Canard Solutions near a Degenerated Turning Point

T. Forget* - Universite de La Rochelle

Advisors: Eric BENOIT and Guy WALLET

- 0 -

^{*}This work has been supported by the Region Poitou-Charentes

Singularly perturbed differential equation:

$$\varepsilon u' = \Psi(x, u, \alpha, \varepsilon) \tag{1}$$

 $x \in [-1,1]$, u is a real function, $\alpha \in \mathbb{R}$, $\varepsilon \to 0$ positive

 \Rightarrow To simplify notations, $\varepsilon = \emptyset$, fixed.

We are studying solutions of perturbed equations that are staying "near" the repulsive part of a slow curve.

Example: case of the equation

$$\varepsilon u' = x^3 u + \alpha + \varepsilon (u^2 + x)$$

PART 1: Existence of canard solutions

(H1) (1) has a slow curve (α_0, u_0)

$$(\forall x, \Psi(x, u_0(x), \alpha_0, 0) = 0)$$

(H2)
$$\frac{\partial}{\partial u}\Psi(x,u_0(x),\alpha_0,0)$$
 is
$$\begin{cases} < 0 \text{ if } x < 0 \\ > 0 \text{ if } x > 0 \end{cases}$$

p: order of the zero x = 0 (p is ODD)

NOTE: Similar study in the complex case

(OVERSTABLE solutions)

Main difference:

- $\alpha \in \mathbb{C}^p$ in the complex case
- $\alpha \in \mathbb{R}$ in our case

Restriction of our study to the equations

$$\varepsilon u' = x^p u + \alpha x^L + \sum_i \alpha^{k_i} x^{l_i} + \varepsilon P(x, u, \alpha, \varepsilon)$$
 (2)

with:

- L < p even
- $k_i \geq 1$ and $l_i \geq L+1$

THEOREM

"Locally" $\exists ! \alpha^*$ such that the equation

$$\begin{cases} (2) \\ u(-1) = 0 = u(1) \end{cases}$$

has an unique solution $u^* \in \mathcal{C}([-1,1],\mathbb{R})$ which is limited.

Solutions canard en des points tournants degeneres (submitted) [in french]

Demonstration:

Given (β, v) , the linear equation

$$\begin{cases} \varepsilon u' = x^p u + \alpha x^L + \sum_i \alpha^{k_i} x^{l_i} + \varepsilon P(x, \mathbf{v}, \boldsymbol{\beta}, \varepsilon) \\ u(-1) = 0 = u(1) \end{cases}$$

has an unique solution $(\alpha, u) =: \Xi(\beta, v)$

 $\Xi = \mathcal{I} \circ \wp$ with :

- $\wp(\beta, v)(x) := P(x, v(x), \beta, \varepsilon)$
- \mathcal{I} : linear operator such that $\mathcal{I}(w)$ solution of

$$\begin{cases} \varepsilon u' = x^p u + \alpha x^L + \sum_i \alpha^{k_i} x^{l_i} + \varepsilon w \\ u(-1) = 0 = u(1) \end{cases}$$

 \equiv is a $(\pounds \varepsilon^{1/(p+1)})$ -Lipschitz function

 (α^*, u^*) : fixed point iteration of Ξ .

PART 2 : Asymptotic expansion

current work

- \equiv is a $(\pounds \varepsilon^{1/(p+1)})$ -Lipschitz function - $(\alpha^*, u^*) = \lim_{n \to +\infty} (\alpha_n, u_n)$ \Rightarrow

$$u^* = \sum_{n \ge 1} (u_n - u_{n-1})$$

where $\forall n$, $u_n - u_{n-1} = \pounds \varepsilon^{n/(p+1)}$.

Existence and **uniqueness** of an $\varepsilon^{1/(p+1)}$ -asymptotic expansion for u^* ?

The "natural" $\varepsilon^{1/(p+1)}$ -asymptotic expansion $u^*(x) \approx \sum_k u_k(x) \varepsilon^{k/(p+1)}$, with u_k analytic in x,

isn't suffisant :

O can be a pole of the coefficients u_k .

We allow u_k to be analytic in x and in intermediary function(s) φ :

$$u^*(x) \approx \sum_k u_k(x, \varphi(x, \varepsilon)) \varepsilon^{k/(p+1)}$$

Some possible choices for φ :

$$e^{-x^{p+1}/arepsilon}$$
 , $(\mathcal{I}(x),...,\mathcal{I}(x^p))$

Note that:

$$||e^{-x^{p+1}/\varepsilon}|| = 1$$

$$||xe^{-x^{p+1}/\varepsilon}|| = \frac{e^{-1/(p+1)}}{(p+1)^{p+1}} \varepsilon^{1/(p+1)}$$

So, $x^i \varphi^j \varepsilon^{l/(p+1)}$ and $\varepsilon^{l/(p+1)}$ have possibly not the same "place" in the expansion.

We have to "ordered" the monomials

$$x^i \varphi^j \varepsilon^{l/(p+1)}$$

with respect to their estimates in $\varepsilon^{1/(p+1)}$.

⇒ Definition of an "order" :

$$\mathbf{H}(x^{i}\varphi^{j}\varepsilon^{l/(p+1)}) := \left(\frac{\ln||x^{i}\varphi(x,\varepsilon)^{j}\varepsilon^{l/(p+1)}||_{x}}{\ln\varepsilon}\right)^{o}$$

Set-up of a structure of gradued algebra $(A_k)_k$ such that

$$\mathcal{A}_k = \text{Vect}\{x^i \varphi^j \varepsilon^{l/(p+1)}; \, \maltese(x^i \varphi^j \varepsilon^{l/(p+1)}) \le k\}$$

 \mathcal{A}_k will be the set of the principal term with order k for the $\varepsilon^{1/(p+1)}$ -asymptotic expansion of u^* .

Implementation in the case p = 0:

NOT a study of a canard solution! Study of a limit layer with an attractive slow curve for $x \in [0, 1]$.

$$\varphi(x,\varepsilon)=e^{-x/\varepsilon}, \text{ and } \maltese(x^i\varphi^j\varepsilon^l)=\left\{\begin{array}{l} i \text{ if } j=0\\ i+l \text{ if } j>0 \end{array}\right.$$

$$\begin{cases} \varepsilon u' = -u + \varepsilon P(x, u, \varepsilon) \\ u(0) = u_0 \neq 0 \end{cases}$$

$$u^*(x) \approx \sum_{i,l} a_{i,0,l} x^i \varepsilon^l + \sum_{i,l,j \ge 1} a_{i,j,l} \left(\frac{x}{\varepsilon}\right)^i \varphi(x,\varepsilon)^j \varepsilon^{l+i}$$

which is a particular form of a Combined Asymptotic Expansion :

$$u^*(x) \approx \sum_n \left(f_n(x) + g_n\left(\frac{x}{\varepsilon}\right) \right) \varepsilon^n$$

where for all n, f_n is analytic, and g_n is an exponentially decreasing function.

What about the "canard situation" case?

- + p = 1: Non degenerated turning point \rightarrow No intermediary function needed
- already countain in the overstable theory
- $+ p \ge 3$: degenerated turning point
- → Definition of adapted intermediary function done
- * if P is linear in u:

study is done

* if P is not necessary linear in u:

problem to solve :

complete study of the interactions (multiplication+composition) of the intermediary functions.