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***********************************************

Hilbert:
We know sets before we know their elements.

***********************************************
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Elementary theory:

We work in ZFC extended by a new binary “precedence”
predicate v.

y v x reads “y is accessible to x”.
We also write y ∈ v(x) for y v x
and read it “y is at level x”.

We postulate: (o) x ∈ v(x)
(i) y ∈ v(x) ⇒ v(y) ⊆ v(x)
(ii) (∀x)(∃n ∈ N)(v(x) = v(n))
(iii) (∀m, n ∈ N)(m ≤ n ⇒ m ∈ v(n))
(iv) (∀m ∈ N)(∃n ∈ N)(v(m) ⊂ v(n))
(v) v(m) ⊂ v(n) ⇒ (∃k)(v(m) ⊂ v(k) ⊂ v(n)).

Transfer Principle. If x1, . . . , xn ∈ v(α) ∩ v(β) then
P(x1, . . . , xn;v(α)) iff P(x1, . . . , xn;v(β)).

The coarsest level containing x1, . . . , xn is
v(x1, . . . , xn) = v(〈x1, . . . , xn〉); hence
P(x1, . . . , xn;v(x1, . . . , xn)) iff P(x1, . . . , xn;v(α))
provided x1, . . . , xn ∈ v(α).

Predicates of the form P(x1, . . . , xn;v(x1, . . . , xn)) are
called acceptable.
(Previously defined acceptable predicates may occur in P .)

Definition Principle. If P is acceptable then
B := {x ∈ A : P(x,A, p;v(x,A, p))} is a set
and B ∈ v(A, p). Similarly, if P is acceptable and
(∀x ∈ A)(∃!y)P(x, y,A, p;v(x,A, p)) then
F (x) = y ⇔ x ∈ A ∧ P(x, y,A, p;v(x, y, A, p))
def ines a function and F ∈ v(A, p).
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Definition.
(a) x ∈ R is α-limited iff |x| < n for some n in N ∩ v(α).
(b) h ∈ R is α-inf initesimal iff h 6= 0 and |h| < 1

n for all n
in N ∩ v(α).
(c) x is α-inf initely close to y iff x − y is α-infinitesimal
or 0. (Notation: x ≈α y.)

Standardization Principle for Real Numbers.
For every α-limited x ∈ R there is r ∈ R ∩ v(α) such that
x ≈α r.

This r is unique; we call it the α-shadow of x and denote
it shα(x).

Proposition.
(1) If x, y ∈ R are α-limited then x + y, x − y, xy are

α-limited.
(2) If h, k are α-infinitesimal and x ∈ R is α-limited then

h + k, h − k, xh are α-infinitesimal.
(3) z ∈ R is α-infinitesimal iff 1

z
is α-unlimited.

(4) ≈α is an equivalence relation.
If x1 ≈α y1 and x2 ≈α y2 then x1 + x2 ≈α y1 + y2.
If x1, x2 are α-limited then also x1x2 ≈α y1y2.

Proposition. Let x, y ∈ R be α-limited.
(0) x is α-infinitesimal iff shα(x) = 0.
(1) x ≤ y implies shα(x) ≤ shα(y).
(2) shα(x + y) = shα(x) + shα(y).
(3) shα(x − y) = shα(x) − shα(y).
(4) shα(xy) = shα(x) shα(y).
(5) If y is not α-infinitesimal then shα(x

y ) = shα(x)
shα(y) .
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Proposition.
(a) If x ∈ R is α-infinitesimal and β v α then

x is β-infinitesimal.
(b) Every α-limited natural number is in v(α).
(c) If y is α-infinitesimal then there is an α-infinitesimal x

such that y is x-infinitesimal.
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Example: CONTINUITY.

Definition. f is continuous at x iff
y ≈〈f,x〉 x implies f(y) ≈〈f,x〉 f(x).

Equivalently, f is continuous at x iff y ≈α x implies
f(y) ≈α f(x), for some or all α such that f, x ∈ v(α).

Definition.
f is uniformly continuous iff for all x, y ∈ dom f ,
y ≈f x implies f(y) ≈f f(x).

Let ~s := 〈sn : n ∈ N〉 be an infinite sequence of reals.
r ∈ R is a limit of ~s iff r = sh~s(sn) for all ~s-unlimited n.

Let ~f := 〈fn : n ∈ N〉 be an infinite sequence of real
valued functions with common domain A ⊆ R.
fn → f pointwise iff
for all x ∈ A and all 〈~f, x〉-unlimited n, fn(x) ≈〈~f,x〉 f(x).
fn → f uniformly iff
for all x and all ~f-unlimited n, fn(x) ≈~f f(x).

Proposition. The limit of a uniformly convergent
sequence of continuous functions is continuous.

Proof. Let f = limn→∞ fn; we note first that if ~f ∈ v(α)
then also f ∈ v(α), by Definition Principle. For x, x′ ∈ A,
|f(x′) − f(x)| ≤
|f(x′) − fν(x′)| + |fν(x′) − fν(x)| + |fν(x) − f(x)| .
If x′ ≈α x then x′ ≈ν x for some α-unlimited ν. Now the
middle term is ν-infinitesimal, by continuity of fν, hence
also α-infinitesimal, and the other two are α-infinitesimal
by definition of uniform convergence. So f(x′) ≈α f(x). ¤
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Proof of equivalence with the standard def inition of
continuity:

⇒: Given ε > 0 fix α such that f, x, ε ∈ v(α). Let δ be
α-infinitesimal. If |y −x| < δ then y ≈α x, so f(y) ≈α f(x)
and hence |f(y) − f(x)| < ε.

⇐: Fix α such that f, x ∈ v(α). Let x′ ∈ dom f, x′ ≈α x;
we have to show that f(x′) ≈α f(x) Given ε ∈ v(α), ε > 0,
there exists δ such that
(*) (∀y ∈ dom f)(|y − x| < δ ⇒ |f(y) − f(x)| < ε).
We take one such δ and fix β so that f, x, ε, δ ∈ v(β). Then
there exists δ ∈ v(β) such that (*); hence by Transfer, there
exists δ ∈ v(α) such that (*). As |x′ −x| is α-infinitesimal,
we have |x′ − x| < δ, hence |f(x′) − f(x)| < ε. This is true
for all ε ∈ v(α), proving f(x′) ≈α f(x). ¤
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Example: DERIVATIVE.

Definition.
f is differentiable at x iff there is an 〈f, x〉-standard L ∈ R
such that f(x+h)−f(x)

h
− L is 〈f, x〉-infinitesimal, for all

〈f, x〉-infinitesimal h 6= 0.
If this is the case, f ′(x) := L = sh〈f,x〉

(
f(x+h)−f(x)

h

)
.

Proposition. If f is differentiable at x then f is
continuous at x.

Proof By definition, for any 〈f, x〉-infinitesimal h,
f(x + h) − f(x) = Lh + kh where k is 〈f, x〉-infinitesimal.
This value is 〈f, x〉-infinitesimal. ¤
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Proposition. (l’Hôpital Rule)
If limx→a |g(x)| = ∞ and limx→a

f ′(x)
g′(x) = d ∈ R then

limx→a
f(x)
g(x) = d.

Proof (after Benninghofen and Richter). We can assume
that a = 0 (replace x by x − a). Fix α so that f, g, d ∈
v(α). Let x be α-infinitesimal and y be x-infinitesimal. By
Cauchy’s Theorem, there is η between x and y

(hence, η is α-infinitesimal) such that f(y)−f(x)
g(y)−g(x) = f ′(η)

g′(η) ≈α d.
Now factor

d ≈α
f(y)−f(x)
g(y)−g(x) = f(y)−f(x)

g(y) × g(y)
g(y)−g(x) = (f(y)

g(y) −
f(x)
g(y) )(1− g(x)

g(y))
−1

and observe that f(x)
g(y) ≈α 0, g(x)

g(y) ≈α 0.

(limx→0 |g(x)| = ∞ implies that for all α-infinitesimal z,
g(z) is α-unlimited. By transfer to x-level, for all
x-infinitesimal z, g(z) is x-unlimited. As y is x-infinitesimal,
f(x)
g(y) and g(x)

g(y) are x-infinitesimal.)

It follows that the first factor is α-infinitely close to f(y)
g(y)

and the second to 1. From properties of infinitesimals we
conclude that f(y)

g(y) ≈α d.

Every α-infinitesimal y is x-infinitesimal for some
α-infinitesimal x. Hence f(y)

g(y) ≈α d holds for every
α-infinitesimal y, and we are done. ¤
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FRIST:
Language: ∈, v (binary).

Sα := v(α) = {x : x v α}; in particular S := S0.
x vα y ≡ (x v α ∧ y v α) ∨ x v y.

Let ϕ be any ∈-v-formula; ϕα denotes the formula
obtained from ϕ by replacing each occurence of v by vα.

Axioms:
ZFC (Separation and Replacement for ∈-formulas only).

Stratification: v is a dense linear preordering with a
least element 0 and no greatest element.

Boundedness: (∀x)(∃A ∈ S0)(x ∈ A)

Transfer: For any α, (∀x ∈ S0)(ϕ0(x) ⇔ ϕα(x)).

Standardization:
(∀x)(∀x ∈ S0) (∃y ∈ S0) (∀z ∈ S0)
(z ∈ y ⇔ z ∈ x ∧ ϕ0(z, x, x)).

Idealization:
For any 0 @ α, any A,B ∈ S0 and any x,
(∀a ∈ Afin ∩ S0)(∃x ∈ B)(∀y ∈ a) ϕα(x, y, x)
⇔ (∃x ∈ B)(∀y ∈ A ∩ S0) ϕα(x, y, x).

In these axioms ϕ can be any ∈-v-formula, not just an
∈-formula as usual. 0 can be replaced by any β v α:
FRIST is fully relativized.

Theorem. FRIST is a conservative extension of ZFC.
In fact, FRIST has a standard core interpretation in ZFC.
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Example: LEBESGUE MEASURE on [0, 1].

B is the algebra generated by all left-closed right-open
intervals.
l([a, b)) = b − a for a < b.
l(b) =

∑n
k=1 l(Ik) if b =

⋃n
k=1 Ik ∈ B and the Ik are

mutually disjoint.

Proposition. Let X ⊆ [0, 1], X ∈ v(α), and α @ β.
X is Lebesgue measurable iff there exist b1, b2 ∈ B such
that b1 ⊆ sh−1

β (X) ⊆ b2 and l(b2)− l(b1) is α-inf initesimal.
shα(l(b1)) = shα(l(b2)) is the Lebesgue measure of X.
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Example: HIGHER DERIVATIVES.

We assume that f, x ∈ v(α) and f ′(y) exists for all y ≈α x.

If f ′′(x) = L exists, then L ≈α
f(x+2h)−2f(x+h)+f(x)

h2 holds
for all h ≈α 0, h 6= 0. However, the converse of this state-
ment is false; existence of L ∈ R ∩ v(α) with the above
property does not imply that f ′′(x) exists.

Proposition. Assume that f, x ∈ v(α) and f ′(y) exists
for all y ≈α x. Then f ′′(x) exists iff there is a L ∈ R∩v(α)
such that

L ≈α
f(x+h0+h1)−f(x+h0)−f(x+h1)+f(x)

h0h1

for all h0 ≈α 0, h1 ≈h0 0, h0, h1 6= 0.
If this is the case, f ′′(x) = L.

Proposition. Assume that n, f, x ∈ v(α) and f (n−1)(y)
exists for all y ≈α x. Then f (n)(x) exists iff there is
L ∈ R ∩ v(α) such that

L ≈α
1

h0...hn−1

∑
i (−1)i0+...+in−1 f(x + hi0 + . . . + hin−1)

for all 〈h0, . . . , hn−1〉, where i = 〈i0, . . . , in−1〉 ∈ {0, 1}n,
hik := hk if ik = 0, hik := 0 if ik = 1;
h0 ≈α 0, hk ≈hk−1 0 for 0 < k < n, and all hk 6= 0.
If this is the case, f (n)(x) = L.

This proposition implies existence of “strongly decreasing”
sequences of infinitesimals of any finite length n :
〈h0, . . . , hn−1〉 where each hk is hk−1-infinitesimal.
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BST:
Language: ∈ (binary), st (unary).

S := {x | st x }, I := {x | x = x }.

If ϕ is an ∈-formula, ϕS is the formula obtained from ϕ by
replacing each subformula of the form (∃x) ψ by (∃stx) ψ,
and each subformula of the form (∀x) ψ by (∀stx) ψ.
Afin is the set of all finite subsets of A.

Axioms of BST:

ZFC: ϕS where ϕ is any axiom of ZFC (Separation and
Replacement for ∈-formulas only).

Boundedness: (∀x)(∃A ∈ S)(x ∈ A).

Transfer: (∀x ∈ S)(ϕS(x) ⇔ ϕ(x))
where ϕ(x) is any ∈-formula.

Standardization:
(∀x)(∀x ∈ S)(∃y ∈ S)(∀z ∈ S)
(z ∈ y ⇔ z ∈ x ∧ ϕ(z, x, x))
where ϕ(z, x, x) is any ∈-st-formula.

Idealization:
For any A, B ∈ S and any x,
(∀a ∈ Afin ∩ S)(∃x ∈ B)(∀y ∈ a) ϕ(x, y, x) ⇔
(∃x ∈ B)(∀y ∈ A ∩ S) ϕ(x, y, x)]

where ϕ(x, y, x) is any ∈-formula.

Theorem (see the book of Kanovei and Reeken).
BST is a conservative extension of ZFC.
In fact, BST has a standard core interpretation in ZFC.
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We use letters U, V to denote ultrafilters.
If U is an ultrafilter, IU :=

⋃
U .

If IU ∩ (I × I) ∈ U then π(U) denotes the projection of U
onto the domain of IU ; i.e., for A ⊆ dom IU , A ∈ π(U) ⇔
{〈a, b〉 ∈ IU} | a ∈ A} ∈ U ; π(U) is an ultrafilter.

For a standard ultrafilter U , x M U denotes that
x ∈

⋂
(U ∩ S) (x belongs to the monad of U).

Proposition. (Andreev and H.) (Back and Forth Lemma)
(a) (∀x)(∀U ∈ S)[x M U ⇒ (∀y)(∃V ∈ S) (π(V ) = U ∧
〈x, y〉M V )]
(b) (∀U ∈ S)(∀x)[x M U ⇒ (∀V ∈ S)(π(V ) = U ⇒
(∃y)〈x, y〉M V )].

Underlying this lemma is the existence of an isomorphism
between (VI/U)S, the ultraproduct of the universe modulo
U constructed inside S, and S[x] := {f(x) : f ∈ S} for
xM U , given by f 7→ f(x) (for f ∈ S, dom f = IU ), and
the fact that these isomorphisms “fit together” in a natural
way.

Corollary. (Normal Form Theorem, or Reduction to Σst
2

Formulas.) There is an effective procedure that assigns
to each ∈-st-formula ϕ(x) an ∈-formula ϕm(U) so that,
for all x, ϕ(x) ⇔ (∃U ∈ S)(〈x〉 M U ∧ ϕm(U)) ⇔
(∀U ∈ S)(〈x〉M U → ϕm(U)).

Kanovei and Reeken used Reduction to Σst
2 to prove that

Collection for arbitrary ∈-st-formulas holds in BST.

Corollary. Any two countable models of BST with the
same standard core are isomorphic.
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Definition: U ∼ V ⇔ U ∩ V is an ultrafilter.

Definition (Stratified ultrafilters over A):
γ0A := A;
γξA := γ<ξA ∪ {U : U is non-principal over γ<ξA and

U ∼ V does not hold for any V ∈ γ<ξA}.

Definition (FRIST):
Let x ∈ A ∈ S. A standardizer for x over A is a sequence
−→u := 〈ui : i ≤ ν〉 where ν ∈ ω and
i) each ui is a stratified ultrafilter over A;
ii) u0 ∈ S, uν = x;
iii) ui @ ui+1 for i < ν;
iv) if ui v α @ ui+1 then ui+1 ∈

⋂
(ui ∩ Sα).

Theorem. In the interpretation for FRIST constructed
in ref. (1), for any x ∈ A ∈ S there is a unique
standardizer −→u A for x over A. The universe S[−→u A] is
independent of A; we denote it S[[x]].

Definition (FRIST): xM U denotes that U ∈ S is a
stratified ultrafilter over A and there is a standardizer −→u A

for x over A with u0 = U .

Theorem. The Back and Forth Lemma holds in the
interpretation for FRIST constructed in ref. (1).

Corollary. Any two countable models of
GRIST = “FRIST + The Back and Forth Lemma”
with the same standard core are isomorphic.

Corollary. (GRIST) Collection for ∈-v-formulas fails.
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Repeated ultrapowers:

VI/U ² “ k(U) is an ultrafilter over k(I) ”
(k is the canonical embedding of V into VI/U)

Observation:
[Vk(I)/k(U )]V

I/U is isomorphic to VI×I/U ⊗ U where
X ∈ U ⊗ U ≡ {i0 ∈ I : {i1 ∈ I : 〈i0, i1〉 ∈ X} ∈ U} ∈ U .

More generally, let⊗
0 U := the principal ultrafilter over {0};⊗
1 U := U ;⊗
n+1 U := U ⊗ (

⊗
n U ).

For X ⊆ In+1, X ∈
⊗

n+1 U ⇔
{i0 ∈ I : {〈i1, . . . , in〉 : 〈i0, i1, . . . , in〉 ∈ X} ∈

⊗
n U} ∈ U .

ϕ : I2 → I1 is a morphism of U2 to U1 iff
(∀X ∈ U1)(ϕ−1[X] ∈ U2).
Every morphism ϕ induces an elementary embedding
ϕ∗ : VI1/U1 → VI2/U2 defined by ϕ∗(f) = f ◦ ϕ.

For 0 ≤ ` ≤ n, π`,n is the projection of In onto I`:
π`,n(〈i0, . . . , in−1〉) = 〈i0, . . . , i`−1〉.

Then π`,n :
⊗

n U →
⊗

` U is a morphism of ultrafilters, so
π∗

`,n : VI`
/
⊗

` U → VIn
/
⊗

n U is an elem. embedding.

Proposition. (Factoring Lemma)
For 0 ≤ ` ≤ n

VIn

/
⊗

n U ∼= [ Vπ∗
0,`(I

n−`)/
⊗

n−` π∗
0,`(U ) ]V

I`
/

⊗
` U .
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Iterated ultrapowers:

The system 〈π∗
`,n : ` ≤ n ∈ ω〉 has a direct limit

(∗VU
ω , =∗,∈∗), which elementarily extends each VIn

/
⊗

n U .

Iterated ultrapowers (Gaifman and Kunen)
(iteration with f inite support):

ω can be replaced by any linear ordering (Λ,≤).

Note: If U is NOT countably complete then ∗VU
ω is NOT

isomorphic to [ ∗Vk(U )
k(ω\1) ]V

I/U , i.e., the Factoring Lemma for
the direct limit fails at stage 1. (Reason: k(ω) is not well-
founded and it has cofinality > ω.)

Observation:
Ultrapowers can be repeated into transfinite!

Assume U is over I = ω and let Un :=
⊗

n U . Then we
can define an ultrafilter W over I<ω (Rudin-Froĺık sum) by:
A ∈ W ⇔ {n ∈ I : {t ∈ In : 〈n〉 a t ∈ A} ∈ Un} ∈ U .
( 〈n〉 := {〈0, n〉}.)

Let Ū := 〈Un : n ∈ ω〉, ν := 〈n : n ∈ ω〉.

VI/U ² “ Ū is an ultrafilter over k(I)ν ; Ū =
⊗

ν k(U) ”.

Factoring Lemma: VI<ω
/W ∼= [ Vk(I)ν

/Ū ]VI/U .

“Iteration with *-f inite support”: Internally iterated
ultrapowers are obtained by allowing arbitrary transfinite
repetitions in the Gaifman-Kunen construction.

In ref. (1), interpretations for GRIST in ZFC are con-
structed using internally iterated ultrapowers of V.
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External sets:

Given an ultrapower VI/U = (VI ,=U ,∈U), one can build
a cumulative universe EU over this structure and extend
=U and ∈U to it so that this completed ultrapower
(EU , =U ,∈U ) satisfies ZFC− (ZFC minus Regularity).

In the construction of ref.(1) ultrapowers can be replaced
by completed ultrapowers.

The last two slides outline the theory of the resulting
structure.
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RST:
Language: ∈ (ternary).
x ∈w y reads “x belongs to y relative to w”.

It is possible that x ∈w y and x /∈w′
y,

but we want some stability.

Definition: x ∈ y iff (∃w)(x ∈w y)

Axioms: ∅, {x, y} exist.

Definition: x is w-internal iff (∃y)(x ∈w y).
Notation: Iw(x).

Definition: y is w-standard iff y = ∅ ∨ (∃x)(x ∈w y).
Notation: Sw(y).

Axioms:
Sw(w)
Sw(y) ⇒ Iw(y)
S{x,y}(x), S{x,y}(y), Sw(x) ∧ Sw(y) ⇒ Sw({x, y})
Sw(x) ⇒ (Sx(z) ⇒ Sw(z))
Iw(x) ⇒ (Ix(z) ⇒ Iw(z))
(Iw(x) ∧ Sw(y) ∧ x ∈ y) ⇒ x ∈w y

Definition: x vw y iff Iw(x) ∧ Iw(y) ∧ S{y,w}(x).

Axioms: ϕ(Iw, vw) where ϕ is any axiom of GRIST.
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Axiom:
(∃!W )(∀x, y)(x vw y ⇔ (SW (〈x, y〉) ∧ 〈x, y〉 ∈ W )).

It follows that
(∃!A)(∀x)(Sw(x) ⇔ SW (x) ∧ x ∈ A) Notation: A = Sw.
(∃!B)(∀x)(Iw(x) ⇔ SW (x) ∧ x ∈ B) Notation: B = Iw.

Note: It is necessary to carefully distinguish between
x ∈ Sw and Sw(x). Sw and Iw are sets in SW .
In RST there is no need for classes!
SW can serve as the external universe for Iw. It contains all
collections definable in (Iw,vw) and satisfies ZFC−.

Definition: IW
w (x) iff IW (x) ∧ (∃y)(Sw(y) ∧ x ∈ y).

Axioms: (∀x)(Iw(x) ⇒ (ϕ(Iw, vw)(x) ⇔ ϕ(IW
w , vW ¹ IW

w )(x)))
where ϕ is any ∈-v-formula.

Work on a “complete” axiomatization is in progress.


