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Lévy processes: definition
Definition 1. Consider a probability space
(2, A,P) and let d € N. A stochastic process
r:Q xR — R? js called a Lévy process if and
only if it is pinned to zero and has stationary
and independent increments, i.e.

1. CIZOZOOHQ,

2. xy — x IS independent of
Fs=o0(xy : u<s) forallt>s,

3. the law of x; — x4 equals the law of x;_ for
allt > s, and

4. P-almost all paths of (x1),cp are
right-continuous with left limits (cadlag).



Translation-invariant Markovian
semigroups

There is a one-to-one correspondence between

e Lévy processes on the space D|0, +00) of
cadlag paths in R

e Markovian semigroups (p;);cg, On RY that
are

1. continuous (i.e. t — p; is continuous
with respect to the vague topology) and

2. (space-)translation invariant (in the
sense that p, f (- + z) = p. f for all
z € R, t > 0 and any nonnegative
Lebesgue-Borel measurable f : RY — R).

This bijection is given by
(., (A, P) = (Pe,)>0 5

((pJ)JeR+<No) N (pt)tZO
(lonescu-Tulcea-Kolmogorov).



Lévy-Khintchine formula

Theorem 1 (Lévy-Khintchine formula, cf.

e.g. Revuz and Yor [5], Sato [6]). Consider a
Markovian semigroup (pi)tcr, on R? d € N.
(pt)ter, is continuous and translation invariant if
and only if the infinitesimal generator { of
(pt)ter, can be written as

d d
1
brfeg > 0i20:0;f + > vidif
i=1

i,J=1

w6 = ) i)

dxd

where 0 € R is a symmetric d x d-matrix

with nonnegative entries, v € R? and v is a
Radon measure on R? satisfying

1. v{0} =0,
2. Jyy0 () < %,
3. v [BBl(O)} < 400,

CB1(0) denoting the complement of the unit ball
in RY centered at 0.



Overview of this paper: theory

In this paper we shall, using results of
Lindstrgm’s [4], construct a particularly simple
internal analogue of 7 for a given positive
infinitesimal h > 0.

This will be an internal operator L such that for
all test functions f € C5°(R%) one has

Ve € “RWz e R (z ~ z = L*f (z) ~ (f(z))

and in addition, the internal translation-invariant
Markovian semigroup P = (P;)ich.+N, generated
by L shall be proven to be the internal
convolution of

e a weighted multiple of Anderson’s random
walk as well as

e the superposition of hyperfinitely many
independent stochastic jumps,

corresponding to the diffusion and jump (or: Lévy
measure) parts of the initial Lévy process,
respectively.

L is said to generate the reduced lifting.



Application: Towards a weak notion
of completeness for Lévy markets (1)

Let d =1 and let A denote the internal Lévy
measure of the reduced lifting of a given Lévy
process x., that is: the set of pairs of possible
jump sizes and intensities. Suppose, the Lévy
measure v of z. is concentrated on R (“all
risks are insured against’).

One can show that there is a reduced lifting of x.
that, at each time, is the independent sum of

e a weighted multiple of Anderson’s random
walk (the lifting of the diffusion part), and

e the superposition of m € *N\ N
independent stochastic jumps, each of
which is greater than rh, occurring at a
probability given by the internal Lévy
measure A which is derived from *v.



Application: Towards a weak notion
of completeness for Lévy markets (2)
Thus, the Markov kernel P, generating the

internal Markov chain of the reduced lifting of x.
can be decomposed according to

P, = Q(O) . Q(m)
wherein

° Q(O)  f
o f ( — ah%) + (1 —po)f ( —I-O'h%) for
some o > 0, pg € (0,1), and

o forallie{1,...,m},
QW :f—L—p)f()+pif(+a),

a; >rh, i€ {l,...,m}, being the jumps of
the reduced lifting, counted with
multiplicity.

This reduces the 2**!-nomial market model
Py, to a binomial one (uniquely up to
permutations of {a;}.).



Notation (1)

Fix an infinite hyperfinite number H, and let
L := L - *Z" be the lattice of mesh size

n := +. For an arbitrary N € *N\ N, we set
[—=N, NJ*NL =: L, thereby ensuring that L is
hyperfinite.

By p := pr, we shall denote the LL-rounding
operation pr,, defined by
pL:x — (sup{y; <z; : yel}V —N)?:l,

Owing to the particular shape of I as a discrete
set, the supremum in each component is even a

maximum and p : *R% — L.



Notation (2)

Let 0 < h = 0 and define, for a € L and
A € "Ry, firstly the internal infinitesimal
generator for a hyperfinite Poisson process

L frs f(+a)— f
and the corresponding internal Markov kernel
P = f+ Ll = f+h(f(-+a)-f).
Varying the intensity, we also set
PN = f 4+ hALY.

These kernels generate internal Markov chains

via
o(t/h)
vt € h*N, P . (P(O‘ ”“) P = plb),

The modified internal infinitesimal generator
for infinitesimal £ € h*Ng is defined by

P(a) .
Lga):fr—> ¢ { f




Existence of a twice S-continuous
S-infinitesimal generator for
superpositions

The (modified) internal infinitesimal
generator has a standard part:

Lemma 1. Let f : RY — R continuous with
compact support, and consider a Radon measure
v, whether finite or infinite, on R%. Then for any

two hyperfinite real numbers y ~ x and all
0~ t¢e h*N, one has:

[ L 1) (vop™) (o)

\ >4

=3 e Lt F(y) - vlp—{a}]

~ [ L f@) (vor™) (d).

\ . 7
~

=3 e Ly f(z)-v[p=1{a}]

Proof idea. A combination of elementary
estimates yields the result for finite v; the general
result will follow by truncation and monotone
convergence. []



Notation: composition of hyperfinite
kernels

Let AB for two hyperfinite translation-invariant
kernels A, B on *R? denote the
translation-invariant kernel obtained by
convolving the two associated measures: If

AfHsz —a)), B:fe Y af(-—8,),
J

then we define the product of A and B as

AB:fw— Y > g | (=)

le{gi}iu ﬁj}j gﬁ—i’éjj:v

Then AB = BA is again a hyperfinite
translation-invariant kernel and we can define
the product J],., A for a hyperfinite set A of
hyperfinite translation-invariant kernels
recursively in the internal cardinality of A.
Analogously, powers of hyperfinite
translation-invariant kernels can be defined.
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Superposition of hyperfinite Poisson
processes (1)

Lemma 2. Consider an internal hyperfinite
family {x;};.,; € L of vectors in *R% and an
internal hyperfinite family of positive hyperreal
numbers (X\;),_, Such that:

1. Co =) 1<z, Ai as well as
Ci = Z|:ch|<1 )\j‘.fl?j|2 are finite;

03 = Z|a:j|<1 )\j‘ZIZ‘jL one has

NVh =~ CsVh~Cy-h 0.

(These requirements may be read as regularity
conditions on the measure A — ) . \ixa (z;))

Define, fort € h - *N,

Vi< M QY= P,
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Then for all f € C? (Rd,IR{) with a finite
C?(R%)-norm, there exists an R = R(f) € *R
with hR ~ 0 such that for all kK < M,

M1 (0) N
) m (o i) ( §L)1d>f <R

; h h
1>k

Moreover, this R(f) can be chosen to be a
1-homogeneous function in f by setting

R(f) := (4Co* 4 4CyCs) Sup f]

—+ (NOg + C()Cl —+ 40201) sup |f”|.
Rd

Proof idea for Lemma 2. Apply the transfer

principle to Taylor’s Theorem for functions in
C? (R4, R). O
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Superposition of hyperfinite Poisson
processes (2)

Remark 1. The conditions imposed in
assumption (2) of Lemma 2 can be viewed as
conditions on the internal measure A on

L =LnN[-N,N]% induced by (\;); and (z;); via
A dixa(zi). They are exactly the
regularity properties of Lindstrgm’s
hyperfinite Lévy measure (as constructed in the
proof in his hyperfinite representation theorem for
standard Lévy processes [4, Theorem 9.1]).
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Superposition of hyperfinite Poisson
processes and internal Lévy measures

Theorem 2. Under the assumptions and with
the notation of the previous Lemma 2: For any

f e C*(R%R) with || f|lc2ray < +00 and for all
y € *R, the central approximate identity

R ore (i) g
HKM%Lf T~y h‘Z L)

_ / (f (y+ ) — F(y) Alda).

holds, A being the internal measure on I defined
b_y A P(L) —> *Rzo, A— Zi<M )\ZXA(ZIZ‘Z)

Proof idea. Prove inductively in M € *N that
there is an R > 0 (the same as in Lemma 2)
such that

(i) ¢ (0) p
HKMCihf f_ZQh{L / < 3Rh = 0.
i<M

[]
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Hyperfinite random walks

For the following, let Q := (Q, L (A),L (1)) be a
hyperfinite Loeb probability space such that
(2, A, 1) is an internal probability space, let

T := h*NN[0,1] with h = % for some

N e *N\ N, and fix d € N,

Adopting the terminology of Lindstrgm’s [4]:

Definition 2. [4, Definitions 1.1] Consider an
internal stochastic process X : Q x T — *R%. X
is called a hyperfinite random walk with
increments from A and transition probabilities
{Pa},eca if and only if

1. X():OOI’IQ,

2. The increments AX,;, t € TNJ[0,1), defined
by AX,; := X1 — Xy, form a hyperfinite
set of *-independent internal random
variables, and

3. Forallt € T witht <1 and for all a € A,

p{AX; =a}l = p,.
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Hyperfinite Lévy processes

Let Fin (*Rd) denote, as usual, the subset of

finite elements of *R<.

Definition 3. [4, Definition 1.3]
X :Qx T — *R% is called a hyperfinite Lévy
process if and only if

1. X is a hyperfinite random walk and

2. L(p) {mtETﬂ[O,l) {Xt € Fin (*Rd) }] =1
(almost every path remains finite).
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Hyperfinite Lévy processes:
Lindstrgm’s criteria

The proof of the subsequently stated Theorem 4
will be based on the following result by Lindstrgm
which characterises hyperfinite Lévy processes
via the regularity of the associated
infinitesimal Markov kernels:

Theorem 3. [4, Theorem 4.3] Let X be a
hyperfinite random walk with increments from A
wcA- X Isa
hyperfinite Lévy process if and only if all of the

and transition probabilities {p, }

following conditions are satisfied:
1. For all k € Fin (*R) \ st~ {0},
, D ja|<k WPa € Fin (*Rd).
2. For all k € Fin (*R),
b5 gk [0f?pa € Fin ("RY).

3. limi_ o ° (% Z|a|>kpa) =0, i.e. for all
e € Ry there exists some n. € N such that
for all k > n., one has % Z|a|>kpa <e.
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Hyperfinite Lévy processes as
convolutions of discrete jumps (1)

Whether the internal infinitesimal generator
comes from a superposition or a Lévy measure:
The property of generating a hyperfinite Lévy
process is unaffected:

Theorem 4. Under the hypotheses and with the

notation of the previous Lemma 2: The internal
Q) f—f

h
generates a hyperfinite Lévy process (rather than

infinitesimal generator f — >, _,,

a mere hyperfinite random walk) if and only if so

does the internal infinitesimal generator
() ¢
f ILicar C}fh I=r

Let A, B denote the sets of increments and
{pa : a€ A}, {p, : b€ B} the sets of
transition probabilities corresponding to the
internal infinitesimal generators

QW - [T QS F—1
fo2ien 55— I = !

respectively.
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Hyperfinite Lévy processes as
convolutions of discrete jumps (2)

Proof sketch for Theorem 4.

By Theorem 2, for all f € C*(R) with finite
C?-norm:

ES fapen g S fOr ()

acA beB

Approximate the “integrands” occurring in
Lindstrgm’s criteria [4, Theorem 4.3] by test
functions f, and apply (1). Then one can first

verify
((3) for A) < ((3) for B).

Also, one can prove
((1) for A, (2) for A) < ((1) for B, (2) for B)

for d = 1, and by considering each half-axis
separately also for arbitrary d.

Thanks to Lindstrgm’s [4, Theorem 4.3] criteria,
the equivalence assertion follows. []
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Main result: existence of the

reduced lifting
Theorem 5. Given a positive infinitesimal
h = < for M € *N\ Ny and a hyperfinite lattice
L = n*Z* N [N, N|* of infinitesimal mesh n,
any Lévy process x. with infinitesimal generator ¢
is adapted-equivalent to the standard part of a
unique hyperfinite Lévy process X. for time mesh
h with the following property: The jump part of
the internal translation-invariant Markov chain
corresponding to X. is generated by the
measure % ,c1\ {0} Ao (When viewed as a kernel),
which is an internal convolution of measures of
the shape

Ao = Aaba + (1 — Aa) o

for a € L\ {0}, wherein

va €L\ {0} Ao = ("vo(m)!){ak

The diffusion part will be a weighted multiple of
Anderson’s random walk, *-independent from the
Jjump part at any timet € T.
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Comments on the main result

Definition 4. The lifting X. of Theorem 5 shall
be called a reduced lifting of its standard part.

The main idea of this paper is to combine
Lindstrgm’s hyperfinite representation theorem
for standard Lévy processes [4, Theorem 9.1] with
the previous results to obtain a particularly simple
lifting of a given Lévy process.

Remark 2. The hyperfinite measure A referred
to in Theorem 5 corresponds to an internal
sum of independent hyperfinite Poisson
processes with jump directions in the hyperfinite

lattice L \ {0}.

Remark 3. As one might already see from the
statement of the Theorem, the proof of this
Theorem exploits the universality of hyperfinite
adapted spaces as discovered in the model theory
of stochastic processes by Keisler et al.

(121.13].11])
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Proof of the main theorem (1)

The proof of Theorem 5 will make use of
Theorems 2 and 4. In addition, the following
Lemma which may be interesting in its own right
and is an application of Lemma 1:

Lemma 3. Consider a pure-jump hyperfinite
Lévy process Y. with internal infinitesimal
generator Ly, and let y. be its standard part.
Then Y. right-lifts y. (due to Lindstrgm [4]), and
if £ denotes the infinitesimal generator of y., then
the pointwise standard part of any L, for
h*N > u =~ 0 is £: For all smooth functions with
compact support f,

Vo ~ z € RVu € h*N st~ {0}
Lyf(z) = Lnf (z) = {f(z).

The result referred to is

Theorem 6. [4, Proposition 6.3, Theorem 6.6]
The right standard part x. of any hyperfinite
Lévy process X. exists and is a Lévy process.
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Proof of the main theorem (2)

Furthermore, the proof of Theorem 5 employs the
following representation of standard Lévy
processes that was proven by Lindstrgm
(although in the language of Fourier transforms
rather than semigroups):

Theorem 7. [4, Theorem 9.1] Given a drift
vector v € R?, a covariance matrix

o= (Uiaj)i,je{l,...,d} (that is, a symmetric

d x d-matrix with nonnegative entries) and a
Borel measure on R% \ {0} such that

fBl(O) ly?|v(dy) < 400 and v [CB1(0)] < +00),
there is a hyperfinite Lévy process X. with
standard part x. such that the infinitesimal
generator of the Markovian semigroup
corresponding to x. is

d d
1
0 f'—>§ g 0i,;°0:0; f + E Vi 0i f
i=1

i,9=1

+ [ ()= 1) vld)
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Proof of the main theorem (3)

Proof sketch for Theorem 5. 1. Without loss of
generality, consider only pure jump processes
x. (cf. the Lévy-Khintchine formula).

2. By adapted universality, there is a process
y. equivalent to z. on any hyperfinite
adapted probability space ().

3. Apply Lindstrgm’s representation theorem
for standard Lévy processes to y. to find a
hyperfinite (and pure-jump) Lévy process Y
with infinitesimal generator
Lii f e Saesda (f (+0) = ).

4. By Theorems 2 and 4, there is a hyperfinite
Lévy process Z with internal infinitesimal
generator

Micns @' = _ (KactBo) 5 f — f
h h

which has the same standard part (in a

Ky:f—

pointwise sense) as the internal infinitesimal
generator Ly,.
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5. Therefore, due to Lemma 3, the standard
parts y. of Y. and z. of Z. have the same
infinitesimal generator and thus the same
finite-dimensional distributions.

6. Since y. and z. are Markov processes, their
adapted equivalence follows from the equality
of the finite-dimensional distributions.

[]

25



References

[1]

2]

[3]

[4]

[5]

[6]

S. Fajardo, H. J. Keisler, Model theory of
stochastic processes, Lecture Notes in Logic 14,
A. K. Peters, Natick (MA) 2002.

D. N. Hoover, H. J. Keisler, Adapted probabil-
ity distributions, Transactions of the American
Mathematical Society 286 (1984), 159 — 201.

H. J. Keisler, Infinitesimals in probability the-
ory, Nonstandard analysis and its applications
(ed. N. Cutland), London Mathematical Society
Student Texts 10, Cambridge University Press,
Cambridge 1988, 106 — 139.

T. Lindstrgm, Hyperfinite Lévy processes,
Stochastics and Stochastics Reports 76 (2004),
517 — 548.

D. Revuz, M. Yor, Continuous martingales and
Brownian motion, 3rd ed, Grundlehren der
mathematischen Wissenschaften 293, Springer,
Berlin 1999.

K. Sato, Lévy processes and infinitely divisible
distributions, Cambridge Studies in Advanced
Mathematics 68, Cambridge University Press,
Cambridge 1999.



