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Hilbert:
We know sets before we know their elements.
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Elementary theory:

We work in ZFC extended by a new binary “precedence”
predicate C.

y C x reads “y s accessible to x”.

We also write y € v(z) for y C x

and read it “y is at level x”.

m<ms
iv) (Vm € N)(dn € N)(v(m
v) v(m) C v(n) = (3k)(v(m

Transfer Principle. If zy,... 2, € v(a) N v(5) then
P(Ila s ,.flfn;V(Oé)) Zﬁ 73(371, s ,In,V(ﬁ))

The coarsest level containing x1,... ,x, is
v(zy, ... ,x,) = v({z1,...,x,)); hence
Pz, 2 v(T1, ..., xy)) Mt Poy,. ..z, v(Q))
provided z1,... ,x, € v(«).

Predicates of the form P(xy,...,x,;v(xy,... ,2,)) are

called acceptable.
(Previously defined acceptable predicates may occur in P.)

De fhition Principle. If P is acceptable then
B:={xecA:Px,A,p;v(z,AD))} is a set
and B € v(A,p). Similarly, if P is acceptable and
(Vo € A)By)P(x,y, A, D;v(x, A,D)) then
Flx)=y © € AN Plz,y, A, p;v(z,y, A, D))
defines a function and F € v(A,p).



De thition.
(a) z € R is a-limited iff |z| < n for some n in N Nv(«).
(b) h € R is a-infinitesimal iff h # 0 and |h| < & for all n
in NNv(a).
(c) x is a~infinitely close to y iff x — y is a-infinitesimal
or 0. (Notation: = ~, y.)

Standardization Principle for Real Numbers.
For every a-limited x € R there is r € RN v(«) such that
TR, T

This r is unique; we call it the a-shadow of x and denote
it sh, ().

Proposition.

(1) If z,y € R are a-limited then x + y,x — y,zy are
a-limited.

(2) If h, k are a-infinitesimal and x € R is a-limited then
h+k, h — k, zh are a-infinitesimal.

(3) z € R is a~infinitesimal iff 1 is c-unlimited.

(4) =, is an equivalence relation.
If x1 =, y1 and x9 =, Yo then x1 + 22 ~, y1 + Yo.
If x1, x5 are a-limited then also x1xs &, Yy19o.

Proposition. Let z,y € R be a-limited.
) x is a-infinitesimal iff sh,(z) = 0.

x <y implies sh,(z) < sh,(y).

oz +1y) = sh,(x) + sh,(y).

o(z —y) = sh,(z) — sh,(y).

sh,(zy) = sh,(z) sh,(y).

If y is not a-infinitesimal then shq () =




Proposition.

(a) If x € R is a-infinitesimal and 5 C « then
x is [B-infinitesimal.

(b) Every a-limited natural number is in v(a).

(c) If y is a-infinitesimal then there is an a-infinitesimal x
such that y is x-infinitesimal.



Example: CONTINUITY.

De thition. f is continuous at x iff
Yy &y © implies f(y) ~ya f(2).

Equivalently, f is continuous at x iff y ~, x implies
f(y) =4 f(x), for some or all a such that f,z € v(«).

De thition.
f is uniformly continuous iff for all z,y € dom f,

y ~ x implies f(y) =~y f(x).

Let §:= (s, : n € N) be an infinite sequence of reals.
r € R is a limit of §iff r = shg(s),) for all Sunlimited n.

Let f := (f, : n € N) be an infinite sequence of real
valued functions with common domain A C R.
fn — [ pointwise iff
for all z € A and all (f, z)-unlimited n, f,(z)~,7, f(z).
fo — [ uniformly ift
for all z and all f-unlimited n, f,(z) ~7 f(@).

Proposition. The limit of a uniformly convergent
sequence of continuous functions is continuous.

Proof. Let f = lim,_ ., f,; we note first that if f € v(a)
then also f € v(«), by Definition Principle. For x, 2’ € A,
f(2) = f(z)] <
[f (@) = fo (@) + (@) = (@) + | fu(x) = f2)] .

If 2/ ~, = then 2’ ~, z for some a-unlimited v. Now the
middle term is v-infinitesimal, by continuity of f,, hence
also a-infinitesimal, and the other two are a-infinitesimal
by definition of uniform convergence. So f(z') =, f(z). O



Proof of equivalence with the standard def inition of
continuily:

=: Given € > 0 fix o such that f,z,e € v(a). Let d be
a-infinitesimal. If |y — 2| < § then y =, =, so f(y) =, f(z)
and hence |f(y) — f(z)] <e.

<: Fix a such that f,z € v(«). Let 2/ € dom f, 2’ =, z;

we have to show that f(2') ~, f(z) Given € € v(a),e > 0,
there exists ¢ such that
(%) (¥ € dom )y — 2| < 8 = | {(3) — F(@)] < o).
We take one such 4 and fix (3 so that f,z,¢€,0 € v(3). Then
there exists 0 € v(3) such that (*); hence by Transfer, there
exists 0 € v(a) such that (*). As |2’ — z| is a-infinitesimal,
we have |2’ — z| < 0, hence |f(z') — f(x)| < e. This is true
for all € € v(a), proving f(2') =, f(x). O



Example: DERIVATIVE.

De thition.
f is differentiable at x iff there is an (f, x)-standard L € R
such that w — L is (f, z)-infinitesimal, for all
(f,x)-infinitesimal h # 0.

If this is the case, f'(x) ;== L = shyy (W)

Proposition. If f is differentiable at x then f is
continuous at x.

Proof By definition, for any (f, z)-infinitesimal h,
f(z 4+ h)— f(x) = Lh + kh where k is (f, x)-infinitesimal.
This value is (f, z)-infinitesimal. [J



Proposition. (I'Hopital Rule)

If lim, . |g(z)] =00 and limy_,L =de R then

g'(x)
zz'mwa% —d.

Proof (after Benninghofen and Richter). We can assume
that a = 0 (replace © by x — a). Fix a so that f,g,d €
v(a). Let = be a-infinitesimal and y be z-infinitesimal. By
Cauchy’s Theorem, there is 1 between = and y

< anEn e fl)=fx) _ f)
(hence, 7 is a-infinitesimal) such that T = o) Fad-

Now factor
~ fW-f) _ fy-f(=) gy)  _ fy) _ f@)y1_g@)y-1
4% g = e X am-0@ — ot ) (g
and observe that £ ~, 0, 9(x) ~, 0
9(y) 9(y)
(lim, o |g(x)| = oo implies that for all a-infinitesimal z,

g(z) is a-unlimited. By transfer to x-level, for all

z-infinitesimal 2, g(2) is z-unlimited. As y is z-infinitesimal,

% and % are r-infinitesimal.)

It follows that the first factor is a-infinitely close to %

and the second to 1. From properties of infinitesimals we

M ~
conclude that oy o d.

Every a-infinitesimal y is z-infinitesimal for some

a-infinitesimal x. Hence % ~, d holds for every

a-infinitesimal y, and we are done. [
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FRIST:
Language: €, C (binary).

Se :=v(a) ={z: z C a}; in particular S :=S.
rCay=Ca ANyCa)Valuy.

Let ¢ be any €-C-formula; ¢® denotes the formula
obtained from ¢ by replacing each occurence of C by C,,.

Axioms:
ZFC (Separation and Replacement for e-formulas only).

Strati fation: C is a dense linear preordering with a
least element 0 and no greatest element.

Boundedness: (Vz)(3A € Sp)(x € A)
Transfer: For any o, (VT € So)(0°(T) & ©*(T)).

Standardization:
(VT)(Vr € Sy) (y € Sp) (V2 € Sp)
(zey & zex A Qz,2,7)).

Idealization:
For any 0 C «, any A, B € Sy and any T,
(Va € A" Sp)(Fz € B)(Vy € a) ¢*(z,y,7)
& (dre B)(Mye ANSy) o*(z,y,T).

In these axioms ¢ can be any €-C-formula, not just an

e-formula as usual. 0 can be replaced by any  C a:
FRIST is fully relativized.

Theorem. FRIST s a conservative extension of ZFC.
In fact, FRIST has a standard core interpretation in ZFC.
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Example: LEBESGUE MEASURE on [0,1].

B is the algebra generated by all left-closed right-open
intervals.
[([a,b)) =b—a for a <b.
1(b) => 1, U(I) if b=J._; Iy € B and the I}, are
mutually disjoint.

Proposition. Let X C [0,1], X € v(a), and o C S.
X s Lebesgue measurable iff there exist by, by € B such
that by C shgl(X) C by and l(b2) —U(b1) is a-infinitesimal.
sh,({(by)) = sh,(l(bs)) is the Lebesque measure of X.



12

Example: HIGHER DERIVATIVES.

We assume that f,z € v(«) and f'(y) exists for all y =, x.

If f"(x) = L exists, then L =, f(x”h)_?}];(”h”f(x) holds
for all h =, 0, h # 0. However, the converse of this state-
ment is false; existence of L € R N v(«a) with the above
property does not imply that f”(z) exists.

Proposition. Assume that f,x € v(a) and f'(y) ezists
forall y =, x. Then f"(x) exists iff there is a L € RNv(«)
such that

I ~ J(z+hot+hi)—f(x4ho)—f(z+h)+f(z)
~o hohi

fOT all ho ~q 0, h1 ~heo 0, ho, hl # 0.
If this is the case, f"(x) = L.

Proposition. Assume that n, f,x € v(a) and f("_l)(y)
exists for all y =, x. Then fU)(x) exists iff there is
L e RNv(a) such that

L =~, m Zz (_1)7:()+-~-+Z'n71 f(l' + hio o+ hinq)

for all {hg,..., h,_1), where i = {(ig,... ,in_1) € {0,1}",
hit .= hi if 1 =0, h* =0 of 1 =1,

ho ~a 0, hi =p,_, 0 for 0 <k <n, and all hy # 0.

If this is the case, f™(z) = L.

This proposition implies existence of “strongly decreasing”
sequences of infinitesimals of any finite length n :
(ho, ..., hy—1) where each hy is hj_q-infinitesimal.
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BST:
Language: € (binary), st (unary).

S:={x|stz}, I:={z|z=uz}.

If ¢ is an €-formula, ¢° is the formula obtained from ¢ by
replacing each subformula of the form (3z) ¢ by (%) v,
and each subformula of the form (Vz) v by (V') .

Afn i5 the set of all finite subsets of A.

Axioms of BST:

ZFC: ¢©° where ¢ is any axiom of ZFC (Separation and
Replacement for €-formulas only).

Boundedness: (Vz)(3A € S)(x € A).

Transfer: (VT € S)(p°(@) < (7))
where () is any e-formula.

Standardization:
(Vz)(Vx € S)(Jy € S)(Vz €S)
(zey & zex A p(z,2,7))
where p(z, z,T) is any €-st-formula.

Idealization:
For any A, B € S and any T,
(Va € A" N S)(3x € B)(Vy € a) p(x,y,T) <
(3x € B)(Vy € ANS) p(z,y,T)]

where p(x,y,T) is any €-formula.

Theorem (see the book of Kanovei and Reeken).
BST s a conservative extension of ZFC.
In fact, BST has a standard core interpretation in ZFC.



14

We use letters U,V to denote ultrafilters.
If U is an ultrafilter, Iy :=JU.
If [y N (I x1I) e U then w(U) denotes the projection of U
onto the domain of Iy; i.e., for A Cdom Iy, A € n(U) <
{{a,b) € Iy} | a € A} € U; ©(U) is an ultrafilter.

For a standard ultrafilter U, x93t U denotes that
r € ((UNS) (z belongs to the monad of U).

Proposition. (Andreevand H.) (Back and Forth Lemma)
a) (Vx)VU € S)lzM U = Vy)3V € 8S) (n(V) = U A
)M V)|

y(VU e S)(Vx)zMm U = (YW € S)(n(V) = U =

(
(z,
(b)

(Fy)(x,y) M V)].

x
b
=

Underlying this lemma is the existence of an isomorphism
between (V! /U)®, the ultraproduct of the universe modulo
U constructed inside S, and S[z| := {f(z) : f € S} for
xIMM U, given by [ — f(z) (for f € S, dom f = Iiy), and
the fact that these isomorphisms “fit together” in a natural
way.

Corollary. (Normal Form Theorem, or Reduction to 35¢
Formulas.) There is an effective procedure that assigns
to each €-st-formula o(Z) an €-formula ¢ (U) so that,
for all z, o(T) < (U € S)(m)M U A ")) <
(YU € S)(m)yM U — o™ (U)).

Kanovei and Reeken used Reduction to 35 to prove that
Collection for arbitrary €-st-formulas holds in BST.

Corollary. Any two countable models of BST with the
same standard core are isomorphic.
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De 1:1i1iti0n: U~V & UNYV is an ultrafilter.

De thition (Strati fid ultra fters over A):

YA = A;

YA == y¢AU{U : U is non-principal over y.cA and
U ~ V does not hold for any V' € y.¢A}.

De thition (FRIST):
Let z € A € S. A standardizer for x over A is a sequence
W = (u; : i < v) where v € w and
i) each u; is a stratified ultrafilter over A;
i) ug € S, u, = x;
lll) U; Uiy for 1 < V;
iv) if u; © a C w41 then uiq € ((u; N'Sy).

Theorem. In the interpretation for FRIST constructed
in ref. (1), for any x € A € S there is a unique
standardizer W 4 for x over A. The universe S[W 4| is
independent of A; we denote it S[[z]].

De thition (FRIST): 9t U denotes that U € S is a
stratified ultrafilter over A and there is a standardizer @ 4
for x over A with uyg = U.

Theorem. The Back and Forth Lemma holds in the
interpretation for FRIST constructed in ref. (1).

Corollary. Any two countable models of
GRIST = “FRIST + The Back and Forth Lemma”
with the same standard core are isomorphic.

Corollary. (GRIST) Collection for €-C-formulas fails.
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Repeated ultrapowers:

VI/U E “k(U) is an ultrafilter over k(I)”
(k is the canonical embedding of V into VZ/U)

Observation:
(V@) /k(U)]V'/V is isomorphic to VI*! /U @ U where
XeUU={igel :{i1rel:(i,h)eX}eU}el.

More generally, let

@, U := the principal ultrafilter over {0};
QU :=U;

X, U =U®(Q,U).

For X C 1" Xe®,,U <
{i0612{<i1,... 7Zn> . <’i0,i1,... ,Zn> EX}G@TLU}GU

©w : Iy — Iy is a morphism of U, to Uy iff

(VX € Up) (e [X] € Uy).

Every morphism ¢ induces an elementary embedding
©* : VI /U, — V2 /U, defined by ¢*(f) = f o .

For 0 <¢<mn, my, is the projection of I" onto It
Wﬁ,n(@@; s 7in—1>) = <i07 cee 7i571>-
Then 7/, : @), U — &), U is a morphism of ultrafilters, so
Ly V'/Q,U — V!"/®, U is an elem. embedding.

Proposition. (Factoring Lemma)
Foro</¢<n

n ~ (It * 1t
V" ®, U = [V )/®n4770,£(U) /e,
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Iterated ultrapowers:

The system (7, : £ <n € w) has a direct limit
(*VU =* €*), which elementarily extends each V" /&) U.

Iterated ultrapowers (Gaifman and Kunen)
(iteration with finite support):
w can be replaced by any linear ordering (A, <).

Note: If U is NOT countably complete then *VY is NOT
isomorphic to [*Vzgg\)n vt
the direct limit fails at stage 1. (Reason: k(w) is not well-
founded and it has cofinality > w.)

, i.e., the Factoring Lemma for

Observation:
Ultrapowers can be repeated into transfinite!

Assume U is over I = w and let U,, := ), U. Then we
can define an ultrafilter W over =% (Rudin-Frolik sum) by:
AeW & {nel:{tel":{(n)~teAlelU,} eU.
((n):={0,m)})

Let U:= (U, :n€w), vi={(n:n€cuw).

VI/U & “U is an ultrafilter over k(1)"; U =&, k(U)".
Factoring Lemma: V'™ JW = [VE()" /g V!V,
“Iteration with *-finite support”: Internally iterated

ultrapowers are obtained by allowing arbitrary transfinite

repetitions in the Gaifman-Kunen construction.

In ref. (1), interpretations for GRIST in ZFC are con-
structed using internally iterated ultrapowers of V.
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External sets:

Given an ultrapower V! /U = (V! =, €y), one can build
a cumulative universe Ey over this structure and extend
=y and €y to it so that this completed ultrapower
(Ev, =v, €r) satisfies ZFC™ (ZFC minus Regularity).

In the construction of ref.(1) ultrapowers can be replaced
by completed ultrapowers.

The last two slides outline the theory of the resulting
structure.
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RST:
Language: € (ternary).
x €Yy reads “x belongs to y relative to w”.

It is possible that = €* y and = ¢" v,
but we want some stability.

De fhition: z € y iff (Gw)(z €* y)
Axioms: @, {z,y} exist.

De thition: x is w-internal iff (Fy)(z €“ y).
Notation: I, (x).

De thition: y is w-standard iff y =2 v (Fz)(x € y).
Notation: S, (y).

Axioms:

Sw(w)

Su(y) :ﬂ[ (v)

Sw(ﬂf) = (Su(2 ) ( )
Ly(z) = (L(2) = Lu(2))

(Iy(z) A Suly) Nzey) =z ey

) A Su(y) = Su({z,y})

De thition: = C, y iff Ly(z) A Lu(y) A Sgyu (o).

(L, Ew)

Axioms: ¢ where ¢ is any axiom of GRIST.
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Axiom:

EW)(Vr,y)(z Ew y & Sw({z,y) A (z,y) € W)).

It follows that
(F1A)(Vx)(Sy(x) < Sw(z) Ax e A) Notation: A =S,.
(I'B)(Vz)(I,(x) < Sw(zr) Az € B) Notation: B = L,,.

Note: 1t is necessary to carefully distinguish between
r €S, and S,(z). S, and I, are sets in Sy .
In RST there is no need for classes!
Sy can serve as the external universe for I,,. It contains all

collections definable in (I, C,,) and satisfies ZFC™.
De thition: IV(2) iff Iy (z) A Gy)(Suly) A = € y).

Axioms: (VT)(L,(T) = (o 5)(7) < gp(ﬂy,gwrﬂ}j’)(f)))
where ¢ is any €-C-formula.

Work on a “complete” axiomatization is in progress.



