A Functional Characterization of Nonstandard Models - Marco Forti¹

A main feature of nonstandard models of Analysis is the existence of a canonical extension ${}^*f: {}^*\mathbb{R} \to {}^*\mathbb{R}$ of any function $f: \mathbb{R} \to \mathbb{R}$. The nonstandard models preserve those properties of the standard structure which are currently being considered (Transfer Principle). Among various "elementary" presentations of the nonstandard methods given in [1], we choose here a "functional approach" aimed to show that a few clear, natural, purely functional conditions are all what is needed for the strongest requirements of nonstandard models.

We consider a superset *X of X together with an operator $*: X^X \to *X^{*X}$, which "preserves compositions and diagonal". Assume that $0, 1 \in X$, and let $\chi: X \times X \to \{0,1\}$ be the characteristic function of the diagonal, so as to have $(\chi \circ (f,g))(x) = 1 \iff f(x) = g(x)$. Call *X a functional extension of X if the following conditions are fulfilled for all $\xi \in *X$ and all $f,g: X \to X$:

1.
$${}^*g({}^*f(\xi)) = {}^*(g \circ f)(\xi),$$

$$2. \quad {}^*(\chi \circ (f,g))(\xi) = \left\{ \begin{array}{ll} 1 & \textit{if} \quad {}^*\!f(\xi) = {}^*\!g(\xi) \\ 0 & \textit{otherwise} \end{array} \right.$$

The main result of [2] isolates a simple necessary and sufficient condition for obtaining a true $nonstandard \ model$ of X, namely

Theorem Let *X be a functional extension of X. Then *X is isomorphic to a limit ultrapower $X^I/\mathcal{D}|\mathcal{E}$ if and only if *X is accessible, i.e.

3. for all
$$\xi, \eta \in {}^*X$$
 there are $f, g: X \to X$ and $\zeta \in {}^*X$ s.t. ${}^*f(\zeta) = \xi, {}^*g(\zeta) = \eta$.

Moreover *X is isomorphic to an ultrapower X^X/\mathcal{U} if and only if there exists $\zeta \in {}^*X$ such that any $\xi \in {}^*X$ is equal to ${}^*f(\zeta)$ for suitable $f: X \to X$.

By Keisler's Theorem, *X is a nonstandard extension of X if and only if it is isomorphic to a limit ultrapower of X. So one can extend all n-ary functions and relations and obtain the full Transfer Principle for all first order properties. However we can avoid any appeal to the ultrapower construction. In fact the properties 1-3 alone allow for a unique, unambiguous, "parametric" definition of the extension * φ of each n-ary function $\varphi: X^n \to X$, namely

$$^*\varphi(\xi_1,\ldots,\xi_n) = ^*(\varphi \circ (f_1,\ldots,f_n))(\zeta),$$

where $f_i: X \to X$ and $\zeta \in {}^*X$ are such that ${}^*f_i(\zeta) = \xi_i$ for $i = 1, \ldots, n$. After extending *n*-ary relations by means of the corresponding characteristic functions in *n* variables, any *accessible functional extension* *X of *X* becomes a *complete nonstandard model*. The Transfer Principle for all elementary properties can be proved directly by induction on the complexity of the formula expressing the property.

References

[1] V. Benci, M. Di Nasso, M. Forti - The Eightfold Path to Nonstandard Analysis in *Nonstandard Methods and Applications in Mathematics* (N.J. Cutland, M. Di Nasso, D.A. Ross, eds.), L.N. in Logic **25**, A.S.L. 2006.

 $[2]\ \mathrm{M.}$ Forti - A functional characterization of complete elementary extensions. (submitted).

¹Dipart. di Matem. Applicata "U. Dini", Università di Pisa, Italy. forti@dma.unipi.it