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Our story begins with:

e Question (Hésenjéger): Does PA have a model with a nontrivial auto-
morphism?

o Answer (Ehrenfeucht and Mostowski): Yes, indeed given any first order
theory T with an infinite model 9t F T, and any linear order L, there
is a model 99t of T such that

Aut(L) — Aut(ON).

o Corollaries:

(a) PA, RCF, and ZFC have models with rich automorphism groups.

(b) Nonstandard models of analysis with rich automorphism groups exist.



The EM Theorem via Iterated Ultrapowers (1)

e Gaifman saw a radically different proof of the EM Theorem: iterate
the ultrapower construction along a prescribed linear order.

e Suppose

(a) M = (M, - -+) is a structure,
(b) U is an ultrafilter over P(N), and

(c) L is a linear order.

we wish to describe the L-iterated ultrapower

M* = Hi)ﬁ

UL



The EM Theorem via Iterated Ultrapowers, Continued (2)

o A key definition (reminiscent of Fubini):

(X)a

A\

U ={XCN*:{aeN:{beN:(a,b) e XtcU} el

e More generally, for each n € N* :

U ={X N {aeN: (X), eU"} €U},

where

(X)o := {(b1, -~ by) < (@ by, -, by) € X}



The EM Theorem via Iterated Ultrapowers (3)

e Let T be the set of terms 7 of the form
f(lla T '7ln)7
where n € N*, f: N* — M and

(I, 1,) € [L]™
e The universe M* of 9* consists of equivalence classes {[7] : 7 € T},

where the equivalence relation ~ at work is defined as follows: given
f(ly,--- 1) and g(I},- - -, 1) from Y, first suppose that

<11’ .. .’lr’l/b. . ’l;> c [L]r—i-s;

let p:=r + s, and define: f(ly,-- -, 1,) ~ g(l},- -, 1.) iff:

{<i17 s '72.1?) € NP f(ilv o '7ir> - g(ir+17 o 'aip)} SHZE



The EM Theorem via Iterated Ultrapowers (4)

More generally:
e Given f(ly,---1,) and g(I},- - -, 1,) from T, let
P={ly, - L}U{l, - L.}, p:=|P|,

and relabel the elements of P in increasing order as [} < - - - < [,
This relabelling gives rise to increasing sequences (ji,J2, - - -, j.) and
(k1,ka, - -+, k) of indices between 1 and p such that

ll :Zj17l2 :ZjQ,' . ',lr :er

and

lll = Zklvl/Q = ka o 7l; = lkS'
Then define: f(ly, -, 1,) ~ g(llp T l;) iff

{(ila o '72.17) SHA f(ijn' ) "ijr) = g(ik17' ) 'viks)} cu”.



The EM Theorem via Iterated Ultrapowers (5)

We can also use the previous relabelling to define the operations and
relations of 91* as follows, e.g.,

where v : N — M by

) (2'1’ .. .’ip) = f(Z]17 .. ’Z]r) @M g(ikl’ .. '7ik5);

[F(l, - )] <M [g(ly, - - -, 1) i

(G, i) € NP2 fig, - iz) <M g, ie)} €U

The EM Theorem via Iterated Ultrapowers (6)

For m € M, let ¢, be the constant m-function on N, i.e., ¢,, : N —
{m}. For any [ € L, we can identify the element [c,,(I)] with m.

We shall also identify [id(l)] with [, where id : N — N is the identity
function (WLOG N C M).

Therefore M UL can be viewed as a subset of M*.



e Theorem. For every formula ¢(z1, -+, z,), and every (Iy,- - -, 1,,) € [L|":

Qﬁ* = gO(ll,lg, . ,ln) <

The EM Theorem via lterated Ultrapowers (7)

o Corollary 1. 9 < 9M*, and L is a set of order indiscernibles in 9*.

e Corollary 2. Every automorphism j of LL lifts to an automorphism j of

IMM* via
Ifs W) =[G, - 5())-

Moreover, the map

is a group embedding of Aut(L) into Aut(9*).



Skolem-Gaifman Ultrapowers (1)

e If 9 has definable Skolem functions, then we can form the Skolem
ultrapower
[[om
FU
as follows:

(a) Suppose B is the Boolean algebra of parametrically definable subsets
of M, and U is an ultrafilter over B.

(b) Let F be the family of functions from M into M that are paramet-
rically definable in 9.

(c) The universe of the 9 is

{f]: ferF},
where

f~ge={meM: f(m)=g(m)} el



Skolem-Gaifman Ultrapowers (2)

e Theorem (MacDowell-Specker) Every model of PA has an elementary
end extension.

Proof: for an appropriate choice of U,

m <. [[m

FuU

e For models of some Skolemized theories, such as PA, the process of
ultrapower formation can be iterated along any linear order.

e For each parametrically definable X C M, and m € M,

(X)m ={z e M:(m,z) e X}.

e U is an iterable ultrafilter over B if for every definable X C M, {m €
M :(X)m € U}.
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Skolem-Gaifman Ultrapowers (3)

e Theorem (Gaifman) If ¢ is iterable, and L is a linear order, then

M <c.cons H m.

FUL
e Theorem (Gaifman). For an appropriate choice of iterable U,

(a) Aut( [] 9% M) = Aut(L).

FU,L

(b) ] 99 has an automorphism j such that
FUL

fir(j) = M.
e Theorem (Schmerl). Suppose G < Aut(L) for some linear order L.
(a) G = Aut(9M) for some M = PA.

(b) G = Aut(F) for some ordered field F.
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Automorphisms of Countable Recursively Saturated Models of PA (1)

A cut I of M E PA is an initial segment of M with no last element.

For a cut I of M, SSy;(9M) is the collection of sets of the form X N1,
where X is parametrically definable in 9.

I is strong in O iff (I, SSy;(9M)) E AC Ay.

M is recursively saturated if for every m € M, every recursive finitely
realizable type over (9, m) is realized in 9.

For j € Aut(9M),

Lyin(j) = {w € dom(j) : ¥y <z j(y) = v},

fiz(§) =A{v e M: j(z) =z}
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Automorphisms of Countable Recursively Saturated Models of PA (2)

’ Suppose M E PA is ctble, rec. sat., and [ is a cut of . ‘

o Theorem (Smorytiski) I = Iy, (j) for some j € Aut(9N) iff I is closed
under exponentiation.

e Theorem (Kaye-Kossak-Kotlarski ) I = fiz(j) for some j € Aut(9M) iff
I is a strong elementary submodel of 901.
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Automorphisms of Countable Recursively Saturated Models of PA (3)

Theorem (Kaye-Kossak-Kotlarski)

NisstronginM
7\

Misarithmeticallysaturated iff  for some j € Aut (),

jismazximal

}Zx(j)isthecollectionofdefmableelementSOfi)ﬁ.

e Theorem (Schmerl) Aut(Q) — Aut(9MN).

14



Automorphisms of Countable Recursively Saturated Models of PA (4)

o Theorem (E). If I is a closed under exponentiation, then there is a
group embedding
J=J
from Aut(Q) into Aut(9) such that:
(a) Itix(7) = I for every nontrivial j € Aut(Q);
(b) fix(j) = M for every fixed point free j € Aut(Q).
e Idea of the proof: Fix c € M\I,let ¢ :={x € M : x < c}, B :=PM(e),

and F be the family of functions from (¢)* — M that are coded in 9.
For an appropriate choice of U,

M = H Moverl.
FUOQ

This sort of iteration was implicitly considered by Mills and Paris.
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Automorphisms of Countable Recursively Saturated Models of PA (5)

e A new type of iteration that subsumes both Gaifman and Paris-Mills
iteration: starting with

’ I ge m j ‘)’I, thhI gstrong m:

(a) F={f | I": f par. definable in MN};
(b) B := SSy;(MN);
(c) U an appropriate ultrafilter over B.

e Theorem (E). Suppose 9 is arithmetically saturated. There is a group
embedding
JJ
from Aut(Q) into Aut(9M) such that j is maximal for every fixed point
free j € Aut(Q).
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Automorphisms of Countable Recursively Saturated Models of PA (6)

e Conjecture (Schmerl). Suppose I is arithmetically saturated, and
My < M. Then fiz(j) = My for some j € Aut ().

e Theorem (Kossak) Every countable model of PA is isomorphic to some
fix(y), for some j € Aut(M), and some countable arithmetically satu-
rated model 9.

e Theorem (Kossak) The cardinality of

{ fiz(j) : j € Aut(DM)} / =

is either 2% or 1, depending on whether 91 is arithmetically saturated
or not.

e Theorem (E). Suppose My < M, and M is arithmetically saturated.
There are 9, < M with My = MMy, and an embedding j — j of
Aut(Q) into Aut(9N), such that fix(j) = M, for every fixed point free

J € Aut(Q).
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Automorphisms of Countable Recursively Saturated Models of PA (6)

Suppose [ is a proper cut of 9. A subset X of M is [-coded in 9, if
for some ¢ € M, X = {(c¢); : i € I}, and for all distinct ¢ and j in I,

(c)i # (c);-
I is I-coded in 9.

The collection of definable elements of 9 is N-coded in I01.

Theorem Suppose I Cgprong M, My < M and M, is I-coded in M.
Then,

(a) There is an embedding j — j of Aut(Q) into Aut(9) such that
fix(7) = M, for every fixed point free j € Aut(Q);

(b) Moreover, if j is expansive on Q, then j is expansive on M\ M.
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Automorphisms and Foundations (1)

Strong foundational axiomatic systems can be characterized in terms of
the fixed point sets of automorphisms of models of weak foundational
systems.

The above phenomenon sheds light on the close relationship between
orthodox foundational systems, and the Quine-Jensen system N FU of
set theory with a universal set.

Weak arithmetical system:

I-Aq (bounded arithmetic).

Strong arithmetical systems:
IAy+ Fxp+ BYq,

WKL,

PA,

AC Ay,

Zy + 1L -DC.
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Automorphisms and Foundations (2)

o Weak set theoretical system: Set theories no stronger than K P (Kripke-
Platek).

e Strong set theoretical systems:

KPPower’
ZFC + @,
GBC + “Ord is w. compact”,

KMC + “Ord is w. compact”+II% -DC.
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Automorphisms and Foundations (3)

e Theorem (E). The following are equivalent for a model 9t of the lan-
guage of arithmetic:

(a) M = fiz(j) for some j € Aut(9M*), where M C, M* F [-A, .

(b) M E PA.

e Theorem (E). The following are equivalent for a model 9t of the lan-
guage of arithmetic:

(a) M = Iy;,(j) for some j € Aut(9*), where M C, M* E I-A, .

where Fzp := Vxdy 2 = y, and BY(L) is the scheme consisting of
the universal closure of formulae of the form

Ap

—
Vo < ady o(x,y)] — [FeVe < ady < zp(z,y)].
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Automorphisms and Foundations (4)

e Theorem (E). The following two conditions are equivalent for a count-
able model (9, .A) of the language of second order arithmetic:

(a) M = Iyiy(j) for some nontrivial j € Auwt(IM*), M* = 1A, and

(b) (M, A) F WKL,

o WKL is a weakening of the well-known subsystem WKL, of second
order arithmetic in which the ¥.9-induction scheme is replaced by A+
Ezxp.

o WK Lj was introduced by Simpson and Smith who proved that 1Ay +
Exp + BY, is the first order part of WKL (in contrast to WK Ly,
whose first order part is I3).
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Automorphisms and Foundations (5)

e Suppose M C M* E IAy. An automorphism j of 9" is M-amenable if
M = fiz(j), and for every formula ¢(z,j) in the language £4 U {j},
possibly with suppressed parameters from M*,

{m e M: (I, j)F @(m,j)} € SSyu(M).

e Theorem (E). If M C, IM* E IA,, and j € Aut(M*) is M-amenable,
then

(M, SSyn (I7)) E Zs.
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Automorphisms and Foundations (6)

e Theorem (E). Suppose (9, .A) is a countable model of Z, + IT._-DC.
There exists an e.e.e. 90" of M that has an M-amenable automorphism
J such that SSyy (9M*) = A, where II._-DC is the scheme of formulas
of the form

Vn VX 3Y 6(n, X,Y) —

VX 3Z (X = (2)p and ¥n 6(n, (2), ,(2), )]
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Automorphisms and Foundations (7)

EST(L) [Elementary Set Theory| is obtained from the usual axiom-
atization of ZFC(L) by deleting Power Set and ¥ (£)-Replacement,
and adding A (L)-Separation.

GW [Global Well-ordering] is the axiom expressing “<1 well-orders the
universe”.

GW™ is the strengthening of GW obtained by adding the following two
axioms to GW':

(a) VaVy(z € y — = < y);
(b) VadyVz(z € y «—— z < x).
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Automorphisms and Foundations (8)

e & := {Jk(k is n-Mahlo and V is a ¥,-elementary submodel of V) :
n € w}.

e Theorem (E). The following are equivalent for a model 9t of the lan-
guage L = {€, <},

(a) M = fiz(j) for some j € Aut(9M*), where M Cc M* E EST(L) +
GW*.

(b) ME ZFC + O.

&, ., EST+CW"
PA ZEFC+®
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