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Abstract. We show by a formal asymptotic expansion that level sets of solutions of a time-
fractional Allen-Cahn equation evolve by a geometric flow whose normal velocity is a positive
power of the mean curvature.

This connection is quite intriguing, since the original equation is nonlocal and the evolu-
tion of its solutions depends on all previous states, but the associated geometric flow is of
purely local type, with no memory effect involved.

1. Introduction

Two very interesting, and apparently unrelated, topics have been intensively investigated in
the contemporary mathematical literature, also in view of their applications and connections
with other fields.

The first of these two topics focuses on the geometric flow of hypersurfaces with a speed
given by a positive power of the mean curvature (when this power is equal to 1, the flow
obviously reducing to the mean curvature flow [GH86]). The case of viscosity solutions has
been treated in [CGG91, IS95].

The positive power of the mean curvature flow is known to exist in case of closed and
convex initial data [Sch05,Sch06], with finite-time extinction towards a point.

The problem has a very rich structure even in the plane, where it provides surprising
generalization of the curve shortening flow. For instance (see [AL86,CZ01,And03]) when the
power of the curvature is larger than 1

8 , the only embedded homothetic solutions are circles,

except when the power equals 1
3 , in which ellipses occur as well, and when the power is below 1

8
a new family of symmetric curves arises, resembling either circles or polygons.

The case of a volume-preserving flow has also been taken into account, see [AW21].

The second topic of special interest is that of nonlocal equations, and especially the time-
fractional equations. This type of problems has a classical flavor, dating back at least to the
tautochrone problem [Abe12], and emerges in several concrete examples, such as viscoelastic
fluids [Pod99, Section 10.2] and diffusion along comb-like and fractal structures [ABT91,
SSKI18, AV19] (see also the introduction in [CDV19] for several examples worked in full
detail).

Among the several possible different choices of time-fractional derivatives, we recall the one
introduced in [Cap67] in the context of dissipating models in geophysics and defined (up to a
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normalization constant that we omit for simplicity) as

∂αt u(t) :=

∫ t

0

∂tu(τ)

(t− τ)α
dτ,

with α ∈ (0, 1).
The technical advantage of this type of fractional derivative is to often allow a consistent

theory from initial conditions, in the spirit of ordinary differential equations but comprising
suitable “memory effects”.

To the best of our knowledge, these two topics, namely, on the one side, geometric flows
driven by powers of the mean curvature and, on the other side, time-fractional equations
driven by the so-called Caputo derivative are considered as completely independent, and even
quite separate (in fact, we are not aware of any researcher who have produced consistently
research articles on both these topics).

The goal of this paper is thus to show a deep link between these two subjects, by considering
the formal asymptotics of a time-fractional Allen-Cahn equation and by relating it with the
geometric evolution of level sets driven by powers of the mean curvature.

To this end, we will employ some asymptotic methods introduced in [NPV93] for the
classical Allen-Cahn equation (see also [Neu90] for formal asymptotics about the hyperbolic
Allen-Cahn equation).

More specifically, given α ∈ (0, 1) and ε > 0, we consider the time-fractional equation

(1.1) εα∂αt u = ε∆u+
f(u)

ε
.

In our setting, u = u(x, t) with x ∈ Rn and t ∈ [0,+∞).
We will suppose that u takes values in [−1, 1] and that f(u) is a bistable nonlinearity: for

concreteness, we focus on the case f(u) := u−u3. We consider the global (strictly monotone)
solution γ : R → [−1, 1] of

(1.2)


γ′′ + f(γ) = 0 in R,
γ(0) = 0,

γ(±∞) = ±1.

With the above choice of f , one has the explicit solution

(1.3) γ(x) := tanh

(
x√
2

)
.

We consider the structural constants

(1.4) cα :=

∫ 0

−∞

γ′(σ)

|σ|α
dσ and Cα :=

(
(n− 1)γ′(0)

cα

) 1
α

,

and we take φ0 satisfying

(1.5)


φ̇0(t) = − Cα(

φ0(t)
) 1

α

for t ∈ (0,+∞),

φ0(0) = 1.

From the geometric point of view, φ0(t) describes the evolution in time of the radius of an
(n− 1)-dimensional sphere evolving by the power 1

α of the mean curvature.
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We consider the radial function

vε(r, t) := γ

(
r − φ0(t)

ε

)
,

which, roughly speaking, models a layer function with spherical levels evolving by the power 1
α

of the mean curvature (as customary, here r = |x|).

The main result of this paper is that this radial layer function is a solution (up to a small
error) of the time-fractional Allen-Cahn equation, thus suggesting that level sets of solutions
of the time-fractional Allen-Cahn equation have the tendency of evolving by powers of the
mean curvature.

More precisely, via a formal expansion we will show that

(1.6) vε solves (1.1) up to a small error in ε.

2. Asymptotic expansions

We have that

∂tvε(r, t) = − φ̇0(t)

ε
γ′
(
r − φ0(t)

ε

)
and, as a result,

∂αt vε(x, t) =

∫ t

0

∂tvε(x, τ)

(t− τ)α
dτ = −

∫ t

0

φ̇0(τ)

ε (t− τ)α
γ′
(
r − φ0(τ)

ε

)
dτ.

Also, since, for every k ∈ N,

∂kr vε(r, t) =
1

εk
∂kγ

(
r − φ0(t)

ε

)
,

we conclude that the Laplacian of vε can be written in the form

∂2rvε(r, t) +
n− 1

r
∂rvε(r, t) =

1

ε2
γ′′
(
r − φ0(t)

ε

)
+
n− 1

εr
γ′
(
r − φ0(t)

ε

)
.

From these observations, we write the expression

E := εα∂αt vε − ε∆vε −
f(vε)

ε

in the form

− εα−1

∫ t

0

φ̇0(τ)

(t− τ)α
γ′
(
r − φ0(τ)

ε

)
dτ

− 1

ε
γ′′
(
r − φ0(t)

ε

)
− n− 1

r
γ′
(
r − φ0(t)

ε

)
− 1

ε
f

(
γ

(
r − φ0(t)

ε

))
,

(2.1)

which, in view of the equation in (1.2), boils down to

(2.2) −εα−1

∫ t

0

φ̇0(τ)

(t− τ)α
γ′
(
r − φ0(τ)

ε

)
dτ − n− 1

r
γ′
(
r − φ0(t)

ε

)
.
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We now denote by Rε any quantity which is O(εk) for every k ∈ N: in particular, by (1.3),

(2.3) γ′
(
r − φ0(t)

ε

)
=

{
γ′(0) if r = φ0(t),

Rε if r ̸= φ0(t).

Moreover, by (1.5), we know that φ̇0 < 0 and therefore

(2.4) 1 = φ0(0) > φ0(τ) > φ0(t) for all τ ∈ (0, t).

Now we recall the definition of cα in (1.4), we pick µ ∈ (0, 1) and we claim that

(2.5)

∫ t

0

φ̇0(τ)

(t− τ)α
γ′
(
r − φ0(τ)

ε

)
dτ =


−cα ε1−α|φ̇0(t)|α +O(ε) if r = φ0(t),

O(εµ) if r > φ0(t),

Rε if r < φ0(t).

Indeed, if r < φ0(t), we let a0 := φ0(t)− r and we have that r− φ0(τ) < r−φ0(t) = −a0 for
all τ ∈ (0, t), due to (2.4), and accordingly, in light of (1.3),

γ′
(
r − φ0(τ)

ε

)
≤ C exp

(
− a0√

2 ε

)
,

giving (2.5) in this case.

If instead r > φ0(t), we argue as follows. If |φ0(τ)− r| ≥ εµ, we have that
∣∣∣ r−φ0(τ)

ε

∣∣∣ ≥ 1
ε1−µ

and therefore

γ′
(
r − φ0(τ)

ε

)
= Rε.

In this situation, we have that

(2.6)

∫ t

0

φ̇0(τ)

(t− τ)α
γ′
(
r − φ0(τ)

ε

)
dτ =

∫
I

φ̇0(τ)

(t− τ)α
γ′
(
r − φ0(τ)

ε

)
dτ +Rε,

where

I :=
{
τ ∈ (0, t) s.t. |φ0(τ)− r| < εµ

}
.

Now, the condition |φ0(τ)−r| < εµ boils down, as ε↘ 0, to τ = φ−1
0 (r) < t, and accordingly,

for small ε, we have that

I =
{
τ ∈ R s.t. |φ0(τ)− r| < εµ

}
=
(
φ−1
0

(
r + εµ

)
, φ−1

0

(
r − εµ

))
.

This and (2.6) give that∫ t

0

φ̇0(τ)

(t− τ)α
γ′
(
r − φ0(τ)

ε

)
dτ =

∫ φ−1
0 (r−εµ)

φ−1
0 (r+εµ)

φ̇0(τ)

(t− τ)α
γ′
(
r − φ0(τ)

ε

)
dτ +Rε

=

∫ φ−1
0 (r−εµ)

φ−1
0 (r+εµ)

φ̇0

(
φ−1
0 (r) +O(εµ)

)(
t− φ−1

0 (r) +O(εµ)
)αγ′(r − φ0(τ)

ε

)
dτ +Rε

=

(
φ̇0

(
φ−1
0 (r)

)(
t− φ−1

0 (r)
)α +O(εµ)

)∫ φ−1
0 (r−εµ)

φ−1
0 (r+εµ)

γ′
(
r − φ0(τ)

ε

)
dτ +Rε

= O(εµ).

This establishes (2.5) in this case.
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It remains to consider the case in which r = φ0(t). In this situation, given any δ > 0, to
be taken conveniently small, we know that, when σ ≤ − δ

ε ,

t− φ−1
0 (φ0(t)− εσ) ≥ t− φ−1

0 (φ0(t) + δ) > 0

and we stress that the above quantity is bounded away from zero uniformly in ε.
Therefore, ∫ t

0

φ̇0(τ)

(t− τ)α
γ′
(
r − φ0(τ)

ε

)
dτ =

∫ t

0

φ̇0(τ)

(t− τ)α
γ′
(
φ0(t)− φ0(τ)

ε

)
dτ

= −ε
∫ 0

φ0(t)−1
ε

γ′(σ)(
t− φ−1

0 (φ0(t)− εσ)
)α dσ

= −ε
∫ 0

− δ
ε

γ′(σ)(
t− φ−1

0 (φ0(t)− εσ)
)α dσ +O(ε).

Now, when εσ ∈ (−δ, 0), we let ψ0 := φ−1
0 and notice that

φ−1
0 (φ0(t)− εσ) = ψ0(φ0(t)− εσ) = t− ψ̇0(φ0(t))εσ +O(ε2σ2) = t− εσ

φ̇0(t)
+O(ε2σ2)

and, as a result,∫ t

0

φ̇0(τ)

(t− τ)α
γ′
(
r − φ0(τ)

ε

)
dτ = −ε

∫ 0

− δ
ε

γ′(σ)(
εσ

φ̇0(t)
+O(ε2σ2)

)α dσ +O(ε)

= −ε1−α

∫ 0

− δ
ε

γ′(σ)

|σ|α
(

1
|φ̇0(t)| +O(εσ)

)α dσ +O(ε)

= −ε1−α

∫ 0

− δ
ε

γ′(σ)

|σ|α
(
|φ̇0(t)|α

(
1 +O(εσ)

))
dσ +O(ε)

= −ε1−α|φ̇0(t)|α
∫ 0

− δ
ε

γ′(σ)

|σ|α
dσ +O(ε)

= −cα ε1−α|φ̇0(t)|α +O(ε),

which concludes the proof of (2.5).
Now, in the light of (2.2), (2.3) and (2.5), we find that, when r ̸= φ0(t),

E = O(εα−1+µ),

which is infinitesimal as long as we choose µ ∈ (1− α, 1), and when r = φ0(t),

E = cα |φ̇0(t)|α − (n− 1)γ′(0)

r
+O(εα) = O(εα),

owing to (1.5).
This establishes (1.6), as desired.
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