h^{i_0} + \dots + h^{i_{n-1}})$$

for all $\langle h_0, \ldots, h_{n-1} \rangle$, where $i = \langle i_0, \ldots, i_{n-1} \rangle \in \{0, 1\}^n$, $h^{i_k} := h_k$ if $i_k = 0$, $h^{i_k} := 0$ if $i_k = 1$; $h_0 \approx_{\alpha} 0$, $h_k \approx_{h_{k-1}} 0$ for 0 < k < n, and all $h_k \neq 0$. If this is the case, $f^{(n)}(x) = L$.

This proposition implies existence of "strongly decreasing" sequences of infinitesimals of any finite length n: $\langle h_0, \ldots, h_{n-1} \rangle$ where each h_k is h_{k-1} -infinitesimal.

BST:

 $Language: \in (binary), st (unary).$

$$\mathbb{S} := \{ x \mid \mathbf{st} \ x \}, \quad \mathbb{I} := \{ x \mid x = x \}.$$

If φ is an \in -formula, $\varphi^{\mathbb{S}}$ is the formula obtained from φ by replacing each subformula of the form $(\exists x) \psi$ by $(\exists^{\mathbf{st}} x) \psi$, and each subformula of the form $(\forall x) \psi$ by $(\forall^{\mathbf{st}} x) \psi$. A^{fin} is the set of all finite subsets of A.

Axioms of BST:

ZFC: $\varphi^{\mathbb{S}}$ where φ is any axiom of ZFC (Separation and Replacement for \in -formulas only).

Boundedness: $(\forall x)(\exists A \in \mathbb{S})(x \in A)$.

Transfer: $(\forall \overline{x} \in \mathbb{S})(\varphi^{\mathbb{S}}(\overline{x}) \Leftrightarrow \varphi(\overline{x}))$ where $\varphi(\overline{x})$ is any \in -formula.

Standardization:

$$(\forall \overline{x})(\forall x \in \mathbb{S})(\exists y \in \mathbb{S})(\forall z \in \mathbb{S})$$
$$(z \in y \Leftrightarrow z \in x \land \varphi(z, x, \overline{x}))$$
where $\varphi(z, x, \overline{x})$ is any \in -st-formula.

Idealization:

For any $A, B \in \mathbb{S}$ and any \overline{x} , $(\forall a \in A^{\text{fin}} \cap \mathbb{S})(\exists x \in B)(\forall y \in a) \varphi(x, y, \overline{x}) \Leftrightarrow (\exists x \in B)(\forall y \in A \cap \mathbb{S}) \varphi(x, y, \overline{x})]$ where $\varphi(x, y, \overline{x})$ is any \in -formula.

Theorem (see the book of Kanovei and Reeken).

BST is a conservative extension of ZFC.

In fact, BST has a standard core interpretation in ZFC.

We use letters U, V to denote ultrafilters.

If U is an ultrafilter, $I_U := \bigcup U$.

If $I_U \cap (\mathbb{I} \times \mathbb{I}) \in U$ then $\pi(U)$ denotes the *projection* of U onto the domain of I_U ; i.e., for $A \subseteq \text{dom } I_U$, $A \in \pi(U) \Leftrightarrow \{\langle a,b \rangle \in I_U \} \mid a \in A\} \in U$; $\pi(U)$ is an ultrafilter.

For a standard ultrafilter U, $x \mathfrak{M} U$ denotes that $x \in \bigcap (U \cap \mathbb{S})$ (x belongs to the *monad* of U).

Proposition. (Andreev and H.) (Back and Forth Lemma)
(a) $(\forall x)(\forall U \in \mathbb{S})[x \mathfrak{M} \ U \Rightarrow (\forall y)(\exists V \in \mathbb{S}) \ (\pi(V) = U \land \langle x, y \rangle \mathfrak{M} \ V)]$ (b) $(\forall U \in \mathbb{S})(\forall x)[x \mathfrak{M} \ U \Rightarrow (\forall V \in \mathbb{S})(\pi(V) = U \Rightarrow (\exists y)\langle x, y \rangle \mathfrak{M} \ V)].$

Underlying this lemma is the existence of an isomorphism between $(\mathbb{V}^I/U)^{\mathbb{S}}$, the ultraproduct of the universe modulo U constructed inside \mathbb{S} , and $\mathbb{S}[x] := \{f(x) : f \in \mathbb{S}\}$ for $x \mathfrak{M} U$, given by $f \mapsto f(x)$ (for $f \in \mathbb{S}$, dom $f = I_U$), and the fact that these isomorphisms "fit together" in a natural way.

Corollary. (Normal Form Theorem, or Reduction to $\Sigma_2^{\mathbf{st}}$ Formulas.) There is an effective procedure that assigns to each \in -st-formula $\varphi(\overline{x})$ an \in -formula $\varphi^m(U)$ so that, for all \overline{x} , $\varphi(\overline{x}) \Leftrightarrow (\exists U \in \mathbb{S})(\langle \overline{x} \rangle \mathfrak{M} \ U \wedge \varphi^m(U)) \Leftrightarrow (\forall U \in \mathbb{S})(\langle \overline{x} \rangle \mathfrak{M} \ U \to \varphi^m(U)).$

Kanovei and Reeken used Reduction to $\Sigma_2^{\mathbf{st}}$ to prove that Collection for arbitrary \in -st-formulas holds in **BST**.

Corollary. Any two countable models of BST with the same standard core are isomorphic.

De finition: $U \sim V \Leftrightarrow U \cap V$ is an ultrafilter.

De finition (Strati fed ultra fiters over A):

 $\gamma_0 A := A;$

 $\gamma_{\xi}A := \gamma_{<\xi}A \cup \{U : U \text{ is non-principal over } \gamma_{<\xi}A \text{ and } U \sim V \text{ does not hold for any } V \in \gamma_{<\xi}A\}.$

De finition (FRIST):

Let $x \in A \in \mathbb{S}$. A **standardizer** for x over A is a sequence $\overrightarrow{u} := \langle u_i : i \leq \nu \rangle$ where $\nu \in \omega$ and

- i) each u_i is a stratified ultrafilter over A;
- ii) $u_0 \in \mathbb{S}, u_\nu = x;$
- iii) $u_i \sqsubset u_{i+1}$ for $i < \nu$;
- iv) if $u_i \sqsubseteq \alpha \sqsubset u_{i+1}$ then $u_{i+1} \in \bigcap (u_i \cap \mathbb{S}_{\alpha})$.

Theorem. In the interpretation for **FRIST** constructed in ref. (1), for any $x \in A \in \mathbb{S}$ there is a unique standardizer \overrightarrow{w}_A for x over A. The universe $\mathbb{S}[\overrightarrow{w}_A]$ is independent of A; we denote it $\mathbb{S}[[x]]$.

De finition (FRIST): $x \mathfrak{M} U$ denotes that $U \in \mathbb{S}$ is a stratified ultrafilter over A and there is a standardizer \overrightarrow{u}_A for x over A with $u_0 = U$.

Theorem. The Back and Forth Lemma holds in the interpretation for **FRIST** constructed in ref. (1).

Corollary. Any two countable models of GRIST = "FRIST + The Back and Forth Lemma" with the same standard core are isomorphic.

Corollary. (GRIST) Collection for \in - \sqsubseteq -formulas fails.

Repeated ultrapowers:

 $\mathbb{V}^I/U \vDash \text{``} k(U) \text{ is an ultrafilter over } k(I) \text{''}$ (k is the canonical embedding of \mathbb{V} into \mathbb{V}^I/U)

Observation:

$$[\mathbb{V}^{k(I)}/k(U)]^{\mathbb{V}^{I}/U}$$
 is isomorphic to $\mathbb{V}^{I\times I}/U\otimes U$ where $X\in U\otimes U\equiv \{i_0\in I: \{i_1\in I: \langle i_0,i_1\rangle\in X\}\in U\}\in U.$

More generally, let

$$\bigotimes_0 U := \text{the principal ultrafilter over } \{0\};$$

$$\bigotimes_1 U := U;$$

$$\bigotimes_{n+1} U := U \otimes (\bigotimes_n U).$$

For
$$X \subseteq I^{n+1}$$
, $X \in \bigotimes_{n+1} U \Leftrightarrow$
 $\{i_0 \in I : \{\langle i_1, \dots, i_n \rangle : \langle i_0, i_1, \dots, i_n \rangle \in X\} \in \bigotimes_n U\} \in U$.

 $\varphi: I_2 \to I_1 \text{ is a } morphism \text{ of } U_2 \text{ to } U_1 \text{ iff } (\forall X \in U_1)(\varphi^{-1}[X] \in U_2).$

Every morphism φ induces an elementary embedding $\varphi^* : \mathbb{V}^{I_1}/U_1 \to \mathbb{V}^{I_2}/U_2$ defined by $\varphi^*(f) = f \circ \varphi$.

For $0 \le \ell \le n$, $\pi_{\ell,n}$ is the projection of I^n onto I^ℓ : $\pi_{\ell,n}(\langle i_0,\ldots,i_{n-1}\rangle) = \langle i_0,\ldots,i_{\ell-1}\rangle.$

Then $\pi_{\ell,n}: \bigotimes_n U \to \bigotimes_\ell U$ is a morphism of ultrafilters, so $\pi_{\ell,n}^*: \mathbb{V}^{I^\ell}/\bigotimes_\ell U \to \mathbb{V}^{I^n}/\bigotimes_n U$ is an elem. embedding.

Proposition. (Factoring Lemma)

For
$$0 \le \ell \le n$$

$$\mathbb{V}^{I^n}/\bigotimes_n^- U \cong [\mathbb{V}^{\pi_{0,\ell}^*(I^{n-\ell})}/\bigotimes_{n-\ell} \pi_{0,\ell}^*(U)]^{\mathbb{V}^{I^\ell}/\bigotimes_\ell U}.$$

Iterated ultrapowers:

The system $\langle \pi_{\ell,n}^* : \ell \leq n \in \omega \rangle$ has a direct limit $(*\mathbb{V}_{\omega}^U, =^*, \in^*)$, which elementarily extends each $\mathbb{V}^{I^n} / \bigotimes_n U$.

Iterated ultrapowers (Gaifman and Kunen) (iteration with finite support): ω can be replaced by any linear ordering (Λ, \leq) .

Note: If U is NOT countably complete then ${}^*\mathbb{V}^U_{\omega}$ is NOT isomorphic to $[{}^*\mathbb{V}^{k(U)}_{k(\omega\backslash 1)}]^{\mathbb{V}^I/U}$, i.e., the Factoring Lemma for the direct limit fails at stage 1. (Reason: $k(\omega)$ is not well-founded and it has cofinality $> \omega$.)

Observation:

Ultrapowers can be repeated into transfinite!

Assume U is over $I = \omega$ and let $U_n := \bigotimes_n U$. Then we can define an ultrafilter W over $I^{<\omega}$ (Rudin-Frolík sum) by: $A \in W \Leftrightarrow \{n \in I : \{t \in I^n : \langle n \rangle \land t \in A\} \in U_n\} \in U$. $(\langle n \rangle := \{\langle 0, n \rangle\}.)$

Let
$$\bar{U} := \langle U_n : n \in \omega \rangle$$
, $\nu := \langle n : n \in \omega \rangle$.

 $\mathbb{V}^I/U \vDash "\bar{U}$ is an ultrafilter over $k(I)^{\nu}$; $\bar{U} = \bigotimes_{\nu} k(U)$ ".

Factoring Lemma: $\mathbb{V}^{I^{<\omega}}/W \cong [\mathbb{V}^{k(I)^{\nu}}/\bar{U}]^{\mathbb{V}^{I}/U}$.

"Iteration with *-finite support": Internally iterated ultrapowers are obtained by allowing arbitrary transfinite repetitions in the Gaifman-Kunen construction.

In ref. (1), interpretations for **GRIST** in **ZFC** are constructed using internally iterated ultrapowers of \mathbb{V} .

External sets:

Given an ultrapower $\mathbb{V}^I/U = (\mathbb{V}^I, =_U, \in_U)$, one can build a cumulative universe \mathbb{E}_U over this structure and extend $=_U$ and \in_U to it so that this **completed ultrapower** $(\mathbb{E}_U, =_U, \in_U)$ satisfies **ZFC**⁻ (**ZFC** minus Regularity).

In the construction of ref.(1) ultrapowers can be replaced by completed ultrapowers.

The last two slides outline the theory of the resulting structure.

RST:

Language: \in (ternary). $x \in^w y$ reads "x belongs to y relative to w".

It is possible that $x \in {}^{w} y$ and $x \notin {}^{w'} y$, but we want some stability.

De finition: $x \in y$ iff $(\exists w)(x \in^w y)$

Axioms: \emptyset , $\{x,y\}$ exist.

De finition: x is w-internal iff $(\exists y)(x \in^w y)$. Notation: $\mathbb{I}_w(x)$.

De faition: y is w-standard iff $y = \emptyset \lor (\exists x)(x \in^w y)$. Notation: $\mathbb{S}_w(y)$.

Axioms:

$$\begin{split} \mathbb{S}_{w}(w) \\ \mathbb{S}_{w}(y) &\Rightarrow \mathbb{I}_{w}(y) \\ \mathbb{S}_{\{x,y\}}(x), \ \mathbb{S}_{\{x,y\}}(y), \quad \mathbb{S}_{w}(x) \ \land \ \mathbb{S}_{w}(y) \Rightarrow \mathbb{S}_{w}(\{x,y\}) \\ \mathbb{S}_{w}(x) &\Rightarrow (\mathbb{S}_{x}(z) \Rightarrow \mathbb{S}_{w}(z)) \\ \mathbb{I}_{w}(x) &\Rightarrow (\mathbb{I}_{x}(z) \Rightarrow \mathbb{I}_{w}(z)) \\ (\mathbb{I}_{w}(x) \ \land \ \mathbb{S}_{w}(y) \ \land \ x \in y) \Rightarrow x \in^{w} y \end{split}$$

De finition: $x \sqsubseteq_w y$ iff $\mathbb{I}_w(x) \wedge \mathbb{I}_w(y) \wedge \mathbb{S}_{\{y,w\}}(x)$.

Axioms: $\varphi^{(\mathbb{I}_w, \sqsubseteq_w)}$ where φ is any axiom of **GRIST**.

Axiom:

$$(\exists!W)(\forall x,y)(x\sqsubseteq_w y \iff (\mathbb{S}_W(\langle x,y\rangle) \land \langle x,y\rangle \in W)).$$

It follows that

$$(\exists!A)(\forall x)(\mathbb{S}_w(x) \Leftrightarrow \mathbb{S}_W(x) \land x \in A)$$
 Notation: $A = \mathbb{S}_w$.
 $(\exists!B)(\forall x)(\mathbb{I}_w(x) \Leftrightarrow \mathbb{S}_W(x) \land x \in B)$ Notation: $B = \mathbb{I}_w$.

Note: It is necessary to carefully distinguish between $x \in \mathbb{S}_w$ and $\mathbb{S}_w(x)$. \mathbb{S}_w and \mathbb{I}_w are sets in \mathbb{S}_W .

In **RST** there is no need for classes!

 \mathbb{S}_W can serve as the external universe for \mathbb{I}_w . It contains all collections definable in $(\mathbb{I}_w, \sqsubseteq_w)$ and satisfies **ZFC**⁻.

De fhition:
$$\mathbb{I}_w^W(x)$$
 iff $\mathbb{I}_W(x) \wedge (\exists y)(\mathbb{S}_w(y) \wedge x \in y)$.

Axioms: $(\forall \overline{x})(\mathbb{I}_w(\overline{x}) \Rightarrow (\varphi^{(\mathbb{I}_w, \sqsubseteq_w)}(\overline{x}) \Leftrightarrow \varphi^{(\mathbb{I}_w^W, \sqsubseteq_W \upharpoonright \mathbb{I}_w^W)}(\overline{x})))$ where φ is any \in - \sqsubseteq -formula.

Work on a "complete" axiomatization is in progress.