Iterated Ultrapowers and Automorphisms

Ali Enayat

Pisa, May 2006

Our story begins with:

- \bullet Question (Häsenjäger): Does PA have a model with a nontrivial automorphism?
- Answer (Ehrenfeucht and Mostowski): Yes, indeed given any first order theory T with an infinite model $\mathfrak{M} \models T$, and any linear order \mathbb{L} , there is a model $\mathfrak{M}_{\mathbb{L}}$ of T such that

$$Aut(\mathbb{L}) \hookrightarrow Aut(\mathfrak{M}_{\mathbb{L}}).$$

- Corollaries:
- (a) PA, RCF, and ZFC have models with rich automorphism groups.
- (b) Nonstandard models of analysis with rich automorphism groups exist.

The EM Theorem via Iterated Ultrapowers (1)

- Gaifman saw a radically different proof of the EM Theorem: iterate the ultrapower construction along a prescribed linear order.
- Suppose
 - (a) $\mathfrak{M} = (M, \cdots)$ is a structure,
 - (b) \mathcal{U} is an ultrafilter over $\mathcal{P}(\mathbb{N})$, and
 - (c) L is a linear order.

we wish to describe the \mathbb{L} -iterated ultrapower

$$\mathfrak{M}^*:=\prod_{\mathcal{U},\mathbb{L}}\mathfrak{M}.$$

The EM Theorem via Iterated Ultrapowers, Continued (2)

• A key definition (reminiscent of Fubini):

$$\mathcal{U}^2 := \{ X \subseteq \mathbb{N}^2 : \{ a \in \mathbb{N} : \overbrace{\{b \in \mathbb{N} : (a, b) \in X\}}^{(X)_a} \in \mathcal{U} \} \in \mathcal{U}.$$

• More generally, for each $n \in \mathbb{N}^+$:

$$\mathcal{U}^{n+1} := \{ X \subseteq \mathbb{N}^{n+1} : \{ a \in \mathbb{N} : (X)_a \in \mathcal{U}^n \} \in \mathcal{U} \},$$

where

$$(X)_a := \{(b_1, \dots, b_n) : (a, b_1, \dots, b_n) \in X\}$$

The EM Theorem via Iterated Ultrapowers (3)

• Let Υ be the set of terms τ of the form

$$f(l_1,\cdot\cdot\cdot,l_n),$$

where $n \in \mathbb{N}^+$, $f : \mathbb{N}^n \to M$ and

$$(l_1,\cdots,l_n)\in [\mathbb{L}]^n$$
.

• The universe M^* of \mathfrak{M}^* consists of equivalence classes $\{[\tau]: \tau \in \Upsilon\}$, where the equivalence relation \sim at work is defined as follows: given $f(l_1, \dots, l_r)$ and $g(l'_1, \dots, l'_s)$ from Υ , first suppose that

$$(l_1, \dots, l_r, l'_1, \dots, l'_s) \in [\mathbb{L}]^{r+s};$$

let p := r + s, and define: $f(l_1, \dots, l_r) \sim g(l_1', \dots, l_s')$ iff:

$$\{(i_1, \dots, i_p) \in \mathbb{N}^p : f(i_1, \dots, i_r) = g(i_{r+1}, \dots, i_p)\} \in \mathcal{U}^p.$$

The EM Theorem via Iterated Ultrapowers (4)

More generally:

• Given $f(l_1, \dots, l_r)$ and $g(l'_1, \dots, l'_s)$ from Υ , let

$$P := \{l_1, \dots, l_r\} \cup \{l'_1, \dots, l'_s\}, \quad p := |P|,$$

and relabel the elements of P in increasing order as $\bar{l}_1 < \cdots < \bar{l}_p$. This relabelling gives rise to increasing sequences (j_1, j_2, \cdots, j_r) and (k_1, k_2, \cdots, k_s) of indices between 1 and p such that

$$l_1 = \bar{l}_{j_1}, l_2 = \bar{l}_{j_2}, \dots, l_r = \bar{l}_{j_r}$$

and

$$l'_1 = \bar{l}_{k_1}, l'_2 = \bar{l}_{k_2}, \dots, l'_s = \bar{l}_{k_s}.$$

Then define: $f(l_1, \dots, l_r) \sim g(l_1', \dots, l_s')$ iff

$$\{(i_1, \dots, i_p) \in \mathbb{N}^p : f(i_{j_1}, \dots, i_{j_r}) = g(i_{k_1}, \dots, i_{k_s})\} \in \mathcal{U}^p.$$

The EM Theorem via Iterated Ultrapowers (5)

• We can also use the previous relabelling to define the operations and relations of \mathfrak{M}^* as follows, e.g.,

$$[f(l_1, \dots, l_r)] \odot^{\mathfrak{M}^*} [g(l'_1, \dots, l'_s)] := [v(\bar{l}_1, \dots, \bar{l}_p)]$$

where $v: \mathbb{N}^n \to M$ by

$$v(i_1, \dots, i_p) := f(i_{j_1}, \dots, i_{j_r}) \odot^{\mathfrak{M}} g(i_{k_1}, \dots, i_{k_s});$$

$$[f(l_1,\dots,l_r)] \triangleleft^{\mathfrak{M}^*} [g(l'_1,\dots,l'_s)]$$
 iff

$$\{(i_1,\cdots,i_p)\in\mathbb{N}^p:f(i_{j_1},\cdots,i_{j_r})\vartriangleleft^{\mathfrak{M}^*}g(i_{k_1},\cdots,i_{k_s})\}\in\mathcal{U}^p.$$

The EM Theorem via Iterated Ultrapowers (6)

- For $m \in M$, let c_m be the constant m-function on \mathbb{N} , i.e., $c_m : N \to \{m\}$. For any $l \in \mathbb{L}$, we can identify the element $[c_m(l)]$ with m.
- We shall also identify [id(l)] with l, where $id : \mathbb{N} \to \mathbb{N}$ is the identity function (WLOG $\mathbb{N} \subseteq M$).
- Therefore $M \cup \mathbb{L}$ can be viewed as a subset of M^* .

• Theorem. For every formula $\varphi(x_1, \dots, x_n)$, and every $(l_1, \dots, l_n) \in [\mathbb{L}]^n$:

$$\mathfrak{M}^* \vDash \varphi(l_1, l_2, \cdots, l_n) \iff$$

$$\{(i_1,\cdots,i_n)\in\mathbb{N}^n:\mathfrak{M}\vDash\varphi(i_1,\cdots,i_n)\}\in\mathcal{U}^n.$$

The EM Theorem via Iterated Ultrapowers (7)

- Corollary 1. $\mathfrak{M} \prec \mathfrak{M}^*$, and \mathbb{L} is a set of order indiscernibles in \mathfrak{M}^* .
- Corollary 2. Every automorphism j of $\mathbb L$ lifts to an automorphism $\hat{\jmath}$ of $\mathfrak M^*$ via

$$\hat{\jmath}([f(l_1,\dots,l_n)]) = [f(j(l_1),\dots,j(l_n))].$$

Moreover, the map

$$j \mapsto \hat{\jmath}$$

is a group embedding of $Aut(\mathbb{L})$ into $Aut(\mathfrak{M}^*)$.

Skolem-Gaifman Ultrapowers (1)

 \bullet If ${\mathfrak M}$ has definable Skolem functions, then we can form the Skolem $\mathit{ultrapower}$

$$\prod_{\mathcal{F},\mathcal{U}}\mathfrak{M}$$

as follows:

- (a) Suppose \mathcal{B} is the Boolean algebra of parametrically definable subsets of M, and \mathcal{U} is an ultrafilter over \mathcal{B} .
- (b) Let \mathcal{F} be the family of functions from M into M that are parametrically definable in \mathfrak{M} .
- (c) The universe of the \mathfrak{M}^* is

$$\{[f]: f \in \mathcal{F}\},\$$

where

$$f \sim g \Longleftrightarrow \{m \in M : f(m) = g(m)\} \in \mathcal{U}$$

Skolem-Gaifman Ultrapowers (2)

• Theorem (MacDowell-Specker) Every model of PA has an elementary end extension.

Proof: for an appropriate choice of \mathcal{U} ,

$$\mathfrak{M} \prec_e \prod_{\mathcal{F},\mathcal{U}} \mathfrak{M}.$$

- For models of some Skolemized theories, such as PA, the process of ultrapower formation can be iterated along any linear order.
- For each parametrically definable $X \subseteq M$, and $m \in M$,

$$(X)_m = \{ x \in M : \langle m, x \rangle \in X \}.$$

• \mathcal{U} is an *iterable* ultrafilter over \mathcal{B} if for every definable $X \subseteq M$, $\{m \in M : (X)_m \in \mathcal{U}\}$.

Skolem-Gaifman Ultrapowers (3)

ullet Theorem (Gaifman) If $\mathcal U$ is iterable, and $\mathbb L$ is a linear order, then

$$\mathfrak{M} \prec_{e,cons} \prod_{\mathcal{F},\mathcal{U},\mathbb{L}} \mathfrak{M}.$$

- Theorem (Gaifman). For an appropriate choice of iterable \mathcal{U} ,
 - (a) $Aut(\prod_{\mathcal{F},\mathcal{U},\mathbb{L}}\mathfrak{M};M)\cong Aut(\mathbb{L}).$
 - (b) $\prod_{\mathcal{F},\mathcal{U},\mathbb{L}}\mathfrak{M}$ has an automorphism j such that

$$fix(j) = M.$$

- Theorem (Schmerl). Suppose $G \leq Aut(\mathbb{L})$ for some linear order \mathbb{L} .
 - (a) $G \cong Aut(\mathfrak{M})$ for some $\mathfrak{M} \vDash PA$.
 - (b) $G \cong Aut(\mathbb{F})$ for some ordered field \mathbb{F} .

Automorphisms of Countable Recursively Saturated Models of PA (1)

- A cut I of $\mathfrak{M} \models PA$ is an initial segment of M with no last element.
- For a cut I of \mathfrak{M} , $SSy_I(\mathfrak{M})$ is the collection of sets of the form $X \cap I$, where X is parametrically definable in \mathfrak{M} .
- I is strong in \mathfrak{M} iff $(\mathbf{I}, SSy_I(\mathfrak{M})) \vDash ACA_0$.
- \mathfrak{M} is recursively saturated if for every $\mathbf{m} \in M$, every recursive finitely realizable type over $(\mathfrak{M}, \mathbf{m})$ is realized in \mathfrak{M} .
- For $j \in Aut(\mathfrak{M})$,

$$I_{fix}(j) := \{ x \in dom(j) : \forall y \le x \ j(y) = y \},$$

$$\mathit{fix}(j) := \{x \in M : j(x) = x\}$$

Automorphisms of Countable Recursively Saturated Models of PA (2)

Suppose $\mathfrak{M} \vDash PA$ is ctble, rec. sat., and I is a cut of \mathfrak{M} .

- Theorem (Smoryński) $I = I_{fix}(j)$ for some $j \in Aut(\mathfrak{M})$ iff I is closed under exponentiation.
- Theorem (Kaye-Kossak-Kotlarski) I = fix(j) for some $j \in Aut(\mathfrak{M})$ iff I is a strong elementary submodel of \mathfrak{M} .

Automorphisms of Countable Recursively Saturated Models of PA (3)

ullet Theorem (Kaye-Kossak-Kotlarski)

$$\overbrace{\mathfrak{M}isarithmeticallysaturated}^{\mathbb{N}isstrongin\mathfrak{M}} \quad \text{iff} \quad \text{for some } j \in Aut(\mathfrak{M}),$$

$$\overbrace{\mathit{fix}(j) is the collection of definable elements of \mathfrak{M}}^{\mathit{jis maximal}}.$$

• Theorem (Schmerl) $Aut(\mathbb{Q}) \hookrightarrow Aut(\mathfrak{M})$.

Automorphisms of Countable Recursively Saturated Models of PA (4)

• Theorem (E). If I is a closed under exponentiation, then there is a group embedding

$$j \mapsto \hat{\jmath}$$

from $Aut(\mathbb{Q})$ into $Aut(\mathfrak{M})$ such that:

- (a) $I_{fix}(\hat{j}) = I$ for every nontrivial $j \in Aut(\mathbb{Q})$;
- (b) $fix(\hat{j}) \cong \mathfrak{M}$ for every fixed point free $j \in Aut(\mathbb{Q})$.
- Idea of the proof: Fix $c \in M \setminus I$, let $\overline{c} := \{x \in M : x < c\}$, $\mathcal{B} := \mathcal{P}^{\mathfrak{M}}(\overline{c})$, and \mathcal{F} be the family of functions from $(c)^n \to M$ that are coded in \mathfrak{M} . For an appropriate choice of \mathcal{U} ,

$$\mathfrak{M}\cong\prod_{\mathcal{F},\mathcal{U},\mathbb{Q}}\mathfrak{M}over I.$$

This sort of iteration was implicitly considered by Mills and Paris.

Automorphisms of Countable Recursively Saturated Models of PA (5)

• A new type of iteration that subsumes both Gaifman and Paris-Mills iteration: starting with

$$I \subseteq_e \mathfrak{M} \preceq \mathfrak{N}, with I \subseteq_{strong} \mathfrak{N},$$

- (a) $\mathcal{F} = \{ f \mid I^n : f \text{ par. definable in } \mathfrak{N} \};$
- (b) $\mathcal{B} := SSy_I(\mathfrak{N});$
- (c) \mathcal{U} an appropriate ultrafilter over \mathcal{B} .
- \bullet $\it Theorem$ (E). Suppose $\mathfrak M$ is arithmetically saturated. There is a group embedding

$$j \mapsto \hat{\jmath}$$

from $Aut(\mathbb{Q})$ into $Aut(\mathfrak{M})$ such that \hat{j} is maximal for every fixed point free $j \in Aut(\mathbb{Q})$.

Automorphisms of Countable Recursively Saturated Models of PA (6)

- Conjecture (Schmerl). Suppose \mathfrak{M} is arithmetically saturated, and $\mathfrak{M}_0 \prec \mathfrak{M}$. Then $fix(j) \cong \mathfrak{M}_0$ for some $j \in Aut(\mathfrak{M})$.
- Theorem (Kossak) Every countable model of PA is isomorphic to some fix(j), for some $j \in Aut(\mathfrak{M})$, and some countable arithmetically saturated model \mathfrak{M} .
- Theorem (Kossak) The cardinality of

$$\{ fix(j) : j \in Aut(\mathfrak{M}) \} / \cong$$

is either 2^{\aleph_0} or 1, depending on whether $\mathfrak M$ is arithmetically saturated or not.

• Theorem (E). Suppose $\mathfrak{M}_0 \prec \mathfrak{M}$, and \mathfrak{M} is arithmetically saturated. There are $\mathfrak{M}_1 \prec \mathfrak{M}$ with $\mathfrak{M}_0 \cong \mathfrak{M}_1$, and an embedding $j \mapsto \hat{\jmath}$ of $Aut(\mathbb{Q})$ into $Aut(\mathfrak{M})$, such that $fix(\hat{\jmath}) = \mathfrak{M}_1$ for every fixed point free $j \in Aut(\mathbb{Q})$.

Automorphisms of Countable Recursively Saturated Models of PA (6)

- Suppose I is a proper cut of \mathfrak{M} . A subset X of M is I-coded in \mathfrak{M} , if for some $c \in M$, $X = \{(c)_i : i \in I\}$, and for all distinct i and j in I, $(c)_i \neq (c)_j$.
- I is I-coded in \mathfrak{M} .
- The collection of definable elements of \mathfrak{M} is N-coded in \mathfrak{M} .
- Theorem Suppose $I \subseteq_{strong} \mathfrak{M}, \mathfrak{M}_0 \prec \mathfrak{M}$ and M_0 is I-coded in \mathfrak{M} . Then,
 - (a) There is an embedding $j \mapsto \hat{j}$ of $Aut(\mathbb{Q})$ into $Aut(\mathfrak{M})$ such that $fix(\hat{j}) = M_0$ for every fixed point free $j \in Aut(\mathbb{Q})$;
 - (b) Moreover, if j is expansive on \mathbb{Q} , then \hat{j} is expansive on $M \setminus \overline{M_0}$.

Automorphisms and Foundations (1)

- Strong foundational axiomatic systems can be characterized in terms of the fixed point sets of automorphisms of models of weak foundational systems.
- The above phenomenon sheds light on the close relationship between orthodox foundational systems, and the Quine-Jensen system NFU of set theory with a universal set.
- Weak arithmetical system: $I-\Delta_0$ (bounded arithmetic).
- Strong arithmetical systems:

$$I\Delta_0 + Exp + B\Sigma_1,$$

 $WKL_0^*,$
 $PA,$
 $ACA_0,$
 $Z_2 + \Pi_{\infty}^1$ -DC.

Automorphisms and Foundations (2)

- \bullet Weak set theoretical system: Set theories no stronger than KP (Kripke-Platek).
- Strong set theoretical systems:

```
\begin{split} &KP^{Power},\\ &ZFC+\Phi,\\ &GBC+\text{``Ord is w. compact''},\\ &KMC+\text{``Ord is w. compact''}+\Pi^1_\infty\text{-DC}. \end{split}
```

Automorphisms and Foundations (3)

- Theorem (E). The following are equivalent for a model $\mathfrak M$ of the language of arithmetic:
 - (a) M = fix(j) for some $j \in Aut(\mathfrak{M}^*)$, where $\mathfrak{M} \subset_e \mathfrak{M}^* \models I \Delta_0$.
 - (b) $\mathfrak{M} \models PA$.
- \bullet *Theorem* (E). The following are equivalent for a model ${\mathfrak M}$ of the language of arithmetic:
 - (a) $M = I_{fix}(j)$ for some $j \in Aut(\mathfrak{M}^*)$, where $\mathfrak{M} \subset_e \mathfrak{M}^* \models I \Delta_0$.
 - (b) $\mathfrak{M} \vDash I\Delta_0 + Exp + B\Sigma_1$,

where $Exp := \forall x \exists y \ 2^x = y$, and $B\Sigma_1(\mathcal{L})$ is the scheme consisting of the universal closure of formulae of the form

$$[\forall x < a \exists y \ \overbrace{\varphi(x,y)}^{\Delta_0}] \to [\exists z \forall x < a \exists y < z \varphi(x,y)].$$

Automorphisms and Foundations (4)

- Theorem (E). The following two conditions are equivalent for a countable model $(\mathfrak{M}, \mathcal{A})$ of the language of second order arithmetic:
 - (a) $\mathfrak{M} = I_{fix}(j)$ for some nontrivial $j \in Aut(\mathfrak{M}^*)$, $\mathfrak{M}^* \models I\Delta_0$ and $\mathcal{A} = SSy_M(\mathfrak{M}^*)$.
 - (b) $(\mathfrak{M}, \mathcal{A}) \vDash WKL_0^*$.
- WKL_0^* is a weakening of the well-known subsystem WKL_0 of second order arithmetic in which the Σ_1^0 -induction scheme is replaced by $I\Delta_0 + Exp$.
- WKL_0^* was introduced by Simpson and Smith who proved that $I\Delta_0 + Exp + B\Sigma_1$ is the first order part of WKL_0^* (in contrast to WKL_0 , whose first order part is $I\Sigma_1$).

Automorphisms and Foundations (5)

• Suppose $\mathfrak{M} \subseteq \mathfrak{M}^* \models I\Delta_0$. An automorphism j of \mathfrak{M}^* is M-amenable if M = fix(j), and for every formula $\varphi(x,j)$ in the language $\mathcal{L}_A \cup \{j\}$, possibly with suppressed parameters from M^* ,

$$\{m \in M : (\mathfrak{M}^*, j) \vDash \varphi(m, j)\} \in SSy_M(\mathfrak{M}^*).$$

• Theorem (E). If $\mathfrak{M} \subseteq_e \mathfrak{M}^* \models I\Delta_0$, and $j \in Aut(\mathfrak{M}^*)$ is M-amenable, then

$$(\mathfrak{M}^*, SSy_M(\mathfrak{M}^*)) \vDash Z_2.$$

Automorphisms and Foundations (6)

• Theorem (E). Suppose $(\mathfrak{M}, \mathcal{A})$ is a countable model of $Z_2 + \Pi_{\infty}^1 - DC$. There exists an e.e.e. \mathfrak{M}^* of \mathfrak{M} that has an M-amenable automorphism j such that $SSy_M(\mathfrak{M}^*) = \mathcal{A}$, where $\Pi_{\infty}^1 - DC$ is the scheme of formulas of the form

$$\forall n \ \forall X \ \exists Y \ \theta(n,X,Y) \to$$

$$[\forall X \ \exists Z \ (X=(Z)_0 \ \text{and} \ \forall n \ \theta(n,(Z)_n\,,(Z)_{n+1}))].$$

Automorphisms and Foundations (7)

- $EST(\mathcal{L})$ [Elementary Set Theory] is obtained from the usual axiomatization of $ZFC(\mathcal{L})$ by deleting Power Set and $\Sigma_{\infty}(\mathcal{L})$ -Replacement, and adding $\Delta_0(\mathcal{L})$ -Separation.
- \bullet GW [Global Well-ordering] is the axiom expressing " \lhd well-orders the universe".
- GW^* is the strengthening of GW obtained by adding the following two axioms to GW:
 - (a) $\forall x \forall y (x \in y \to x \lhd y);$
 - (b) $\forall x \exists y \forall z (z \in y \longleftrightarrow z \lhd x)$.

Automorphisms and Foundations (8)

- $\Phi := \{ \exists \kappa (\kappa \text{ is } n\text{-Mahlo and } V_{\kappa} \text{ is a } \Sigma_n\text{-elementary submodel of } \mathbf{V}) : n \in \omega \}.$
- Theorem (E). The following are equivalent for a model $\mathfrak M$ of the language $\mathcal L=\{\in,\lhd\}.$
 - (a) M = fix(j) for some $j \in Aut(\mathfrak{M}^*)$, where $\mathfrak{M} \subset_{\triangleleft} \mathfrak{M}^* \models EST(\mathcal{L}) + GW^*$.
 - (b) $\mathfrak{M} \vDash ZFC + \Phi$.

$$\frac{I-\Delta_0}{PA}$$
 \sim $\frac{EST(\mathcal{L})+GW^*}{ZFC+\Phi}$