Pisa mai 2006

Nonstandard Averaging and Signal Processing

E.Benoît Université de La Rochelle

IST framework.

Notations:

- R for the (hyper)reals
- R for the standard reals (external set)
- £ for the limited real numbers

Point of view for applications:

The *natural* objects are modelised by internal elements. In all the talk, f (the signal) will be a given internal function.

Aim of the talk:

Revisit averaging theory for application to signal processing.

M. Fliess, a specialist in control theory and signal processing, hopes that averaging can give new methods to study noise in signal processing.

I - Averaging

C. Reder (1985), P. Cartier and Y. Perrin (1995)

A. Robinson, P. Loeb, etc... in *ANS-language

T: a (hyper)finite set.

m: a measure on it: $m: T \to \mathbf{R}^+$

d: a distance on it: $d: T \times T \to \mathbf{R}^+$

For internal $A \subset T$, we write $m(A) := \sum_{t \in A} m(t)$.

Internal subset A is rare iff $m(A) \simeq 0$.

External subset A is rare iff

$$\forall^{st} \varepsilon > 0 \quad \exists U \subset T \quad m(U) < \varepsilon$$

 σ -additivity: if $(A_n), (n \in \underline{\mathbf{N}})$ is an external sequence of external rare sets, then $\bigcup_{n \in \underline{\mathbf{N}}} A_n$ is rare.

For f in \mathbf{R}^T and internal A, we write

$$\int_A f \, dm := \sum_{t \in A} f(t) m(t)$$

Problem (C. Reder):

Define (if it is possible) an external function \tilde{f} : $X \in \mathbf{R}$ such that

$$ilde{f}(t) \simeq rac{1}{|hal(t)|} \int_{|hal(t)|} f \, dm$$

If T is included in some standard set E, then \tilde{f} would be a standard function on E.

Examples:

for $T \subset \mathbf{R}$, $m(t_k) = t_{k+1} - t_k = dt$, and usual distance :

if f is S-continuous, then $\tilde{f} = {}^{\circ}f$.

if $f(t) = \sin(\omega t)$, $\omega \simeq \infty$, then $\tilde{f} = 0$.

if f =Heaviside, then \tilde{f} can not be defined on 0.

if $f(t)=\pm 1$ with independent random variables, then $\tilde{f}=0$ almost surely.

Cartier-Perrin article:

$$S(T) := \left\{ f \in \mathbf{R}^T , \int |f| dm = \mathcal{L} \right\}$$

$$SL^1(T) := \left\{ f \in S(T) , m(A) \simeq 0 \Rightarrow \int_A f dm \simeq 0 \right\}$$

Theorem 1 (Radon-Nykodym: Let f be in S(T). Then there exist g and k such that f = g + k, $g \in SL^1(T)$ and k = 0 almost everywhere.

The proof is *constructive*: if λ is infinitely large, but small enough (in an other level in RIST axiomatic ?), $g=f\chi_{|f|<\lambda}$ is convenient.

At this point only we introduce metric d and topology.

$$L^1(T) := \left\{ f \in SL^1(T) \; , \; \exists^{ext} A \; {\sf rare} \; , \right.$$
 $f \; S{\sf -continuous} \; {\sf on} \; T - A \}$

 $A \subset T$ is quadrable iff $hal(A) \cap hal(T-A)$ is rare.

A function h is quickly oscillating iff it is in $SL^1(T)$ and for all quadrable set A we have $\int_A h \, dm \simeq 0$.

Examples :
$$h(t_k) = (-1)^k$$
, $h(t_k) = \sin(\omega t_k)$ (ω unlimited, $\omega \not\simeq 0$ mod $2\pi/dt$)

Theorem 2: Let f be in $SL^1(T)$. Then there exist g and h such that f = g + h, $g \in L^1(T)$ and h is quickly oscillating.

The idea of the proof is interesting because it shows that the studied notions persist if we replace T by a subset of it. It explain why g is the average of f.

Let \mathcal{P} a partition of T. We define $E^{\mathcal{P}}(f)$ by $E^{\mathcal{P}}(f)(t) = \frac{1}{m(A)} \int_A f dm$ where A is the atom of \mathcal{P} containing t.

We say that f_n is a martingale of f if $f_n = E^{\mathcal{P}_n}$ where \mathcal{P}_n is a family of partitions such that

- The partition \mathcal{P}_{n+1} is finer than \mathcal{P}_n .
- ullet For all limited n, every subset of limited diameter in T is covered by a limited number of atoms of \mathcal{P}_n .
- ullet For all limited n, all atoms of \mathcal{P}_n are quadrable.
- ullet For all unlimited n, all atoms of \mathcal{P}_n have infinitesimal diameter.

The existence of martingales needs some additional hypothesis of local compacity:

For every appreciable r, every subset of T with limited diameter can be covered by a limited number of subsets of diameter less than r.

Let f be a function in $SL^1(T)$. Let f_n a martingale of f. Then one can prove that if n is unlimited but small enough (in an intermediate level in RIST axiomatic?), f_n is in $L^1(T)$ and $f - f_n$ is quickly oscillating.

The decomposition f=g+h is almost unique, i.e. if $f=g_1+h_1=g_2+h_2$ with g_1 , g_2 in $L^1(T)$ and with h_1 and h_2 quickly oscillating, then $g_1\simeq g_2$ and $h_1\simeq h_2$ almost everywhere.

Conclusion

If $\int |f|dm = \mathcal{L}$, there exist g, h, k such that

- $\bullet \ f = g + h + k$
- $g \in L^1$ i.e. g is S-continuous on the complementary of a rare set and $\int_A f \, dm \simeq 0$ on every set A of infinitesimal measure.
- h is quickly oscillating
- k = 0 almost everywhere.

II - Signal processing

A signal is the output of a physical instrument. He pretends to measure some physical quantity. It is often digital i.e. discrete.

Let us give $T=\{t_1,t_2,\ldots,t_N\}$ the instants of measure. They are not known exactly. Let us give also a weight $m(t_k)$ at all these instants. We could choose $m(t_k)=t_{k+1}-t_k$, but we have to fix m even if the instants are not known.

The operational calculus is very common in the community of automaticians. With Laplace transform, all the computations on functions of t are replaced by computations on functions of s (the adjoint variable). The operational calculus is very well adapted for two reasons: the linear autonomous differential operators are replaced by rational operators, and the frequence are directly readable: a frequence of the signal f(t) is the imaginay part of a pole of the Laplace transform F(s).

M. Fliess has developed a new algebraic theory in the operational calculus. It is based on differential extension of differentiable fields. For example, a parameter can be estimated sometimes as the solution of an equation in the differential field.

I will know present transformations in frequence domain of the Cartier-Perrin theorems.

Let us give $T = \{t_1, t_2, \dots, t_N\}$ an increasing sequence of real positive numbers. Let us give a measure m on T. The distance is the usual distance.

We assume: for all k, $hal(t_k)$ is a rare set.

For a function f element of ${\bf R}^T$, we define the Laplace transform F by

$$F(s) = \sum_{t \in T} f(t) e^{-st} m(t)$$

The function F (as an internal function on \mathbb{C}) is analytic. The limit of F is 0 when $\Re e(s)$ tends

to infinity. The derivative of F is the Laplace transform of -tf.

Proposition (Callot): If F is analytic and limited in the S-interior of a standard domain D, then there exists a standard analytic function ${}^{\circ}F$ defined on D with $F(x) \simeq {}^{\circ}F(x)$ for all x in the S-interior of D.

Proposition 1: If $f \in S(T)$ then F(s) is limited for $\Re e(s) > 0$.

Obvious : $|F(s)| \leq \int |f(t)| dm$

Then there exists a standard function (unique) ${}^{\circ}F$ analytic in the half-plane $\Re e(s) > 0$ with ${}^{\circ}F(s) \simeq F(s)$ while $\Re e(s) \gtrsim 0$. The following questions concern the equivalence between properties of the functions f and ${}^{\circ}F$ even if the t_k are not regular.

Proposition 2 (EB): If f is quickly oscillating then

 $F(s) \simeq 0$ while $\Re e(s) > 0$ and $\frac{\Im m(s)}{\Re e(s)}$ limited.

Corollary : ${}^{\circ}F = 0$.

Example: $f(t) = \sin \omega t$. When ω is limited, the classical Laplace transform is $F(s) = \frac{\omega}{s^2 + \omega^2}$. When ω is unlimited, this function F(s) satisfies the proposition 2. We will show that our discrete Laplace transform has also this property.

Proof:

- The set $\{t_0, t_1, \dots, t_k\}$ is quadrable.
- Define the "primitive" $g(t_k) = \int_{\{t_1,...,t_k\}} f \, dm$.
- \bullet $g \simeq 0$. Indeed, f is quickly oscillating.
- Lemma (integration by parts):

$$F(s) = g(t_N)e^{-st_N} + \sum_{k=1}^{N-1} g(t_k) \left(e^{-st_k} - e^{-st_{k+1}} \right)$$

• By classical majorations one can prove that

$$\sum_{k=1}^{N-1} \left| e^{-st_k} - e^{-st_{k+1}} \right| = \mathcal{L}$$

while $\Re {\rm e}(s)>0$ and $\frac{\Im {\rm m}(s)}{\Re {\rm e}(s)}$ limited, even if the repartition of the t_k is not regular.