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IST framework.

Notations :

IR for the (hyper)reals

IR for the standard reals (external set)

£ for the limited real numbers

Point of view for applications :

The natural objects are modelised by internal
elements. In all the talk, f (the signal) will be
a given internal function.

Aim of the talk :

Revisit averaging theory for application to signal
processing.

M. Fliess, a specialist in control theory and sig-
nal processing, hopes that averaging can give
new methods to study noise in signal process-
ing.



I - Averaging

C. Reder (1985), P.Cartier and Y. Perrin (1995)

A. Robinson, P. Loeb, etc... in *ANS-language

T : a (hyper)finite set.

m : a measure on it : m : T → IR+

d : a distance on it : d : T × T → IR+

For internal A ⊂ T , we write m(A) :=
∑

t∈A m(t).

Internal subset A is rare iff m(A) ' 0.

External subset A is rare iff

∀stε > 0 ∃U ⊂ T m(U) < ε

σ-additivity : if (An), (n ∈ IN) is an external se-
quence of external rare sets, then

⋃
n∈IN An is

rare.



For f in IRT and internal A, we write
∫

A
f dm :=

∑

t∈A

f(t)m(t)

Problem (C. Reder):

Define (if it is possible) an external function f̃ :

X ∈ IR such that

f̃(t) ' 1

|hal(t)|
∫

|hal(t)|
f dm

If T is included in some standard set E, then f̃

would be a standard function on E.

Examples :

for T ⊂ IR, m(tk) = tk+1 − tk = dt, and usual
distance :

if f is S-continuous, then f̃ = ◦f .

if f(t) = sin(ωt), ω ' ∞, then f̃ = 0.



if f =Heaviside, then f̃ can not be defined on 0.

if f(t) = ±1 with independent random variables,
then f̃ = 0 almost surely.

Cartier-Perrin article :

S(T ) :=
{
f ∈ IRT ,

∫
|f |dm = £

}

SL1(T ) :=
{
f ∈ S(T ) , m(A) ' 0 ⇒

∫

A
f dm ' 0

}

Theorem 1 (Radon-Nykodym: Let f be in S(T ).
Then there exist g and k such that f = g + k,
g ∈ SL1(T ) and k = 0 almost everywhere.

The proof is constructive: if λ is infinitely large,
but small enough (in an other level in RIST axiomatic

?), g = fχ|f |<λ is convenient.



At this point only we introduce metric d and
topology.

L1(T ) :=
{
f ∈ SL1(T ) , ∃extA rare ,

f S-continuous on T −A}

A ⊂ T is quadrable iff hal(A)∩ hal(T −A) is rare.

A function h is quickly oscillating iff it is in
SL1(T ) and for all quadrable set A we have∫
A h dm ' 0.

Examples : h(tk) = (−1)k,
h(tk) = sin(ωtk) (ω unlimited, ω 6' 0 mod 2π/dt)

Theorem 2 : Let f be in SL1(T ). Then there
exist g and h such that f = g+h, g ∈ L1(T ) and
h is quickly oscillating.

The idea of the proof is interesting because it
shows that the studied notions persist if we re-
place T by a subset of it. It explain why g is the
average of f .



Let P a partition of T . We define EP(f) by
EP(f)(t) = 1

m(A)

∫
A fdm where A is the atom

of P containing t.

We say that fn is a martingale of f if fn = EPn

where Pn is a family of partitions such that
• The partition Pn+1 is finer than Pn.
• For all limited n, every subset of limited di-
ameter in T is covered by a limited number of
atoms of Pn.
• For all limited n, all atoms of Pn are quadrable.
• For all unlimited n, all atoms of Pn have in-
finitesimal diameter.

The existence of martingales needs some addi-
tional hypothesis of local compacity:
For every appreciable r, every subset of T with
limited diameter can be covered by a limited
number of subsets of diameter less than r.

Let f be a function in SL1(T ). Let fn a mar-
tingale of f . Then one can prove that if n is
unlimited but small enough (in an intermediate level

in RIST axiomatic ?), fn is in L1(T ) and f − fn is
quickly oscillating.



The decomposition f = g + h is almost unique,
i.e. if f = g1 + h1 = g2 + h2 with g1, g2 in
L1(T ) and with h1 and h2 quickly oscillating,
then g1 ' g2 and h1 ' h2 almost everywhere.

Conclusion

If
∫ |f |dm = £, there exist g, h, k such that

• f = g + h + k

• g ∈ L1 i.e. g is S-continuous on the comple-
mentary of a rare set and

∫
A f dm ' 0 on every

set A of infinitesimal measure.
• h is quickly oscillating
• k = 0 almost everywhere.



II - Signal processing

A signal is the output of a physical instrument.
He pretends to measure some physical quantity.
It is often digital i.e. discrete.

Let us give T = {t1, t2, . . . , tN} the instants of
measure. They are not known exactly. Let us
give also a weight m(tk) at all these instants.
We could choose m(tk) = tk+1− tk, but we have
to fix m even if the instants are not known.

The operational calculus is very common in the
community of automaticians. With Laplace trans-
form, all the computations on functions of t are
replaced by computations on functions of s (the
adjoint variable). The operational calculus is
very well adapted for two reasons : the linear
autonomous differential operators are replaced
by rational operators, and the frequence are di-
rectly readable : a frequence of the signal f(t)

is the imaginay part of a pole of the Laplace
transform F (s).



M. Fliess has developed a new algebraic theory
in the operational calculus. It is based on differ-
ential extension of differentiable fields. For ex-
ample, a parameter can be estimated sometimes
as the solution of an equation in the differential
field.

I will know present transformations in frequence
domain of the Cartier-Perrin theorems.

Let us give T = {t1, t2, . . . , tN} an increasing se-
quence of real positive numbers. Let us give
a measure m on T . The distance is the usual
distance.

We assume : for all k, hal(tk) is a rare set.

For a function f element of IRT , we define the
Laplace transform F by

F (s) =
∑

t∈T

f(t) e−stm(t)

The function F (as an internal function on IC) is
analytic. The limit of F is 0 when <e(s) tends



to infinity. The derivative of F is the Laplace
transform of −tf .

Proposition (Callot) : If F is analytic and limited
in the S-interior of a standard domain D, then
there exists a standard analytic function ◦F de-
fined on D with F (x) ' ◦F (x) for all x in the
S-interior of D.

Proposition 1: If f ∈ S(T ) then F (s) is limited
for <e(s) ≥ 0.

Obvious : |F (s)| ≤ ∫ |f(t)|dm

Then there exists a standard function (unique)
◦F analytic in the half-plane <e(s) > 0 with
◦F (s) ' F (s) while <e(s) 6∼>0. The following
questions concern the equivalence between prop-
erties of the functions f and ◦F even if the tk
are not regular.

Proposition 2 (EB): If f is quickly oscillating
then
F (s) ' 0 while <e(s) > 0 and =m(s)

<e(s) limited.



Corollary : ◦F = 0.

Example : f(t) = sinωt. When ω is limited,
the classical Laplace transform is F (s) = ω

s2+ω2.
When ω is unlimited, this function F (s) satisfies
the proposition 2. We will show that our discrete
Laplace transform has also this property.

Proof:

• The set {t0, t1, . . . , tk} is quadrable.

• Define the “primitive” g(tk) =
∫
{t1,...,tk} f dm.

• g ' 0. Indeed, f is quickly oscillating.

• Lemma (integration by parts) :

F (s) = g(tN)e−stN +
N−1∑

k=1

g(tk)
(
e−stk − e−stk+1

)

• By classical majorations one can prove that

N−1∑

k=1

∣∣∣e−stk − e−stk+1
∣∣∣ = £

while <e(s) > 0 and =m(s)
<e(s) limited, even if the

repartition of the tk is not regular.


