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IST framework.
Notations :
R for the (hyper)reals
R for the standard reals (external set)
£ for the limited real numbers
Point of view for applications :

The natural objects are modelised by internal
elements. In all the talk, f (the signal) will be
a given internal function.

Aim of the talk :

Revisit averaging theory for application to signal
processing.

M. Fliess, a specialist in control theory and sig-
nal processing, hopes that averaging can give
new methods to study noise in signal process-

ing.



I - Averaging
C. Reder (1985), P.Cartier and Y. Perrin (1995)
A. Robinson, P. Loeb, etc... in *ANS-language
T : a (hyper)finite set.
m : ameasureonit: m:T — RT
d: adistanceonit: d:TxT—RT
For internal A C T, we write m(A) 1= > ;cam(t).
Internal subset A is rare iff m(A) ~ 0.

External subset A is rare iff

Ve >0 3UCT mU)<e

o-additivity : if (Ap),(n € IN) is an external se-
quence of external rare sets, then U,cN An IS
rare.



For f in R% and internal A, we write

/Afdm = Y F(t)m(t)

teA
Problem (C. Reder):

Define (if it is possible) an external function £ :
X € R such that
~ 1
t) ~
1) lhail(t)| J|hal(t)]

If T is included in some standard set E, then f
would be a standard function on FE.

Examples :

for T C R, m(ty) = tk4+1 — tp, = dt, and usual
distance :

if f is S-continuous, then f = °f.

if £f(t) =sin(wt), w~ oo, then f=0.



if f =Heaviside, then f can not be defined on O.

if f(t) = +1 with independent random variables,
then f = 0 almost surely.

Cartier-Perrin article :

S(T) = {feRT, /|f|dm=£}
SLY(T) = {feS(T) | m(A):O:>/Afdm:O}

Theorem 1 (Radon-Nykodym: Let f bein S(T).
Then there exist g and k£ such that f = g + k,
g € SLI(T) and k = 0 almost everywhere.

The proof is constructive: if A is infinitely large,
but small enough (in an other level in RIST axiomatic
?), g = FX|f|<x is convenient.



At this point only we introduce metric d and
topology.

LY = {f e SLI(T) , 3% A rare ,

f S-continuous on T — A}

A C T is quadrable iff nai(A) N hal(T — A) is rare.

A function h is quickly oscillating iff it is in
SLY(T) and for all quadrable set A we have

Examples : h(ty) = (—=1)%,
h(ty) = sin(wty) (w unlimited, w 22 0 mod 27 /dt)

Theorem 2 : Let f be in SLI(T). Then there
exist g and h such that f = g+h, g € L1(T) and
h is quickly oscillating.

The idea of the proof is interesting because it
shows that the studied notions persist if we re-
place T by a subset of it. It explain why g is the
average of f.



Let P a partition of T. We define EF(f) by
EP(H@) = ﬁA)fA fdm where A is the atom
of P containing t.

We say that f, is a martingale of f if f, = EP»
where P, is a family of partitions such that

e The partition P41 is finer than P,,.

e For all limited n, every subset of limited di-
ameter in T is covered by a limited number of
atoms of P,,.

e For all limited n, all atoms of P, are quadrable.
e For all unlimited n, all atoms of P, have in-
finitesimal diameter.

T he existence of martingales needs some addi-
tional hypothesis of local compacity:

For every appreciable r, every subset of T with
limited diameter can be covered by a limited
number of subsets of diameter less than r.

Let f be a function in SLY(T). Let f, a mar-
tingale of f. Then one can prove that if n is
unlimited but small enough (in an intermediate level
in RIST axiomatic ?), fn is in L1(T) and f — fn is
quickly oscillating.



The decomposition f = g+ h is almost unique,
i.e. if f =914+ hy = g2+ ho with g1, go in
LY(T) and with hi and hs quickly oscillating,
then g1 ~ g> and h1 ~ ho almost everywhere.

Conclusion

If [|fldm = £, there exist g, h, k such that

o f=g+h+k

® g C L1 ie. g is S-continuous on the comple-
mentary of a rare set and [, fdm ~ O on every
set A of infinitesimal measure.

e h is quickly oscillating

e £k = 0 almost everywhere.



IT - Signal processing

A signal is the output of a physical instrument.
He pretends to measure some physical quantity.
It is often digital i.e. discrete.

Let us give T = {t1,to,...,tn} the instants of
measure. They are not known exactly. Let us
give also a weight m(t;) at all these instants.
We could choose m(ty) = ty41 —tg, but we have
to fix m even if the instants are not known.

The operational calculus is very common in the
community of automaticians. With Laplace trans-
form, all the computations on functions of t are
replaced by computations on functions of s (the
adjoint variable). The operational calculus is
very well adapted for two reasons : the linear
autonomous differential operators are replaced
by rational operators, and the frequence are di-
rectly readable : a frequence of the signal f(t)
is the imaginay part of a pole of the Laplace
transform F(s).



M. Fliess has developed a new algebraic theory
in the operational calculus. It is based on differ-
ential extension of differentiable fields. For ex-
ample, a parameter can be estimated sometimes
as the solution of an equation in the differential
field.

I will know present transformations in frequence
domain of the Cartier-Perrin theorems.

Let us give T"= {tq,to,...,tx} an increasing se-
quence of real positive numbers. Let us give
a measure m on 1. The distance is the usual
distance.

We assume : for all k, nal(t;.) is a rare set.

For a function f element of R!, we define the
l_aplace transform F' by

F(s) = Y f(®) e *'m(t)

teT
The function F' (as an internal function onQ) is
analytic. The limit of F' is O when Re(s) tends



to infinity. The derivative of F' is the Laplace
transform of —tf.

Proposition (Callot) : If F'is analytic and limited
in the S-interior of a standard domain D, then
there exists a standard analytic function °F de-
fined on D with F(x) ~ °F(xz) for all z in the
S-interior of D.

Proposition 1: If f € S(T) then F(s) is limited
for Re(s) > 0.

Obvious : |F(s)| < [|f(t)|dm

Then there exists a standard function (unique)
°F' analytic in the half-plane fe(s) > 0 with
°F(s) ~ F(s) while B%e(s)?o. The following
questions concern the equivalence between prop-
erties of the functions f and °F even if the ¢,
are not regular.

Proposition 2 (EB): If f is quickly oscillating
then

F(s) ~ 0 while Re(s) > 0 and ?Rg‘((;; limited.




Corollary : °F = 0.

Example : f(t) = sinwt. When w is limited,
the classical Laplace transform is F(s) = ﬁ
When w is unlimited, this function F'(s) satisfies
the proposition 2. We will show that our discrete
LLaplace transform has also this property.

Proof:
e The set {tg,t1,...,t} iS quadrable.
e Define the “primitive’ g(t;) = Jity .y £ dm.
e g~ 0. Indeed, f is quickly oscillating.

e Lemma (integration by parts) :

N-1

F(s) = g(tn)e ™™ + 37 gty) (e — e ")
k=1

e By classical majorations one can prove that

N-1
Z |€—Stk o e_Stk—Fl‘ — 05
k=1
while Re(s) > 0 and SM) jimited, even if the

- . Re(s)
repartition of the ¢, is not regular.



