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Abstract

We prove that for any H : R2 — R which is Z2-periodic, there exists H., which is smooth,
g-close to H in L', with L°°-norm controlled by the one of H, and with the same average of H,
for which there exists a smooth closed curve . whose curvature is H.. A pinning phenomenon
for curvature driven flow with a periodic forcing term then follows. Namely, curves in fine
periodic media may be moved only by small amounts, of the order of the period.

‘‘Si fa la trigonometria,

nei finestrini corrispondenti agli occhi alessandrini,
di lei che guarda fissa

un suo sussulto fuso nel vetro,

che le ricorda tanto un suo sussulto.’’

(P. Panella & L. Battisti, La metro eccetera)
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1 Introduction

In this paper, curves in the plane with prescribed curvature are dealt with.

We show that, for a “generic” H, periodic, possibly with small L*°-size, and with prescribed
(possibly zero) average, there exists a closed, convex curve whose curvature at any points agrees
with H. The genericity is in the L'-sense.

We then apply this result to show a pinning phenomenon in an evolutionary problem driven by
the curvature.

In further detail, our geometric result is the following:

Theorem 1.1. For any H € L*®(T?), with H # 0, and for any € > 0 there exists H. € C*(T?),
with

[ Hell Lo (r2) < [[H]|Loo(12), (1.1)
|He — Hl[1(r2) < € | H|| oo (1), (1.2)
and
H (z)dz = H(z) dx, (1.3)
T2 T2



such that there exists a set E., with smooth compact boundary, whose curvature agrees with H,
at any point of OE,. Moreover, we can choose E, such that either E, or R? \ E: is a convez set
(with the convention that the curvature of a convex set is positive).

We observe that Theorem 1.1 does not hold, in general, if we choose H, := H. However, it would
be interesting to know:

e whether a result analogous to Theorem 1.1 holds if we replace the L' norm in (1.2) with a
stronger one (e.g., the L norm),

e whether a result analogous to Theorem 1.1 holds in higher dimension,

e under which conditions on H it would be possible to choose H. := H in Theorem 1.1,
possibly studying concrete cases (such as a chessboard like H),

e whether the random setting (instead of the periodic one) exhibits similar phenomena,

e whether a PDE analogue holds (for instance, whether there exists a mesoscopic phase tran-
sition [NV07] in the plane whose interface is a closed curve).

As a consequence of Theorem 1.1, we have a pinning phenomenon for the curvature flow.
Namely, given § > 0, for an open interval I C R and a function H : T?> — R, we say that a family
of closed, smoothly embedded curves {T'; }ics, with I’y = OF}, moves by é-periodic H-curvature if

v(z,t) = (M - H(x)) v(z) (1.4)

for any z € I'; and any ¢ € I.

Here above v, k and v denote, respectively, the normal velocity, the curvature and the exterior
unit normal of E; at x € T'y. Notice that when H := 0, equation (1.4) boils down to the usual
curvature flow [GH86].

We denote by dy (A, B) the Hausdorff distance between two sets A, B C R?. With this notation,
we have that solutions of (1.4) are, for a “typical” H, confined in a §-neighborhood of their initial
data, according to the following result:

Theorem 1.2. Let H € L®(T?) be such that both HT # 0 and H~ # 0, where H* denote
respectively the positive and the negative part of H. Then, for any € > 0 there exist H. € C*°(T?),
satisfying (1.1), (1.2) and (1.3), and C. > 0 such that any {Ti}ier, Ty = OE;, which moves
by d-periodic H.-curvature satisfies

sup dy (s, Ty) < C.6. (1.5)
s,tel

Related pinning effects in different frameworks have been also studied by [DY06]. The pinning
effect of Theorem 1.2 should be compared with the limit of the functionals

E o> Pex(E) + % / H(x/6) da, (1.6)
E

which has been investigated in [DLNO06| (as usual, in (1.6), we denoted by Per the perimeter of
a Caccioppoli set), where it is shown that the functionals in (1.6) converge, in the sense of I'-
convergence, to an anisotropic perimeter, with anisotropy depending on H. Since equation (1.4)
corresponds to the gradient flow of (1.6), one may expect that the solutions of (1.4) converge, as
0 — 0, to a solution of the gradient flow of the limit functional, that is to an anisotropic curvature



flow. However, the result of Theorem 1.2 indicates that this is generically not the case, and the
solutions of (1.4) do not move in the limit, due to the effect of the strong forcing term.

The rest of the paper is organized as follows. Section 2 contains the proof of Theorem 1.1, by
making use of an auxiliary result, namely Proposition 2.1, which is proved in Section 3. The proof
of Theorem 1.2 is given in Section 4.

2 Proof of Theorem 1.1

The main step towards the proof of Theorem 1.1 consists in the following

Proposition 2.1. Let K € C®(R?), with K(x) > 0 for any z € R2.
Suppose that there exist r' and r > 0 in such a way that r' € [r,1/4] and ¢ > 0 for which

K(z) > c for any z € U B, (j)
JEL?
and
K(z) =0 for any x outside U B, (j).
JEZ?

Then, there exists a C* closed, convex curve v whose curvature at any points is equal to K.

We postpone the proof of Proposition 2.1 to Section 3 and we show now that Proposition 2.1
implies Theorem 1.1.

For this, we fix a small € > 0 and we take H as in the statement of Theorem 1.1.

We consider a standard mollifier p. and we define the mollification of H as

K. = (1 —E)(H % p,).

Note that K, € C*°(T2). Since H is not identically zero, we have that there exist ¢, > 0, . > 0,
and z, € R? such that Rg(x) > ¢, or kg(x) < —c¢, for any = € Bs,_(z,). For simplicity, we
assume that K. > ¢, on Bs,_(x,), since the other case can be trated analogously.

Up to change of coordinates, we may suppose z, = 0. Then, by periodicity,

K.(z) > ¢, for any = € U Bs,_(5)- (2.1)
JEZ?

We take a bump function 7. € C°°(T?,[0,1]) such that

Te(z) =1 for any z € U B,.(j)

A
and
Te(z) = 0 for any z outside U Bs;(4)-
jEL?
We set

K, :=1.K,.

Then, by (2.1),
K. (x) > ¢, for any z € U B, (4),
jez?

and K, > 0 on R?.



Thus, in both the cases considered above, we have found K. € C®(R?) such that K, > 0 on R?,

K|l poom2) < | Kellnoo(rey < (1= €)[[H| oo 2y = (1 — €)1 H|| oo (72), (2.2)
K (z) = 0 for any z outside U Bs,_(4) (2.3)
JEL?

and
K.(z) > c. forany z € | J B..(j),
JEZ?
for suitably small ¢, 7. > 0.
We can thus apply Proposition 2.1 and obtain a C'* curve 7. = 0FE,, with E, compact convex
set, such that
the curvature of 7. is equal to K. at any point. (2.4)

We denote by
m:RE = T?

the natural projection.
Notice that m(v.) is a closed set of zero Lebesgue measure in T? and so we can find a ball 3,
with Lebesgue measure b. € (0,1), and open sets U c U® ¢ T? such that m(7e) C Ug(l),
US(Q) NB: =0 and

(2)

the Lebesgue measure of Uz~ is less than &2b,. (2.5)

We consider a bump function ¢, € C*°(T?, [0, 1]) such that 1. (z) = 1 for any x € U and Ye(z) =
(2)

0 for any z outside Ug
Hence, we take a. € C®(T?,[0,4+00)) to be a bump function such that a.(z) = 0 for any =z

outside S, and
/ ag(z)dr = 1.

By definition of b., we can also suppose that

const
[|ete || poo(r2) < o (2.6)
(3
We consider now K* € C*°(T?) in such a way that
K (| oo (r2) < 1 HI| Lo (12) (2.7)
and
|H — KZ||(r2) < €%be || Hl| Lo (12)- (2.8)
Let also
L g%
(= /T g @)~ K@) ot [ B o
€ € (2.9)
p— — — * —
/U o PO o /U g (1~ He@)EE@) /U o elw)
We define
K (x) ifre Ug(l),
Ho(z) = { ¢ (2) Ko (z) + (1 - ¢e(2)) K2(z)  ifz e UP\ UV,
l.a.(z) + K*(z) if 2 € T2\ UP.
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Note that the curvature of . agrees with H,, due to (2.4), since the support of 7(~.) lies in 5(1).

Therefore, v, satisfies the claim of Theorem 1.1.
We now prove that H, also satisfies the claim of Theorem 1.1.
For this, we use (2.2), (2.5) and (2.8) to get that

|Ce| < 62be || H|| oo (). (2.10)

As a consequence, from (2.2), (2.6) and (2.7), we obtain (1.1).
Also, by (2.2), (2.5), (2.8) and (2.10), we have

[ @ - H@lde < [ | (K@) - H@)| + |K2z) - H)do
T2 Ul

+|£| ae(z) dz
T2y

-I-/ |K}(z) — H(z) dx
T2y

92 || H || oo (72)-

IA

This proves (1.2).
Finally, (2.9) gives (1.3) and H, is C*°(T?) by construction.

Notice that, if we have instead K. < —¢c. on Bs,_(z,), we can reason as above replacing the
function H with —H. The only difference is that in this case we obtain a curve v, = 9F, still
satisfying (2.4), where E. is unbounded and R? \ E. is a compact convex set.

This completes the proof of Theorem 1.1 when Proposition 2.1 is in force.

3 Proof of Proposition 2.1

First of all, we fix @ > 0, to be taken conveniently small in what follows, and we construct a
closed convex polygon P, whose vertex are in Z? and such that the angles between its edges are
in [1 — a,m).

For this scope, we fix a small @ > 0 and a point P, € Z2. We take a half-line \; with rational
slope through P; whose angle with respect to the horizontal axis is in [a, 2a]. Say, for definiteness,
that the angles we consider are taken to be oriented anticlockwisely.

Due to the rationality of the slope of A;, there exists P, € Z2N \;. We then take a half-line o
with rational slope through P, whose angle with respect to A; is in [a, 2a).

We then iterate this procedure (see Figure 1) and we find a half-line A, with rational slope through
P, whose angle with respect to A,,_1 is in [a, 2a].



Figure 1

We denote by (,, the angle between A, and the horizontal axis. By construction,

Bn € [571—1 +a,Bp-1+ 2a] (31)

and therefore we can take m to be the first angle for which g, > (7/2) — 3a.
We observe that, from (3.1), we have

(m/2) —3a > Bm—1 > Bm — 2a

hence (see Figure 2)
Bm € [(7r/2) — 3a, (7r/2))

In particular, the angle between ), and the vertical axis is in (0, 3a].




m+1

3

Figure 2

The polygon P, is then obtained by the segments PP, ... P, by even reflections along the
horizontal and vertical axes.

The reflections make P, closed. Since P, € Z? for any n, the vertices of P, are in Z2. Also, if a
is chosen suitably small, the angles of P, are close to m but less then 7 (thus, in particular, P, is
convex).

We now take ¢ and r > 0 as in the statement of Proposition 2.1 and we construct a closed C!
curve I which consists in:



e pieces of segments outside

B, := | B,2(j)

A
e arcs of circumferences with curvature less then ¢/2 in B;.

The curve T is constructed by modifying P,. Indeed, we take I' to agree with P, outside B, .
Then, if P is a vertex of Py, we call @ and R to be the two points in 0B, /5(P) NP, and we take
[ in B,/5(P) to be the arc of circumference passing through @ and R and tangent to P, from
inside (see Figure 3).

Figure 3

If we call 20 the angle of P, in P, the radius p of such circumference satisfies

r
= —tané
p 2an,

due to standard trigonometry (see Figure 4).



Figure 4

Accordingly, the curvature of T' inside B,/3(P) is of the order of 1/(rtan#). Since we know
that 0 € [(m — a)/2,7/2), such curvature is smaller than ¢/2, provided that « is small enough
(possibly in dependence of r and c).

This ends the construction of the curve I' satisfying the desired properties.

We define E, to be the bounded set for which 0F, =T.

Let also R, to be a square, with horizontal/vertical edges, in such a way that

or.n | J Br(j) =0. (3.2)

JEZ?
By (3.2) and our hypotheses on K, we have that

K is zero near OR, . (3.3)

We look at the following functional. Given any bounded Caccioppoli set F C R? (see [Giu84] for
the definition and the basic properties of such an F'), we define

Z(F) := Per(0F) — /FK(ac) dzx.



By standard compactness arguments (see, for instance, [Giu84] or page 1425 in [CdILO01]), the
functional 7 attains its minimum under the constraint that

E, CFCR,.

Let F be one of such minima. We have that the curvature of v := 9F is equal to K at any point
in which v does not touch 0F, U OR, (see, for instance, Section 11.1 in [CdILO1]).
Then, the proof of Proposition 2.1 will be finished once we show that

v N (OE, UJR,) = 0. (3.4)
To prove (3.4), we first study the neighborhood of JE,. We observe that
the curvature of v is bigger than, or equal to, K in the vicinity of 0Fk. (3.5)

Indeed, if we take a small perturbation F, of F,, supported in the vicinity of 0F,, for which
F, C F,, we know that
I(F.) > I(F,). (3.6)

We take v to be the external normal of F' and we write F, as a normal deformation (see page 119
in [Giu84]), that is
Fe= {l‘ + 77’/(55)((55), YIS BF*, ne [076]}a
for some smooth compactly supported function ¢ and € > 0.
Then, if myp, is the natural projection onto 0F, we have

/ K (2) dx = / K(mop,2)dz+o(e) =¢ | K@) Cw)dH™ () + o),  (3.7)
F\Fy Fe\Fy OF,

where H"~! is the (n — 1)-dimensional Hausdorff measure.
Also (see formula (10.12) in [Giu84]),

Per(0F,) — Per(0F,) = ¢ - C(y) C(y) dH™ (y) + o(e), (3.8)

where C denotes the curvature (in fact, here, the only curvature) of 9F.
Thus, by (3.6), (3.7) and (3.8),
I(Fe) - I(F*)

€

= / Cly) () dH " (y) - [ K(y)<(y) dH™ (y) + o(1)
OF, OF,

0 <

thence C > K on OF,, which proves (3.5).
We now make an elementary observation of strong comparison principle type. Namely, for § > 0,

if u € C?((0,0)) N C([0,6)) with u(t) > 0 for any ¢ € [0,6), u(0) = 0 and

: u'(t)
div (W) <0 for any ¢t € (0,9), (3.9)

then u(t) = 0 for any ¢ € [0, 9).

To prove (3.9) we just write the equation as



and therefore, since u'(0) = u(0) = 0,

t prT
0 <u(t) = / / u"(s)dsdr <0,
0 Jo

for any t € [0, ), proving (3.9).
Now, we have that

~ cannot touch 8F, in the interior of any B, (j), for j € Z2. (3.10)

Indeed, thanks to (3.5), the osculating circle of y has curvature bigger than, or equal to, ¢ in B,(j).
Since the curvature of the osculating circle of OE, in the interior of B, /5(j) is at most ¢/2, we see
that (3.10) holds true.
Moreover,

7 cannot touch JE, in the closure of R \ U;cz2 Br(5)- (3.11)

Indeed, if such a touching point P, existed, since QF, contains a segment passing through P, we
would obtain from (3.9) that v and GE, agree as long as OF, is flat, that is up to 9B, 5(jx), for
some j, € Z2 But this would be in contradiction with (3.10) and it thus proves (3.11).
Therefore, from (3.10) and (3.11), we have that

v N OE, = . (3.12)

Furthermore, v cannot touch OR, at its corner, since cutting the corner would decrease the
perimeter and leave unchanged the term [, K(z) dz, thanks to (3.3), thus decreasing Z.

In particular, v cannot be equal to dR,. Also, v cannot touch R, at the other points as well,
since it must be a straight line in the vicinity of dR,, due to (3.3).

These observations and (3.12) imply (3.4) and so they complete the proof of Proposition 2.1.

4 Proof of Theorem 1.2

For all € > 0, we let 7= = BEgE be the smooth curves given by Theorem 1.1, which correspond to
the forcing term +H respectively.

Thanks to our assumptions on the function H, we may assume that the sets EX are both compact
and convex. Therefore, we can find a square with integer vertices containing v+, and we denote
by C. the sidelength of such square. Thus, we consider a tiling of R? made by squares of sides C.
each containing an integer translation of EX (see Figure 5).
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Figure 5

In dealing with the proof of Theorem 1.2, up to a dilation of factor 1/§, we may and do assume
that § := 1 in (1.4). Thus, we take any {T';};cs, with T'y = OF;, that moves by l-periodic
H_-curvature and we show that

sup dy (s, T;) < const C.. (4.1)
s,tel

Dilating back by a factor ¢ the estimate in (4.1), we then obtain (1.5).

To prove (4.1), we observe that all the integer translations of EI and of R? \ E_ (which is an un-
bounded set) are stationary solutions of (1.4), with ¢ := 1. Consequently, by comparison principle
(see, for instance, page 18 in [Eck04]), ['; cannot travel neither through the translations z + v
such that (z+ E}) C Ey, z € Z2, nor through the translations z+v- such that E; C (z+R2\ EZ).
Such confinement proves (4.1) and thus completes the proof of Theorem 1.2.
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