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Abstract

We consider a large mass limit of the non-local isoperimetric problem with a repulsive
Yukawa potential in two space dimensions. In this limit, the non-local term concentrates
on the boundary, resulting in the existence of a critical regime in which the perimeter
and the non-local terms cancel each other out to leading order. We show that under
appropriate scaling assumptions the next-order Γ-limit of the energy with respect to the
L1 convergence of the rescaled sets is given by a weighted sum of the perimeter and Euler’s
elastica functional, where the latter is understood via the lower-semicontinuous relaxation
and is evaluated on the system of boundary curves. As a consequence, we prove that in
the considered regime the energy minimizers always exist and converge to either disks or
annuli, depending on the relative strength of the elastica term.
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1 Introduction

In many physical systems the onset of spatial pattern formation is driven by a competition
of short-range attractive and long-range repulsive foces [20, 39, 44]. In binary systems, this
is often captured by a prototypical model in which the short-range attractive interactions
between the two phases are modeled by an interfacial energy term, while the long-range
repulsion is due to a two-body interaction through a positive kernel:

E(Ω) = P (Ω) +
1

2

ˆ
Ω

ˆ
Ω
K(x− y) dny dnx. (1.1)

Here Ω ⊂ Rn, with n ≥ 2, is the spatial domain occupied by the minority phase whose
“mass” |Ω| = m > 0 is fixed, P (Ω) is the perimeter [1] of Ω, and K : Rn → [0,∞) is a
suitable kernel. A typical example is given by the Coulombic kernel K(x) = 1

4π|x| in three

space dimensions, giving rise to the celebrated Gamow’s model of the atomic nucleus [11,
18]. However, many other kernels may be considered, notably the regularized dipolar kernel
K(x) ∼ 1

|x|3 in two dimensions that arises in the context of magnetic domains, ferrofluids

and Langmuir monolayers [4, 5, 32, 33, 44]. Yet another variant is obtained by considering a
Yukawa potential K = Kα in the plane:

Kα(x) =
e−α|x|

2π|x| x ∈ R2, (1.2)

where α > 0 is a screening parameter, which naturally arises in the studies of Langmuir
monolayers in the presence of weak ionic solutions (see Appendix A).

The behavior of the minimizers of the non-local isoperimetric problem governed by (1.1)
depends rather crucially on the rate of decay of the kernel K(x) as |x| → ∞. In particular,
there is a notable difference for large masses: In the case of the three-dimensional Coulombic
kernel and two- or three-dimensional domains Ω, minimizers fail to exist beyond a certain
critical mass [16, 25, 26, 30], while for a screened three-dimensional Coulombic kernel rep-
resented by the Yukawa potential the minimizers do exist for all α > αc for some explicit
αc = αc(n) > 0, provided that m ≥ mc for some mc = mc(α, n) > 0, see Pegon [41]. More-
over, in two dimensions the minimizers for sufficiently large values of α and all large enough
masses are known to be disks [35], something that in the absence of screening (α = 0) is
known to occur at small masses m ≪ 1 instead [15, 24, 25, 26]. Thus, one can imagine that
for a given m ≫ 1 a transition occurs at some threshold value of α > 0 that may lead to the
onset of minimizers which are no longer necessarily disks as the value of α is lowered.

Our work attempts to look into the transition that bridges the gap between the two
regimes described above in two space dimensions. We focus on the parameters for which the
non-local term at large masses cancels the interfacial energy term of the energy (1.1) to the
leading order. It turns out that to next order in the asymptotic expansion of the energy as
m → ∞, this yields Euler’s elastica functional plus a term proportional to the perimeter:

E0(Ω) =

ˆ
∂Ω

(
σ +

π

2
κ2
)
dH1. (1.3)
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Here, κ is the curvature of ∂Ω and σ > 0. More precisely, we will show that a relaxed version
of the energy in (1.3) can be obtained as the Γ-limit of a suitably rescaled energy in (1.1)
with the kernel from (1.2), as the value of α approaches the critical value αc = 1√

2π
with

the right rate (see the following section for the precise statement). As a consequence, we can
conclude that the minimizers of the energy in (1.1) in the considered limit change from disks
to annuli as the parameter of the asymptotic expansion is varied. Note that annular domains
are frequently observed in the experiments on lipid monolayers [34].

Similar regimes may be studied when instead of screened Coulombic repulsion one con-
siders regularized and renormalized dipolar repulsion for n = 2. In this setting, Muratov and
Simon proved that in regimes where perimeter asymptotically still carries a cost, minimizers
are disks even for finite regularization lengths [40]. They also identified the next-order limit
in the case of vanishing cost of the perimeter, which by a result of Cesaroni and Novaga [10]
coincides with the second-order expansion of the fractional perimeters close to the local one.
Muratov and Simon also proved existence of non-spherical minimizers for a modified, yet still
isotropic kernel [40]. Closely related results were obtained for a class of general kernels in the
regime of large mass by Pegon [41], Merlet and Pegon [35], and Goldman, Merlet and Pegon
[21], as well as by Knüpfer and Shi [28] in the case of a torus.

We note that Euler’s elastica energy is a classical problem in the calculus of variations,
which was first analyzed by Euler in 1744 for σ = 0, after Daniel Bernoulli proposed the
energy to him in a letter [14]. While the original motivation was to study thin elastic rods,
it has since also appeared in image segmentation problems, see for example Mumford [38].
Its higher-dimensional analog, the Willmore energy, which asks to minimize the L2-norm of
the mean curvature of a hypersurface and, more generally, the Helfrich energy, appear in a
variety of fields from differential geometry to the modeling of cell membranes in biology, see
for example Willmore [46] and Helfrich [23]. We will require the elastica energy in its relaxed
form (with respect to the L1 topology of the enclosed sets). It has been characterized by
Bellettini and Mugnai [8, 9], see also Bellettini, Dal Maso, and Paolini [6]. Its minimizers
have been identified by Goldman, Novaga, and Röger [22], even after augmentation by a
non-local term as in (1.1). To the best of our knowledge, they were also the first to include
curvature-depending terms in the context of non-local isoperimetric problems.

Finally, we remark on results regarding the passage from first-order variational problems
to second-order problems. The most prominent body of literature certainly pertains to the
rigorous derivation of bending energies from non-linear elasticity with its many contributions
being thoroughly outside the scope of this introduction. We thus only mention the seminal
paper by Friesecke, James, and Müller [17], which serves as the foundation for virtually all
contributions following it. Indeed, it is also where our argument takes part of its inspiration.
On the other hand, the question of this type was posed by De Giorgi in the context of phase
field models of phase transitions [12]. While the original conjecture from [12] was shown not
to lead to an energy of the form of (1.3) [7] (compare with [43]), a natural alternative would
be provided by the diffuse interface version of the energy in (1.1) in two space dimensions:

E(u) =

ˆ
R2

(
1

2
|∇u|2 + 9

32
(1− u2)2

)
d2x+

1

2

ˆ
R2

ˆ
R2

Kα(x− y)u(x)u(y) d2x d2y, (1.4)

with the kernel Kα from (1.2) and the mass constraint
ˆ
R2

u d2x = m. (1.5)
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Here the choice of the double-well potential ensures that the surface energy associated with
the optimal transition layer connecting u = 0 and u = 1 is equal to unity, hence, yielding
the perimeter functional as the Γ-limit of the first term in (1.4) in the limit m → ∞ after
rescaling lengths by m1/2 [37]. We thus would expect that the limit behavior of the energy
in (1.4) would be the same as that of (1.1), yielding an example of a second-order variational
problem arising from phase field models of phase transitions.

This paper is organized as follows. In Sec. 2, we give the precise formulation of the
problem under consideration and its limit, and present the precise statement of the obtained
results, followed by an outline of the proof. In Sec. 3, we prove existence of minimizers in the
considered regime and derive the representation of the non-local energy term used throughout
the rest of the paper. Then, in Sec. 4 we establish compactness of boundary curves in the
considered limit and in Sec. 5 we prove Γ-convergence. We also provide the details of model
derivation in the appendix.

Acknowledgments. The first two authors are members of INdAM-GNAMPA, and ac-
knowledge partial support by the MUR Excellence Department Project awarded to the De-
partment of Mathematics, University of Pisa, CUP I57G22000700001, by the PRIN 2022
Project P2022E9CF89 and by the PRIN 2022 PNRR Project P2022WJW9H. The last au-
thor is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)
under Germany’s Excellence Strategy EXC 2044 –390685587, Mathematics Münster: Dynam-
ics–Geometry–Structure.

2 Main results

For the screening parameter α > 0 and mass m > 0, we study the non-local isoperimetric
problem whose kernel is given by the Yukawa potential (1.2). Up to a mass-dependent additive
constant, the energy (1.1) is then given by

Eα(Ω) := P (Ω)− 1

4π

ˆ
Ω

ˆ
Ωc

e−α|x−y|

|x− y| d2y d2x, (2.1)

on the admissible class

Am := {Ω ⊂ R2 : |Ω| = m, P (Ω) < ∞}. (2.2)

A direct calculation shows that for λ > 0 we have

Eα(λΩ) = λ

(
P (Ω)− λ2

4π

ˆ
Ω

ˆ
Ωc

e−λα|x−y|

|x− y| d2y d2x

)
.

We may therefore instead analyze the energy

Fλ,α(Ω) := P (Ω)− λ2

4π

ˆ
Ω

ˆ
Ωc

e−λα|x−y|

|x− y| d2y d2x (2.3)

on the admissible class Aπ, where m = λ2π gives the relation between λ and m. In particular,
studying the λ → ∞ limit of the energy in (2.3) over the admissible class Aπ is equivalent to
studying the limit of m → ∞ of the energy in (2.1) over the admissible class Am.
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The existence of a subcritical regime of screening parameters for this energy is already
established by the general results of Pégon and collaborators [21, 35, 41]. Indeed, their result
gives the following:

Theorem 2.1 (Merlet, Pégon [35]). For α > 1√
2π
, the L1 Γ-limit of Fλn,α as λn → ∞ is

given by

Gα(Ω) =

(
1− 1

2πα2

)
P (Ω). (2.4)

Furthermore, there exists λα > 0 such that for all λ > λα all minimizers of Fλ,α are, up to
translation, given by the disk B1(0).

By an L1 Γ-limit, we mean the limit with respect to convergence of the characteristic functions
χΩn → χΩ in L1(R2) of measurable sets Ωn ⊂ R2 to that of the limiting set Ω ⊂ R2 as n →
∞. Similar results have been obtained by Muratov and Simon for a non-local isoperimetric
problem with dipolar repulsion [40].

In this paper, we will instead investigate the large mass behaviour near the critical screen-
ing length α = 1√

2π
via a Γ-convergence analysis. First, we note that in this regime minimizers

always exist and are sufficiently regular.

Proposition 2.2. Let λ > 0 and α > 1√
2π
. Then a minimizer of Fλ,α over Aπ exists.

Furthermore, all minimizers are bounded, connected, open sets with boundary of class C2,α

for any α ∈ (0, 1) and have finitely many holes.

As the next step, we observe that for fixed and sufficiently regular sets the energy has
an expansion in terms of the perimeter and the squared L2-norm of the curvature of the
boundary, i.e., the elastica energy. Throughout the rest of the paper, we call a set regular,
if it is a bounded open set with the boundary of class C∞. As the energy Fλ,α(Ω) of any
admissible set Ω ∈ Aπ may be approximated by that of a regular set, restricting our attention
to regular sets will suffice for our purposes.

Proposition 2.3. Let Ω be a regular set. Then as λ → ∞ we have

Fλ,α(Ω) =

(
1− 1

2πα2

)
P (Ω) +

1

8πα4λ2

ˆ
∂Ω

κ2 dH1 + o
(
λ−2

)
.

We can thus indeed hope to obtain the combination of the perimeter and the elastica
energy as a large-mass Γ-limit of the functionals (2.3) in the critical regime α = 1√

2π
. However,

note that the integral of the curvature squared is ill-behaved on its own, sinceˆ
∂
(
B√

1+r2
(0)\Br(0)

) κ2 dH1 ∼ 1

r
→ 0 (2.5)

as r → ∞. Therefore, we will need to retain control over the perimeter in order to obtain
a reasonable Γ-limit. To this end, we will consider sequences of screening parameters which
approach the critical parameter from above as λ → ∞ with an appropriate rate.

Theorem 2.4. Let λn → ∞ and αn > 1√
2π

be sequences such that σn := λ2
n

(
1− 1

2πα2
n

)
satisfies

lim
n→∞

σn = σ > 0. (2.6)
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Then, the L1 Γ-limit of λ2
nFλn,αn as n → ∞ is given by

F∞,σ := rel F̃∞,σ, (2.7)

where for a regular set Ω ∈ Aπ we define

F̃∞,σ(Ω) := σP (Ω) +
π

2

ˆ
∂Ω

κ2 dH1, (2.8)

and the relaxation is with respect to the L1-convergence of the characteristic functions.

Since finite energy sequences might break up into multiple pieces which drift infinitely
far apart, we have not included a compactness statement here. As minimizers must be
connected due to the non-local kernel being repulsive, we do get convergence of minimizers up
to translations. The characterization of the minimizers used here is due to Goldman, Novaga,
and Röger [22], to which we also refer for more precise descriptions of the minimizers.

Corollary 2.5. Under the assumptions of Theorem 2.4, minimizers Ωn ⊂ Aπ of Fλn,αn

exist and after suitable translations and along a subsequence converge in the L1-topology to
a minimizer Ω∞ of F∞,σ. In particular, there exists σ̄ > 0 such that for σ > σ̄ we have
Ω∞ = B1(0), while for σ < σ̄ there exists rσ > 0 such that Ω∞ = B√

1+r2σ
(0) \ Brσ(x) with

x ∈ R2 such that |x| ≤
√

1 + r2σ − rσ. For σ = σ̄, both cases may occur, with rσ̄ > 0.

The values of σ̄ and rσ̄ may be found explicitly as solutions of an algebraic system of equations.
Numerically, we have σ̄ ≈ 0.112736 and rσ̄ ≈ 3.66882.

The inner ball of Ω∞ in the case σ ≤ σ̄ in Corollary 2.5 need not be concentric with the
outer ball due to locality of F∞,σ. We conjecture that this will not actually occur in the limits
of Ωn as n → ∞. Indeed, the following is expected to hold:

Conjecture 2.6. Under the assumptions of Theorem 2.4, there exists n̄ > 0 such that for
n > n̄ minimizers Ωn of Fλn,σn are given, up to translation, by B1(0) if σ > σ̄ and by
B√

1+r2σ,n
(0) \Brσ,n(0) for some rσ,n > 0 converging to rσ as n → ∞ if σ < σ̄.

This conjecture is supported by the fact that the minimum of Fλ,α among all sets of the form

Ωx := B√
1+r2(0)\Br(x) ∈ Aπ with r > 0 and x ∈ B√

1+r2−r(0) is uniquely attained for x = 0
for any λ > 0 and α > 0, see Proposition 2.7 below. Proving this conjecture, however, would
require to go to higher orders in the expansion of the energy and, in particular, to keep track
of the exponentially small terms arising from the non-local interactions between the inner
and the outer boundaries of the minimizers, as well as understanding the asymptotic rigidity
of concentric annuli with respect to the energy Fλ,α. Such an analysis goes well beyond the
scope of the present paper.

Proposition 2.7. Let K : (0,∞) → (0,∞) be monotone decreasing such that r 7→ rK(r) is
integrable. For r > 0 and x ∈ B√

1+r2−r(0), let Ωx := B√
1+r2(0)\Br(x). Then Ω0 minimizes

f(x) :=

ˆ
Ωx

ˆ
Ωx

K(|y − z|) d2y d2z

= −
ˆ
Ωx

ˆ
Ωc

x

K(|y − z|) d2y d2z + 2π2

ˆ ∞

0
rK(r) dr.

(2.9)

among all points x ∈ B√
1+r2−r(0). Additionally, if K is strictly monotone decreasing, then

Ω0 is the unique minimizer.
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Figure 1: Sketch of a sequence of regular sets (light gray) with finite elastica energy and its
limit (dark gray). The singular part of the boundary of the limit has an accumulation point
at x.

We finally comment on the issue of the relaxation contained in F∞,σ, which is surprisingly
subtle and technically challenging. This is due to the L1-topology controlling the set while
the elastica energy controls the boundary. Passing from one to the other is particularly tricky
when parts of the boundaries of sequences of sets collapse, in the limit resulting in singular
points of the boundary. The singular set may have accumulation points, see Figure 1, and
may even have positive H1 measure, see [6, Example 1].

For curves in two dimensions, the relaxation has been identified by Bellettini and Mugnai
[9] building on ideas by Bellettini, Dal Maso, and Paolini [6], which we present below after
introducing the necessary notation. For the also physically relevant case of surfaces in three
dimensions, the relaxation of the Willmore (or Helfrich) energy is not yet known. Therefore,
a three-dimensional analysis of the energy (2.3) currently seems to be out of reach.

Before we describe how to pass from sets to boundaries in a suitable manner, we start
with collecting standard notions for single curves.

Definition 2.8. We will consider regular closed curves γ : S1 → R2 to be parametrized by
t ∈ [0, 1]. The corresponding Sobolev space is

H2(S1;R2) :=
{
γ ∈ H2

loc(R;R2) : γ(t+ 1) = γ(t) ∀t ∈ R
}
, (2.10)

and throughout the paper we will only refer to continuous representatives. A curve γ ∈
H2(S1;R2) is called regular if γ′(t) ̸= 0 for any t ∈ [0, 1]. The length of such a curve is

L(γ) :=

ˆ 1

0
|γ′| dt. (2.11)

We abbreviate the image of the curve as Γ := γ([0, 1]). For x ∈ R2 \Γ, we define the winding
number of γ around x as

I(γ, x) := 1

2π

ˆ 1

0

(γ(t)− x)⊥ · γ′(t)
|γ(t)− x|2 dt, (2.12)

where y⊥ := (−y2, y1) for every y = (y1, y2) ∈ R2. We will say that a regular curve is
parametrized by constant speed if for all t ∈ [0, 1] we have

|γ′(t)| = L(γ). (2.13)

One can readily check that I(γ, 0) = 1 for γ(t) = (cos(2πt), sin(2πt)), which is a constant
speed parametrization for t ∈ [0, 1].

7



It is instructive to consider the passage from a bounded set Ω ⊂ R2 with smooth boundary
to its boundary curves in detail. Of course, the boundary ∂Ω of such a set can always be
decomposed into the union of the images of a finite collection of smooth, disjoint Jordan
curves {γi}Ni=1 ⊂ C∞(S1;R2) for some N ∈ N, i.e., smooth, closed curves γi parametrized
by t ∈ [0, 1] without self-intersections. Such a decomposition in the case of regular sets is
classical and can be found, e.g., in the appendix of Milnor’s book on differential topology
[36]. See also Ambrosio et al. for the corresponding and much deeper result on sets of finite
perimeter in the plane [2]. Throughout the paper, we always order such curves by decreasing
length. With this notation, we have ∂Ω =

⋃N
i=1 Γi, where Γi = γi([0, 1]). Furthermore, we

always orient the curves such that at every point of the boundary, the outward normal νi is
given by

νi := −τ⊥i , (2.14)

where

τi :=
γ′i
|γ′i|

(2.15)

is the unit tangent along the curve. This way, the curvature κ of ∂Ω (positive if Ω is convex)
and the curvature κi : S1 → R of the boundary curve γi coincide in the sense that κ(γi(t)) =
κi(t) for all t ∈ [0, 1]. For constant speed curves we have the identities

ν ′i = κiL(γi)τi, (2.16)

γ′′i = −κiL
2(γi)νi. (2.17)

For σ > 0, the limit energy of Ω in (2.8) can then be written in terms of the family of constant
speed boundary curves {γi}Ni=1 as

F̃∞,σ(Ω) =
N∑
i=1

(
σL(γi) +

π

2
L(γi)

ˆ 1

0
κ2i (t) dt

)
. (2.18)

It remains to recover Ω by means of its boundary curves. By the Jordan decomposition
theorem, for every i = 1, . . . , N , we can always decompose R2 into an interior of the curve γi
and an exterior as

int(γi) :=
{
x ∈ R2 \ Γi : |I(γi, x)| = 1

}
, (2.19)

ext(γi) :=
{
x ∈ R2 \ Γi : I(γi, x) = 0

}
. (2.20)

Here, the absolute value in (2.19) accounts for both counter-clockwise and clockwise oriented
curves. Indeed, if γi is oriented counter-clockwise, we have I(γi, x) = 1 for all x ∈ int(γi),
while for a curve γi oriented clockwise we have I(γi, x) = −1 for all x ∈ int(γi). Via elementary
combinatorics, one can then recover the original bounded set Ω as

Ω =

{
x ∈ R2 \

N⋃
i=1

Γi :
N∑
i=1

I(γi, x) ≡ 1 (mod 2)

}
. (2.21)

In fact, with the orientations of the boundary curves chosen for identity (2.14) to hold, we even
have

∑N
i=1 I(γi, x) = χΩ(x) for x ∈ R2 \ ⋃N

i=1 Γi. However, to streamline the arguments in
this paper, not fixing the orientation and taking the sum modulo 2 instead is more convenient.
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Figure 2: An example of a set with a “collapsed” interior boundary shown as dashed.

We now extend these notions to collections of regular, closed, but not necessarily simple
curves in the Sobolev space H2(S1;R2) and thus having square integrable curvature. We note
from the start that the formulas in (2.14)–(2.17) clearly remain valid a.e. for such curves
parametrized with constant speed.

Definition 2.9. Let σ > 0. Let I ⊂ N be finite, let {γi}i∈I ⊂ H2(S1;R2) be a collection of
regular closed curves, and for each i ∈ I let

κi :=
(γ′i)

⊥ · γ′′i
|γ′i|3

∈ L2(S1) (2.22)

be the curvature of γi. We abbreviate γ := {γi}i∈I and Γ :=
⋃

i∈I Γi, where Γi := γi([0, 1]).
We then define

F̂∞,σ(γ) :=
∑
i∈I

(
σL(γi) +

π

2

ˆ 1

0
κ2i (t)|γ′i(t)| dt

)
(2.23)

and, for x ∈ R2 \ Γ,

I(γ, x) :=
∑
i∈I

I(γi, x). (2.24)

Finally, we define

Ao
γ := {x ∈ R2 \ Γ : I(γ, x) ≡ 1 (mod 2)}. (2.25)

Notice that while Ω = Ao
γ when every curve γi is simple, this need not hold in the relaxation

process: If two interior boundaries collapse, as in the example in Figure 2, then Ao
γ excludes

a one-dimensional segment. This exceptional set of course has measure zero, but needs to be
taken care of in topological statements, motivating the following definition.

Definition 2.10 (Bellettini, Mugnai [9]). Given a set of finite perimeter Ω ⊂ R2, we define
the open set

Ω∗ :=
{
x ∈ R2 : ∃r > 0 : |Br(x) \ Ω| = 0

}
, (2.26)

while ∂∗Ω denotes the reduced boundary of Ω. The set of its system of H2-boundary curves
is then defined as

G(Ω) :=
{
{γi}i∈I ⊂ H2(S1;R2) : I ⊂ N, |I| < ∞, ∂∗Ω ⊂ Γ,

Ω∗ = int
(
Ao

γ ∪ Γ
)
, |γ′i| ≡ const ∀i ∈ I

}
,

(2.27)

with the convention that G(Ω) := ∅ if such a system of curves does not exist.
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In the example of Figure 2 the system of boundary curves will consist of an outer circle and
a single interior curve which traverses the collapsed interior boundary interval twice. Here
the set Ao

γ is shown in gray, while the set Ω∗ is obtained from Ao
γ by adding back the white

interval without the cusp points (resulting in a disk with two holes).
The following representation of the relaxed elastica functional was established by Bellettini

and Mugnai.

Theorem 2.11 (Bellettini, Mugnai [9]). For a bounded set Ω ⊂ R2 of finite perimeter, we
have

F∞,σ(Ω) = inf
γ∈G(Ω)

F̂∞,σ(γ). (2.28)

2.1 Outline of the proof

Theorem 2.4 being a Γ-convergence statement, its proof is roughly split into a compactness
part, a lower bound, and an upper bound. However, here we take “compactness” to mean that
limit sets essentially have an H2-regular boundary rather than showing that all finite energy
sequences have an L1-convergent subsequence, which is wrong, as noted below Theorem 2.4.

The first step is to rewrite the energy in the form, following the ideas of Muratov and
Simon [40]:

Fλ,α(Ω) =

(
1− 1

2πα2

)
P (Ω)

+
1

4πα

ˆ
∂∗Ω

ˆ
H0

−(ν(y))∆λ(Ω−y)

∣∣∣∣ν(y) · z

|z|

∣∣∣∣ e−α|z|

|z| d2z dH1(y),

(2.29)

where H0
−(ν(y)) denotes the half-plane through 0 sharing the outward normal ν(y) with Ω at

y ∈ ∂∗Ω. See Figure 3 for an illustration and Lemma 3.1 for the precise statement.
The strategy for proving compactness loosely follows ideas of the derivation of plate theory

by Friesecke, James, and Müller [17] in that we provide an L2-bound for difference quotients
along the sequence. However, our situation is much simpler as the representation (2.29)
directly provides a quantitative, non-local comparison of the set with its tangent half-planes
without having to first establish further rigidity properties. Therefore, two tangent half-planes
at two close boundary points cannot deviate too much without increasing the energy. We can
also only have finitely many boundary curves as the elastica energy of short, closed curves
blows up.

For the upper and lower bounds, we introduce an anisotropic version of the blowup used in
the identity (2.29), so that we can expect the blowup to approach the subgraph of a parabola
with curvature at the vertex determined by the curvature of Ω. In the upper bound, we will be
able to work with a fixed and regular set to make this intuition rigorous and to compute the
resulting energy contribution. We will argue similarly for the lower bound, but even if we can
restrict ourselves to only considering sequences of regular sets by a density argument, we will
have to deal with quite a few measure-theoretic details to handle the geometric consequences
of weak H2-convergence.
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ν(y)

τ(y)

∂H−(y)

∂∗Ω

y

Figure 3: Sketch indicating the domain of integration in z (hatched) around y ∈ ∂∗Ω in
the representations (2.29) and (3.7). The domain Ω is located above the solid curve and the
half-plane H−(y) is located above the solid line, respectively.

3 Preliminaries and existence of minimizers

Before we turn to the individual steps, we present a rewriting via integration by parts of the
non-local term in Fλ,α in terms of a mixed boundary/bulk integral. A similar computation
was already crucial in identifying the critical Γ-limit in the case of dipolar repulsion [40].

To this end we solve the equation ∆Φα(|z|) = e−α|z|

|z| in R2\{0} with sufficient decay at
infinity. This gives

Φα(r) =
1

α
E1(αr), (3.1)

Φ′
α(r) = −e−αr

αr
, (3.2)

where E1(z) :=
´∞
z

e−t

t dt for z > 0 is the exponential integral. For ν ∈ S1 and y ∈ ∂∗Ω for a
set Ω of finite perimeter we also define

H0
−(ν) :=

{
x ∈ R2 : ν · x < 0

}
, (3.3)

H−(y) :=
{
x ∈ R2 : ν(y) · (x− y) < 0

}
, (3.4)

where ν(y) denotes the outward unit normal of Ω at y. Let furthermore

Rν := e2 ⊗ ν − e1 ⊗ ν⊥, (3.5)

Aλ := λe1 ⊗ e1 + λ2e2 ⊗ e2, (3.6)

where ν⊥ = (−ν2, ν1) is the 90-degree counter-clockwise rotation of ν = (ν1, ν2), i.e., Rν ∈
SO(2) is the unique rotation such that Rνν = e2, and Aλ is a matrix of anisotropic dilations
along the first and the second coordinate directions. Here and everywhere below z = (z1, z2).

Lemma 3.1. Let Ω ∈ Aπ. Then we have the representations

Fλ,α(Ω) =

(
1− 1

2πα2

)
P (Ω)

+
1

4πα

ˆ
∂∗Ω

ˆ
H0

−(ν(y))∆λ(Ω−y)

∣∣∣∣ν(y) · z

|z|

∣∣∣∣ e−α|z|

|z| d2z dH1(y)

(3.7)

=

(
1− 1

2πα2

)
P (Ω)

+
1

4παλ2

ˆ
∂∗Ω

ˆ
H0

−(e2)∆AλRν(y)(Ω−y)
|z2|

e
−α

√
z21+

z22
λ2

z21 +
z22
λ2

d2z dH1(y).

(3.8)
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In particular, we have

Fλ,α(Ω) ≥
(
1− 1

2πα2

)
P (Ω). (3.9)

These representations have the advantage that the non-local term penalizes the deviation
of Ω from its tangent half-plane at each y ∈ ∂∗Ω, see Figure 3. Furthermore, the perime-
ter term already exhibits the correct leading order behaviour. In particular, together with
Proposition 2.3 we immediately get the already-known Γ-convergence statement of Theorem
2.1 for sufficiently strong screening as a corollary.

The proof of Lemma 3.1 relies on integrating the kernel by parts, as already mentioned,
and at each point of the boundary moving the expected non-local contribution of the tangent
half-plane to the perimeter.

With this representation, the proof of existence of minimizers is a surprisingly simple
computation.

Proof of Proposition 2.2. As is common in the field, the full proof operates by the concentration-
compactness dichotomy. We refer the reader to, for example, the proof of [40, Lemma 4.4]
(see also [27]) for the details. In the following we only prove that for all β ∈ (0, 1) we have

inf
Aπ

Fλ,α < inf
Aβπ

Fλ,α + inf
A(1−β)π

Fλ,α, (3.10)

which can then be used to rule out the splitting case in the concentration-compactness prin-
ciple.

For every Ω ∈ Aπ, we compute, using the representation (3.7) and the condition α > 1√
2π
,

that

Fλ,α

(
β

1
2Ω
)
= β

1
2

(
1− 1

2πα2

)
P (Ω)

+
β

4πα

ˆ
∂∗Ω

ˆ
H−(ν(y))∆λ(Ω−y)

∣∣∣∣ν(y) · z

|z|

∣∣∣∣ e−β
1
2 α|z|

|z| d2z dH1(y)

≥ β

(
1− 1

2πα2

)
P (Ω) + β

1
2 (1− β

1
2 )

(
1− 1

2πα2

)
P (Ω)

+
β

4πα

ˆ
∂∗Ω

ˆ
H−(ν(y))∆λ(Ω−y)

∣∣∣∣ν(y) · z

|z|

∣∣∣∣ e−α|z|

|z| d2z dH1(y)

≥ β inf
Aπ

Fλ,α + β
1
2 (1− β

1
2 )

(
1− 1

2πα2

)
P (Ω),

(3.11)

and thus infAβπ
Fλ,α > β infAπ Fλ,α. Similarly, we have infA(1−β)π

Fλ,α > (1 − β) infAπ Fλ,α,
so adding the two inequalities gives the claim (3.10).

The rest of the statement can be proved as in [25, Proposition 2.1]. The regularity theory
for quasi-minimizers of the perimeter implies C1,β-regularity of Ω for any β ∈ (0, 12), see for
example [31, Theorem 21.8] or [42, Theorem 1.4.9]. By [19, Theorem 5.2], the potential

v(x) :=
1

2π

ˆ
Ω

e−α|x−y|

|x− y| dx, x ∈ R2, (3.12)
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is of class C0,α(R2) for any α ∈ (0, 1). Therefore, the Euler-Lagrange equation

κ(x) + v(x) = µ, x ∈ ∂Ω, (3.13)

where µ ∈ R is the Lagrange multiplier for the mass constraint, holds in the weak sense in
a local Cartesian frame in which ∂Ω is a C1,β graph. Consequently, ∂Ω is of class C2,α for
any α ∈ (0, 1). In particular, Ω is a bounded open set with finitely many holes. Finally, as
the kernel is repulsive, any minimizer Ω must be connected, since otherwise moving different
connected components far apart lowers the energy.

Proof of Lemma 3.1. As in [40], the proof relies on the application of the Gauss-Green theo-
rem to the double integral in (2.3). However, due to a mild singularity of the kernel absent
in [40] we need an additional approximation argument to express the non-local term as an
integral over the interior and the reduced boundary of the set of finite perimeter Ω. To that
end, let η ∈ C∞(R) be a cutoff function with η′ ≤ 0 such that η(t) = 1 for all t ≤ 1

2 and
η(t) = 0 for all t ≥ 1. For ε > 0 and R > 0 we define a short-range cutoff ηε(t) = η(t/ε) and a
long-range cutoff ηR(t) = η(t/R), respectively, and observe that by the monotone convergence
theorem we haveˆ

Ω

ˆ
Ωc

e−λα|x−y|

|x− y| d2y d2x = lim
ε→0, R→∞

ˆ
Ω

ˆ
Ωc

(1− ηε(|y − x|))ηR(|y − x|)e
−λα|y−x|

|y − x| d2y d2x.

(3.14)

Then recalling the definition of Φα and integrating by parts in y, which is now justified [1],
with the help of Fubini’s theorem we obtain

ˆ
Ω

ˆ
Ωc

(1− ηε(|y − x|))ηR(|y − x|)e
−λα|y−x|

|y − x| d2y d2x

=

ˆ
Ω

ˆ
Ωc

(1− ηε(|y − x|))ηR(|y − x|)∆yΦλα(|y − x|) d2y d2x

= −
ˆ
Ω

ˆ
∂∗Ω

(1− ηε(|y − x|))ηR(|y − x|) ν(y) · ∇yΦλα(|y − x|) dH1(y) d2x

+

ˆ
Ω

ˆ
Ωc

ηR(|y − x|)∇yηε(|y − x|) · ∇yΦλα(|y − x|) d2y d2x

−
ˆ
Ω

ˆ
Ωc

(1− ηε(|y − x|))∇yηR(|y − x|) · ∇yΦλα(|y − x|) d2y d2x.

(3.15)

Notice that from (3.2) we have

|ν(y) · ∇yΦλα(|y − x|)| ≤ e−αλ|x−y|

αλ|x− y| , (3.16)

which is integrable over (x, y) ∈ Ω×∂∗Ω by Fubini’s theorem. Hence applying the dominated
convergence theorem, we obtain

lim
ε→0, R→∞

ˆ
Ω

ˆ
∂∗Ω

(1− ηε(|y − x|))ηR(|y − x|) ν(y) · ∇yΦλα(|y − x|) dH1(y) d2x

=

ˆ
Ω

ˆ
∂∗Ω

ν(y) · ∇yΦλα(|y − x|) dH1(y) d2x

= −
ˆ
∂∗Ω

ˆ
Ω
ν(y) · ∇xΦλα(|y − x|) d2x dH1(y).

(3.17)
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Similarly, the last term in the right-hand side of (3.15) vanishes in the limit.
Thus, it remains to evaluate the second integral on the right-hand side of (3.15), which

for R > 2ε can be written asˆ
Ω

ˆ
Ωc

ηR(|y − x|)∇yηε(|y − x|) · ∇yΦλα(|y − x|) d2y d2x

=
1

ε

ˆ
Ω

ˆ
Bε(x)

|η′(ε−1|y − x|)Φ′
λα(|y − x|)| d2y d2x.

(3.18)

Therefore, by (3.2) and defining ϕε(x) :=
1

2πε|x| |η′(|x|/ε)| for x ∈ R2 we have

1

2π

∣∣∣∣ˆ
Ω

ˆ
Ωc

ηR(|y − x|)∇yηε(|y − x|) · ∇yΦλα(|y − x|) d2y d2x
∣∣∣∣

≤ 1

λα

ˆ
Ω

ˆ
Bε(x)

|η′(ε−1|y − x|)|
2πε|y − x| d2y d2x

=
1

λα

ˆ
Ω

ˆ
Ωc

ϕε(x− y) d2y d2x.

(3.19)

The function ϕε is non-negative with ϕε(x) = 0 for all x ∈ R2 such that |x| > ε, and´
R2 ϕε(x) d

2x = 1, so that it is an approximation of a Dirac delta as ε → 0. Thus by the
standard approximation argument for the characteristic function of Ω in L1(R2) by uniformly
bounded smooth functions with compact support we have

lim
ε→0

ˆ
Ω

ˆ
Ωc

ϕε(|x− y|) d2y d2x = 0. (3.20)

Putting together equations (3.14), (3.15), and (3.17)–(3.20) we have

ˆ
Ω

ˆ
Ωc

e−λα|x−y|

|x− y| d2y d2x =

ˆ
∂∗Ω

ˆ
Ω
ν(y) · ∇xΦλα(|y − x|) d2x dH1(y). (3.21)

Therefore, we can write

−
ˆ
Ω

ˆ
Ωc

e−λα|x−y|

|x− y| d2y d2x

=

ˆ
∂∗Ω

ˆ
Ω
ν(y) · x− y

|x− y| |Φ
′
λα(|y − x|)| d2x dH1(y)

=

ˆ
∂∗Ω

ˆ
H−(y)

ν(y) · x− y

|x− y| |Φ
′
λα(|y − x|)| d2x dH1(y)

+

ˆ
∂∗Ω

ˆ
Ω\H−(y)

ν(y) · x− y

|x− y| |Φ
′
λα(|y − x|)| d2x dH1(y)

−
ˆ
∂∗Ω

ˆ
H−(y)\Ω

ν(y) · x− y

|x− y| |Φ
′
λα(|y − x|)| d2x dH1(y).

(3.22)

For every y ∈ ∂∗Ω, we compute

ˆ
H−(y)

ν(y) · x− y

|x− y| |Φ
′
λα(|y − x|)| d2x = −

ˆ π
2

−π
2

ˆ ∞

0

e−λαr cos θ

λα
dr dθ

= − 2

λ2α2

(3.23)
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Together with the combinatorics of the sign of ν(y) · x−y
|x−y| for x ∈ H−(y) and x ̸∈ H−(y),

(3.22) and (3.23) thus result in

−
ˆ
Ω

ˆ
Ωc

e−λα|x−y|

|x− y| d2y d2x

= − 2

λ2α2
P (Ω) +

ˆ
∂∗Ω

ˆ
H−(y)∆Ω

∣∣∣∣ν(y) · x− y

|x− y|

∣∣∣∣ |Φ′
λα(|y − x|)| d2x dH1(y)

= − 2

λ2α2
P (Ω) +

1

λ2α

ˆ
∂∗Ω

ˆ
H0

−(ν(y))∆λ(Ω−y)

∣∣∣∣ν(y) · z

|z|

∣∣∣∣ e−α|z|

|z| d2z dH1(y),

(3.24)

which proves equation (3.7).
Finally, we calculate

ˆ
H0

−(ν(y))∆λ(Ω−y)

∣∣∣∣ν(s) · z

|z|

∣∣∣∣ e−α|z|

|z| d2z

=
1

λ2

ˆ
H0

−(e2)∆AλRν(y)(Ω−y)
|z2|

e
−α

√
z21+

z22
λ2

z21 +
z22
λ2

d2z,

(3.25)

giving equation (3.8).

4 Compactness

4.1 Single boundary curves

We start out by proving compactness for a single sequence of boundary curves of a finite
energy sequence. By density of regular sets in the sets of finite perimeter, we may as well
assume that the sequence consists of regular sets. The main point here is to prove that the
limit is sufficiently regular to have curvature in L2.

To this end, the first step is to obtain a discrete H1 estimate for the normals along the
sequence, that is, for fixed λ and α. In order to control the geometry of the curves in the
lower bound, we also need an estimate for how often two boundary points (be they from
the same boundary curve doubling up on itself or from two different boundary curves) with
wildly different tangents can be close to each other. Hence we also record a consequence of
the arguments pertaining to two mismatched, close-by normals regardless of which boundary
curve they belong to.

Lemma 4.1. Let α0 > 0 and K > 0. Then there exist C,C ′, C ′′ > 0 with the following
property: If λ > 0, Ω ∈ Aπ is regular and γ : [0, 1] → R2 is a smooth Jordan boundary curve
of Ω parametrized by constant speed, then for all α ∈ (0, α0) and s ∈ [−K,K] we have the
estimate

L(γ)

ˆ 1

0

∣∣ν (t+ (L(γ)λ)−1s
)
− ν(t)

∣∣2 dt

≤ C

ˆ
Γ

ˆ
H0

−(ν(y))∆λ(Ω−y)

∣∣∣∣ν(y) · z

|z|

∣∣∣∣ e−α|z|

|z| d2z dH1(y)

≤ C ′Fλ,α(Ω).

(4.1)
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Furthermore, for

ZK,λ :=
{
(y1, y2) ∈ ∂Ω× ∂Ω :

|y1 − y2| ≤ Kλ−1, ν(y1) · ν(y2) ≤ 0
}
.

(4.2)

we have

H2(ZK,λ) ≤ C ′′P (Ω)Fλ,α(Ω). (4.3)

Using this information, we can prove the compactness statement for sequences of single
boundary curves. As the L1-topology disregards sets with vanishing mass, we only have to
consider sequences of curves whose length does not converge to zero in the limit. We exclude
the natural lack of compactness due to the translational symmetry of the problem by pinning
one point on each curve.

Lemma 4.2. Let λn > 0 and αn > 1√
2π

be such that λn → ∞ as n → ∞ and such that

σn := λ2
n

(
1− 1

2πα2
n

)
satisfies

lim
n→∞

σn = σ > 0. (4.4)

Let (Ωn) ⊂ Aπ be a sequence of regular sets such that

lim sup
n→∞

λ2
nFλn,αn(Ωn) < ∞. (4.5)

Let γn : [0, 1] → R2 be a smooth Jordan boundary curve of Ωn, and assume that all γn are
parametrized with constant speed, with

lim inf
n→∞

L(γn) > 0. (4.6)

Then there exists a subsequence (γnk
) of (γn) and γ∞ ∈ H2(S1;R2) such that

γnk
− γnk

(0) → γ∞ in H1(S1;R2), (4.7)

as k → ∞. In particular, we have limk→∞ L(γnk
) = L(γ∞) > 0. Furthermore, there exists a

universal constant C > 0 such that along a further subsequence (not relabeled) we have

F̂∞,σ(γ∞)

≤ C lim inf
k→∞

(
σnk

L(γnk
)

+ λ2
nk

ˆ
Γnk

ˆ
H0

−(νnk
(y))∆λnk

(Ωnk
−y)

∣∣∣∣νnk
(y) · z

|z|

∣∣∣∣ e−αnk
|z|

|z| d2z dH1(y)

)
.

(4.8)

Proof of Lemma 4.1. For x ∈ R2 and i = 1, 2, we abbreviate

gi(x) := ν(yi) · (x− λyi), (4.9)

µi(x) := |gi(x)|
e−α|x−λyi|

|x− λyi|2
. (4.10)
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Step 1: We claim that for all y1, y2 ∈ ∂Ω with λ|y1 − y2| ≤ K, we have

|ν(y1)− ν(y2)|2 ≤ C

ˆ
R2

∣∣χλH−(y1) − χλΩ

∣∣µ1 d
2x

+ C

ˆ
R2

∣∣χλH−(y2) − χλΩ

∣∣µ2 d
2x,

(4.11)

for some C > 0 depending only on K and α0.
With the goal of comparing tangent spaces at y1 and y2, we have by the triangle inequality

ˆ
R2

∣∣χλH−(y1) − χλΩ

∣∣µ1 d
2x+

ˆ
R2

∣∣χλH−(y2) − χλΩ

∣∣µ2 d
2x

≥
ˆ
R2

∣∣χλH−(y1) − χλH−(y2)

∣∣min (µ1(x), µ2 (x)) d
2x.

(4.12)

Let ȳ := λ(y1+y2)
2 . By the assumption λ|y1 − y2| ≤ K, for i = 1, 2 we have

|λyi − ȳ| ≤ K

2
. (4.13)

Therefore, for all x ∈ BK(ȳ) we obtain

max {|x− λy1|, |x− λy2|} ≤ 3

2
K (4.14)

so that we have

min

(
e−α|x−λy1|

|x− λy1|2
,
e−α|x−λy2|

|x− λy2|2

)
≥ 4e−

3
2
α0K

9K2
. (4.15)

Together with (4.12), we arrive at

ˆ
R2

∣∣χλH−(y1) − χλΩ

∣∣µ1 d
2x+

ˆ
R2

∣∣χλH−(y2) − χλΩ

∣∣µ2 d
2x

≥ C−1

ˆ
(λH−(y1)∆λH−(y2))∩BK(ȳ)

min {|g1(x)|, |g2(x)|} d2x,
(4.16)

for some C > 0 depending only on K and α0.
We now interpret the integral on the right-hand side if (4.16) as the volume of a three-

dimensional body, aiming to estimate |ν(y1)−ν(y2)|2 from above. Therefore, we may assume
that ν(y1) ̸= ν(y2) and, without loss of generality, that ∂H−(y1) and ∂H−(y2) intersect at
the origin. Thus there exists a closed cone C+ ⊂ R2 with vertex at 0 and half-angle θ ∈ [0, π2 ),
see Figure 4, such that

C+ ∪ C− = λH−(y1)∆λH−(y2), (4.17)

where C− := −C+. Now recall that by its definition |λ−1gi(x)| is the distance from the point
λ−1x to ∂H−(yi). Hence the set

L := {x ∈ C+ ∪ C− : |g1(x)| = |g2(x)|} (4.18)
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0

y1
y2

ȳν(y1) ν(y2)

BK(ȳ)

C− C+

L

∂H− (y1) ∂H− (y2)

Figure 4: Sketch of the cones C±, the line L, the points y1, y2, ȳ, the normals ν1 and ν2, and
the ball BK(ȳ).

defines a line that bisects C±, that is, it separates C+ and C− into two respective sub-cones
with apertures θ ∈ [0, π2 ).

Let x ∈ L. Then for i = 1, 2, we have x− gi(x)ν(yi) ∈ ∂H−(yi) and

|gi(x)| = |x| sin θ (4.19)

Let τ ∈ L be such that |τ | = 1 and ρτ ∈ C+ ⊂ R2 for all ρ > 0. We define the three-
dimensional sets

L̃± :=
{
(±ρτ, ρ sin θ) ∈ R3 : ρ ∈ (0,∞)

}
, (4.20)

C̃± := conv
((

C± × {0}
)
∪ L̃±

)
. (4.21)

In particular, C̃± are two three-dimensional cones, see an illustration in Figure 5.
By linearity of gi for i = 1, 2, the definition of L, and the identity (4.19), we can interpret

the integral on the right hand side of (4.16) asˆ
((λH−(y1))∆(λH−(y2)))∩BK(ȳ)

min {|g1(x)|, |g2(x)|} d2x

=
∣∣∣(C̃+ ∪ C̃−

)
∩ (BK(ȳ)× R)

∣∣∣ . (4.22)

As a result of estimate (4.13), we have BK
2
(λyi) ⊂ BK(ȳ) for i = 1, 2, so that∣∣∣(C̃+ ∪ C̃−

)
∩ (BK(ȳ)× R)

∣∣∣ ≥ ∣∣∣(C̃+ ∪ C̃−
)
∩
(
BK

2
(λyi)× R

)∣∣∣ . (4.23)

Without loss of generality, we may assume y2 ∈ C+, as in Figure 4, so that∣∣∣(C̃+ ∪ C̃−
)
∩ (BK(ȳ)× R)

∣∣∣ ≥ ∣∣∣C̃+ ∩
(
BK

2
(λy2)× R

)∣∣∣ . (4.24)

In turn, by monotonicity of the right-hand side of (4.24) with respect to sliding the ball center
along ∂H−(y2), we have∣∣∣C̃+ ∩

(
BK

2
(λy2)× R

)∣∣∣ ≥ ∣∣∣C̃+ ∩
(
BK

2
(0)× R

)∣∣∣ . (4.25)
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0
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L̃+

C̃+

Lτ

Figure 5: Sketch of the three-dimensional cone C̃+.

As C̃+ is a cone with opening half-angle θ in the horizontal direction and aperture θ in
the vertical direction, we have∣∣∣C̃+ ∩

(
BK

2
(0)× R

)∣∣∣ ≥ CK3 sin2 θ, (4.26)

for some C > 0 universal. Finally, by the observation that

|ν(y1)− ν(y2)| = 2 sin θ, (4.27)

and estimates (4.16) and (4.22)–(4.26), we obtain

|ν(y1)− ν(y2)|2 ≤ C

ˆ
R2

∣∣χλH−(y1) − χλΩ

∣∣µ1 d
2x

+ C

ˆ
R2

∣∣χλH−(y2) − χλΩ

∣∣µ2 d
2x,

(4.28)

for some C > 0 depending only on K and α0, proving the claim.
Step 2: Estimate the normals along a curve. As γ is parametrized by constant speed, for

all t ∈ [0, 1] and s ∈ [−K,K] we have

λ
∣∣γ(t)− γ

(
t+ (L(γ)λ)−1s

)∣∣ ≤ K. (4.29)

The first estimate in (4.1) then follows by taking y1 = γ(t) and y2 = γ
(
t+ (L(γ)λ)−1s

)
in

Step 1 and integrating in t, while the second one is obtained with the help of Lemma 3.1.
Step 3: Estimate mismatched normals. For (y1, y2) ∈ ZK,λ, Step 1 implies

2 ≤ |ν(y1)− ν(y2)|2

≤ C

ˆ
R2

∣∣χλH−(y1) − χλΩ

∣∣µ1 d
2x

+ C

ˆ
R2

∣∣χλH−(y2) − χλΩ

∣∣µ2 d
2x.

(4.30)

Integrating jointly in y1 and y2 over ZK,λ ⊂ Γ× Γ, as in Step 2 we obtain

H2(ZK,λ) ≤ C ′P (Ω)Fλ,α(Ω), (4.31)

for some C ′ > 0 depending only on K and α0. This concludes the proof.

Proof of Lemma 4.2. Throughout the following, we will never relabel the sequences after
passing to subsequences. Without loss of generality, we may also assume that γn(0) = 0 for
all n ∈ N. We recall that (4.4) implies that αn → 1√

2π
as n → ∞.
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Step 1: Establish the limit behavior of the normals. We begin by observing that by (4.5),
(4.6) and Lemma 3.1 the limit L∞ := limn→∞ L(γn) ∈ (0,∞) exists along a subsequence.

Let ϕ : R → R be the standard mollifier and let ϕδ = 1
δϕ
( ·
δ

)
be an approximation for

the Dirac delta in one dimension with support in (−δ, δ) for δ → 0. Consider the maps
ν̃n := ϕ(L(γn)λn)−1 ∗ νn as 1-periodic convolutions, where νn is the outward normal to γn
defined in (2.14). In particular, we have |ν̃n| ≤ 1. Note that we are mimicking convolution in
arc-length coordinates on the fixed domain [0, 1]. For L(γn)λn > 2, which holds for n large
enough due to L∞ > 0, we may apply the Cauchy-Schwarz inequality to split off ϕ and get

ˆ 1

0
|ν̃n − νn|2 dt =

ˆ 1

0

∣∣∣∣∣
ˆ 1

2

− 1
2

ϕ(L(γn)λn)−1(τ)(νn(t+ τ)− νn(t)) dτ

∣∣∣∣∣
2

dt

≤
ˆ 1

2

− 1
2

ϕ(L(γn)λn)−1(τ)

ˆ 1

0
|νλn(t+ τ)− νλn(t)|2 dt dτ

=

ˆ 1

−1
ϕ(s)

ˆ 1

0

∣∣νλn(t+ (L(γn)λn)
−1s)− νλn(t)

∣∣2 dt ds.

(4.32)

Applying the L∞-type estimate (4.1) to the last term in (4.32) for K = 1, we get

L(γn)

ˆ 1

0
|ν̃n − νn|2 dt

≤ C

ˆ
Γn

ˆ
H0

−(νn(y))∆λn(Ω−y)

∣∣∣∣νn(y) · z

|z|

∣∣∣∣ e−α|z|

|z| d2z dH1(y),

(4.33)

for some C > 0 universal and all n large enough. In particular, by Lemma 3.1 this ensures
tha

ν̃n − νn → 0 (4.34)

in L2(S1;R2) as n → ∞.

Similarly, due to
´ 1

2

− 1
2

ϕ′
(L(γn)λn)−1 dt = 0 for n ∈ N sufficiently large and the Cauchy–

Schwarz inequality to split off |ϕ′|, we obtain

ˆ 1

0
|ν̃ ′n|2 dt =

ˆ 1

0

∣∣∣∣∣
ˆ 1

2

− 1
2

ϕ′
(L(γn)λn)−1(τ)(νn(t+ τ)− νn(t)) dτ

∣∣∣∣∣
2

dt

≤ ∥ϕ′
(L(γn)λn)−1∥L1

ˆ 1
2

− 1
2

∣∣∣ϕ′
(L(γn)λn)−1(τ)

∣∣∣ ˆ 1

0
|νn(t+ τ)− νn(t)|2 dt dτ.

(4.35)

Combining the fact that ∥ϕ′
(L(γn)λn)−1∥L1 ≤ CL(γn)λn for some C > 0 universal with the

L∞-type estimate (4.1) for K = 1, we furthermore get

1

L(γn)

ˆ 1

0
|ν̃ ′n|2 dt

≤ Cλ2
n

ˆ
Γn

ˆ
H0

−(νn(y))∆λ(Ωn−y)

∣∣∣∣νn(y) · z

|z|

∣∣∣∣ e−α|z|

|z| d2z dH1(y),

(4.36)
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again, for some C > 0 universal and all n large enough. In particular, by (4.1), (4.5) and
Lemma 3.1 we have that ν̃ ′n is uniformly bounded in L2(S1;R2), and so by uniform bound-
edness of |ν̃n| there exists ν̃∞ ∈ H1(S1;R2) such that upon extraction of a subsequence
ν̃n ⇀ ν̃∞ in H1(S1;R2) as n → ∞. In turn, by the Rellich-Kondrachov theorem we get
ν̃n → ν̃∞ strongly in L2(S1;R2) as n → ∞. Hence, due to convergence (4.34), we also get

νn → ν̃∞ strongly in L2(S1;R2). (4.37)

Furthermore, since |νn| = 1, we obtain that |ν̃∞| = 1 as well (recall that ν̃∞ ∈ C
1
2 (S1;R2) by

the corresponding Sobolev embedding).
Step 2: Construct a limit curve γ∞ ∈ H2(S1;R2). By (4.37), (2.14) and the fact that

|γ′n| = L(γn) we have

γ′n = L(γn)ν
⊥
n → L∞ν̃⊥∞ strongly in L2(S1;R2). (4.38)

At the same time, since we assumed without loss of generality that γn(0) = 0, upon extraction
of a subsequence we get γn ⇀ γ∞ weakly in H1(S1;R2) for some γ∞ ∈ H1(S1;R2) with
γ∞(0) = 0 as n → ∞. In particular, by (4.38) we have

γ′∞ = L∞ν̃⊥∞, (4.39)

and γn → γ∞ strongly in H1(S1;R2). From the strong convergence, it follows that L∞ =
limn→∞ L(γn) = L(γ∞). From (4.39) and the fact that |ν̃∞| = 1 we thus obtain that |γ′∞| =
L(γ∞), i.e., that γ∞ is a closed curve parametrized with constant speed. Finally, we conclude
that γ∞ ∈ H2(S2;R2) from (4.39) and the fact that ν̃∞ ∈ H1(S1;R2).

Step 3: Estimate the elastica energy up to constants. Observe that by the identities (2.22)
and (4.39), together with the constant speed parametrization, we have

|κ∞| = |γ′′∞|
L2(γ∞)

=
|ν̃ ′∞|
L(γ∞)

∈ L2(S2). (4.40)

By limn→∞ L(γn) = L(γ∞), weak convergence of ν̃ ′n, and lower semi-continuity of the norms,
we therefore obtain (recall Definition 2.9)

F̂∞,σ(γ∞) = L(γ∞)

(
σ +

π

2

ˆ 1

0
κ2∞ dt

)
≤ lim inf

n→∞

(
σnL(γn) +

π

2L(γn)

ˆ 1

0
|ν̃ ′n|2 dt

)
. (4.41)

Estimate (4.36) then yields (4.8), concluding the proof.

4.2 Identifying the asymptotic system of boundary curves

The main issues in compactness for all boundary curves are, first, proving that there may
only exist finitely many limit curves and, second, that their limits are a system of boundary
curves to the limiting set.

For the first part, we use the estimate (4.8) together with the Gauss-Bonnet theorem for
closed curves to show that the limit energy of curves blows up as their length approaches zero.
The isoperimetric inequality ensures that curves whose lengths vanish in the limit λn → ∞ do
not contribute to the L1 Γ-limit. Combined, these two facts also ensure that not all boundary
curves would vanish in the limit.
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Lemma 4.3. Let λn > 0 and αn > 1√
2π

be such that λn → ∞ as n → ∞ and such that

σn = λ2
n

(
1− 1

2πα2
n

)
satisfies

lim
n→∞

σn = σ > 0. (4.42)

Let (Ωn) ⊂ Aπ be a sequence of regular sets such that

M := lim sup
n→∞

λ2
nFλn,αn(Ωn) < ∞, (4.43)

and for n ∈ N, let Nn ∈ N be the number of constant speed boundary curves {γn,i}Nn
i=1 of the

set Ωn, enumerated by decreasing length. Finally, let N ≥ 0 be the number of non-vanishing
boundary curves as n → ∞:

N := sup

(
{0} ∪

{
i ∈ N : lim sup

n→∞
L(γn,i) > 0

})
, (4.44)

with the convention that L(γn,i) = 0 if i > Nn. Then the following holds:

i) For the non-vanishing curves, we have

1 ≤ N ≤ CMσ− 1
2 , (4.45)

for some C > 0 universal.

ii) For the vanishing curves, we have

lim
n→∞

sup
i>N

L(γn,i) = 0 (4.46)

and

lim
n→∞

∑
i>N

| int(γn,i)| = 0. (4.47)

We remark that for sequences of sets whose energy is comparable (within a universal
constant) to that of the minimizers we have

2πσ ≤ M ≤ C(σ +
√
σ), (4.48)

for some C > 0 universal: The lower bound is due to the isoperimetric inequality and the
upper bound is obtained by testing with either a disk for σ ≥ 1 or an annulus for σ < 1, see
estimate (2.5). Therefore, for such sets the upper estimate in (4.45) translates into

N ≤ C
(
1 +

√
σ
)
, (4.49)

for some C > 0 universal. In particular, counterintuitively, this estimate shows that the
number of non-vanishing boundary curves in a sequence of sets under consideration remains
uniformly bounded for σ ≲ 1 as n → ∞. At the same time, for σ ≫ 1 the number of non-
vanishing boundary curves could be large as n → ∞, as can be seen from an example of a
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configuration consisting of one disk of O(1) radius and N = O(σ1/2) small disks of radius
r = O(σ−1/2) far apart. Thus, for such sequences of sets the estimate in (4.45) is sharp.

It remains to prove that the non-vanishing curves asymptotically provide a system of
boundary curves for an admissible limiting set. In order to handle the technical issue that
even relatively long boundary curves may escape to infinity, we only take those curves that
stay close to the origin, resulting in a further restriction on the set of indices I to consider in
the system of boundary curves.

Proposition 4.4. Under the assumptions of Lemma 4.3, let χΩn → χΩ∞ in L1(R2) for some
Ω∞ ∈ Aπ as n → ∞. Then there exist a subsequence and a family {γ∞,i}i∈I ∈ G(Ω∞) of
H2-regular, constant speed curves such that for all i ∈ I we have

γn,i → γ∞,i in H1(S1;R2), (4.50)

where γn,i for i ∈ I is some sub-collection of curves from the decomposition of Ωn into its
boundary curves (modulo re-indexing).

Proof of Lemma 4.3. We begin by observing that by (3.9) and (4.43) we have that P (Ωn) is
uniformly bounded and, in particular, so are L(γn,i). By the fact that our enumeration of γn,i
in i has decreasing lengths for each n, for any subsequence nm with m ∈ N and any j ≤ k,
j, k ∈ N we have

lim sup
m→∞

L(γnm,j) ≥ lim sup
m→∞

L(γnm,k). (4.51)

Step 1: Bound on the number of long curves. If N = 0, there is nothing to prove.
Therefore, we may assume that N ≥ 1 and let i ∈ N be such that i ≤ N ≤ ∞. Going to a
subsequence nm, m ∈ N, that depends on i, we may assume that

lim sup
n→∞

L(γn,i) = lim
m→∞

L(γnm,i) > 0 (4.52)

exists. By the inequality (4.51), we may repeatedly apply Lemma 4.2 to get a further, non-
relabeled subsequence obeying (4.52) and closed limit curves γ∞,j ∈ H2(S1;R2) with constant
speed and L(γ∞,j) = limm→∞ L(γnm,j) for all j = 1, . . . , i with the following property: We
have

γnm,j − γnm,j(0) → γ∞,j in H1(S1;R2), (4.53)

as m → ∞, and

i∑
j=1

L(γ∞,j)

(
σ +

π

2

ˆ 1

0
κ2∞,j dt

)

≤ C

i∑
j=1

lim inf
m→∞

(
σnmL(γnm,j)

+ λ2
n,m

ˆ
Γnm,j

ˆ
H−(ν(y))∆λnm (Ωnm−y)

∣∣∣∣ν(y) · z

|z|

∣∣∣∣ e−|z|

|z| d2z dH1(y)

)
,

(4.54)
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for some C > 0 universal, where κ∞,j is the curvature of γ∞,j . Consequently, we have

i∑
j=1

L(γ∞,j)

(
σ +

π

2

ˆ 1

0
κ2∞,j dt

)
≤ C lim sup

n→∞
λ2
nFλn,αn(Ωn) = CM, (4.55)

for some C > 0 universal.
By Fenchel’s theorem [13, Theorem 3 and Remark 5, Section 5.7], together with a straight-

forward approximation argument to remove the regularity assumption therein, for each j =
1, . . . , i we have

ˆ
Γ∞,j

|κ∞,j | dH1 ≥ 2π. (4.56)

As a result of Jensen’s inequality, we therefore obtain

L(γ∞,j)

ˆ 1

0
κ2∞,j dt ≥

1

L(γ∞,j)

(ˆ
Γ∞,j

|κ∞,j | dH1

)2

=
4π2

L(γ∞,j)
. (4.57)

Combining this with estimate (4.55) and Young’s inequality, we obtain

(
8π3σ

) 1
2 i ≤

i∑
j=1

(
σL(γ∞,j) +

2π3

L(γ∞,j)

)
≤ CM, (4.58)

for some C > 0 universal. In particular, in view of the arbitrariness of i we have N < ∞, and
the upper bound in (4.45) holds.

Step 2: Estimates for vanishingly short curves. To handle the boundary curves γλ,i for
i > N , assume towards a contradiction that there exists a sequence of in ∈ N with in > N
such that

lim sup
n→∞

L(γn,in) > 0. (4.59)

By discreteness of N, we have i′ := minn>0 in ∈ N and i′ > N . As the curves are ordered by
decreasing length, we therefore also get

lim sup
n→∞

L(γn,i′) ≥ lim sup
n→∞

L(γn,in) > 0, (4.60)

which by way of definition (4.44) would imply a contradiction. This yields (4.46).
As a result of the isoperimetric inequality and (3.9) we have∑
i>N

| int(γn,i)| ≤
1

4π

∑
i>N

L2(γn,i) ≤
supi>N L(γn,i)

4π

∑
i>N

L(γn,i) ≤
P (Ωn)

4π
sup
i>N

L(γn,i) → 0

(4.61)

as n → ∞, proving (4.47).
Lastly, if N = 0 then (4.47) would imply |Ωn| → 0 as n → ∞, contradicting the fact that

Ωn ∈ Aπ for all n large enough. This concludes the proof.
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Proof of Proposition 4.4. Step 1: Construct the limiting curves.
Let N ∈ N be as in Lemma 4.3. We take a non-relabeled subsequence such that for all

i = 1, . . . , N we have

lim sup
n→∞

L(γn,i) = lim
n→∞

L(γn,i) (4.62)

and such that we either have lim supn→∞ ∥γn,i∥∞ < ∞ or limn→∞ ∥γn,i∥∞ = ∞. Let A ⊂
{1, . . . , N} be the set of indices such that the former alternative holds, i.e., such that γn,i is
uniformly bounded in n for all i ∈ A. This set is non-empty, as otherwise by Lemma 4.3 and
uniform boundedness of L(γn,i) this would contradict the L1-convergence of the characteristic
functions of Ωn to a set of positive Lebesgue measure. Thus we may apply Lemma 4.2 to get
another subsequence such that for all i ∈ A there exist closed limit curves γ∞,i ∈ H2(S1;R2)
with constant speed and L(γ∞,i) > 0 such that γn,i → γ∞,i in H1(S1;R2) as n → ∞.

In the following, we use the abbreviations γ∞ = {γ∞,i}i∈A and Γ∞ =
⋃

i∈A γ∞,i([0, 1]).

Step 2: Prove ∂∗Ω∞ ⊂ Γ∞.
Let x ∈ ∂∗Ω∞. Then there exists r0 ∈ (0, 1) such that for all r ∈ (0, r0) we have [1]

1

3
<

|Ω∞ ∩Br(x)|
πr2

<
2

3
. (4.63)

As χΩn → χΩ∞ in L1, we have for n sufficiently big depending on r that also

1

3
<

|Ωn ∩Br(x)|
πr2

<
2

3
, (4.64)

so that the relative isoperimetric inequality implies

H1(∂Ωn ∩Br(x))

r
>

1

C
, (4.65)

for some C > 0 universal. Therefore, from (4.65) and Lemma 4.3, we get for n sufficiently
large that

H1
((⋃

i∈A Γn,i

)
∩Br(x)

)
r

>
1

C
. (4.66)

Consequently, there exists a subsequence nk for k ∈ N with 1
k < r0, i ∈ A, and tk, t∞ ∈ [0, 1]

such that |γnk,i(tk) − x| < 1
k and tk → t∞ as k → ∞. Because the curves γnk,i converge in

C0(S1;R2), we get γ∞,i(t∞) = x.
Step 3: For almost all x ∈ R2 we have x ̸∈ Γ∞ and

I(γ∞, x) ≡ χΩ∞(x) (mod 2). (4.67)

As Γn for n ∈ N ∪ {∞} has Hausdorff dimension 1, we have
∣∣∣⋃n∈N∪{∞} Γn

∣∣∣ = 0. Let

x ∈ R2 \Γ∞. Since the curves γn,i for i ∈ A converge in H1(S1;R2) and C0(S1;R2) and since
the set R2 \ Γ∞ is open, we have

I(γ∞, x) = lim
n→∞

∑
i∈A

I(γn,i, x). (4.68)
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As for i ∈ N with i ≤ N and i ̸∈ A the curves γn,i run off to infinity, we must have I(γn,i, x) = 0
for sufficiently large n and those values of i. We thus get

I(γ∞, x) = lim
n→∞

N∑
i=1

I(γn,i, x) (4.69)

Due to the convergence (4.47), we can choose a non-relabeled subsequence such that

∞∑
n=1

∑
i>N

∣∣∣int(γn,i)∣∣∣ < ∞. (4.70)

The Borel-Cantelli Lemma [45, p. 42] therefore implies that for almost all x ∈ R2 and n0(x)
sufficiently big we have x ̸∈ int(γn,i) for all i > N and all n > n0(x). In particular, for almost
all x ∈ R2 we get

I(γ∞, x) = lim
n→∞

Nn∑
i=0

I(γn,i, x), (4.71)

since eventually, the sum only has at most N non-zero terms.
According to the representation (2.21), for almost all x ∈ R2 we have

Nn∑
i=1

I(γn,i, x) ≡ χΩn(x) (mod 2). (4.72)

By |Ω∞∆Ωn| → 0 as n → ∞, we may choose another, non-relabeled subsequence such that
χΩn → χΩ∞ pointwise almost everywhere. Combining these insights with the convergence
(4.71), for almost all x ∈ R2 we get

I(γ∞, x) ≡ χΩ∞(x) (mod 2). (4.73)

Step 4: Prove Ω∗
∞ = int

(
Ao

γ∞ ∪ Γ∞
)
.

We recall that Ao
γ∞ and Ω∗

∞ are defined via (2.25) and (2.26), respectively. We first prove
the inclusion Ω∗

∞ ⊂ int
(
Ao

γ∞ ∪ Γ∞
)
. Notice that since the set Ω∗

∞ is open, it is enough to
show that Ω∗

∞ ⊂ Ao
γ∞ ∪Γ∞. So, let x ∈ Ω∗

∞. If x ∈ Γ∞, there is nothing to prove. Otherwise,
there exists r ∈ (0, 1) such that |Br(x) \Ω∞| = 0 and Br(x)∩ Γ∞ = ∅. By Step 3, for almost
all x̃ ∈ Br(x) we have

I(γ∞, x̃) ≡ 1 (mod 2). (4.74)

Continuity of the index in Br(x) then gives

I(γ∞, x) ≡ 1 (mod 2). (4.75)

Consequently, we get x ∈ Ao
γ∞ .

Let now x ̸∈ Ω∗
∞. Then for every r ∈ (0, 1) we have

|Br(x) \ (Ω∞ ∪ Γ∞)| > 0. (4.76)

Again by Step 3, for all r ∈ (0, 1) and almost all x̃ ∈ Br(x) \ (Ω∞ ∪ Γ∞) we get that

I(γ∞, x̃) ≡ 0 (mod 2), (4.77)

so that there exists a sequence of points x̃k ∈ Bk−1(x) \
(
Ao

γ∞ ∪ Γ∞
)
for all k ∈ N. Therefore,

we have x ̸∈ int
(
Ao

γ∞ ∪ Γ∞
)
, proving the claim of this step.

Finally, combining the statements of Steps 2 and 4 we obtain that {γ∞,i}i∈A ∈ G(Ω∞),
concluding the proof.
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5 Γ-convergence

5.1 Upper bound

Both the upper and the lower bounds crucially depend on the representation (3.8). In the
upper bound presented in Lemma 5.1, we observe that the anisotropic blowup AλRν(y)(Ω−y)

of a sufficiently regular set Ω ⊂ R2 converges to the subgraph of the parabola z1 7→ −1
2κ(y)z

2
1 .

The integral in the non-local term in representation (3.8) can then be explicitly calculated in
the limit using Fubini’s theorem, the integral over z2 giving the dependence of the energy on
κ2(y).

Lemma 5.1. Let α > 0 and let Ω be a regular set. Then, as λ → ∞ we have

Fλ,α(Ω) ≤
(
1− 1

2πα2

)
P (Ω) +

1

8πα4λ2

ˆ
∂Ω

κ2 dH1 + o
(
λ−2

)
.

Proof. All constants in this proof may depend on Ω and α, in contrast to the rest of the
paper.

By the identity (3.8), we only need to compute the non-local term therein. Let y ∈
∂Ω. For the sake of convenience, in this proof we parametrize S1 on [−1

2 ,
1
2 ] instead of

the usual parametrization on the unit interval. Let γ : [−1
2 ,

1
2 ] → R2 be a constant speed

parametrization of the connected component of ∂Ω containing y and such that γ(0) = y.
For λ > 1 and s ∈ R, let Tλs := (L(γ)λ)−1s, so that s plays the role of an arc length

parameter after blowup by T−1
λ = L(γ)λ. Let τ(t) := γ′(t)/L(γ) be the unit tangent vector

to γ at point γ(t), and let

gλ(s) := λτ(0) · (γ(Tλs)− γ(0)) , (5.1)

hλ(s) := λ2ν(0) · (γ(Tλs)− γ(0)) . (5.2)

be the local Cartesian coordinates of γ(s) with respect to the orthonormal basis {τ(0), ν(0)}
after anisotropic blowup, see Figure 6. By Taylor expansion and identity (2.17), for s ∈ R we
have

gλ(s) = s+O(λ−2s3), (5.3)

g′λ(s) = 1 +O(λ−2s2), (5.4)

hλ(s) = −κ(y)

2
s2 +O(λ−1s3), (5.5)

as well as

|g′λ(s)| ≤ 1 (5.6)

for all s. In particular, if λ−1s is sufficiently small, the map gλ is monotone increasing with
g′λ(s) ≥ 1

2 and is therefore invertible. Thus for all ε > 0 sufficiently small we have

Aλ

(
Rν(y)(Ω− y) ∩ (−ε, ε)2

)
=
{
(z1, z2) : z1 ∈ (−λε, λε), z2 ∈

(
−λ2ε, hλ(g

−1
λ (z1))

)}
.

(5.7)
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ν(0)

τ(0)

Ω

y

γ(Tλs)

gλ(s)

hλ(s)

Figure 6: Sketch of the anisotropic blowup of γ(Tλs) in the basis {τ(0), ν(0)} with components
gλ(s) and hλ(s).

An explicit calculation in polar coordinates for z = (z1, z2) gives

ˆ
R2\Aλ(−ε,ε)2

|z2|
e
−α

√
z21+

z22
λ2

z21 +
z22
λ2

d2z ≤ λ2

ˆ
Bc

λε(0)

e−α|z|

|z| d2z = O

(
λ2

α
e−εαλ

)
. (5.8)

By Fubini’s theorem, we therefore have

ˆ
H0

−(e2)∆AλRν(y)(Ω−y)
|z2|

e
−α

√
z21+

z22
λ2

z21 +
z22
λ2

d2z

=

ˆ λε

−λε

ˆ |hλ(g
−1
λ (z1))|

0
|z2|

e
−α

√
z21+

z22
λ2

z21 +
z22
λ2

dz2 dz1 +O

(
λ2

α
e−εαλ

)
.

(5.9)

By monotonicity of the exponential function and inverse powers, as well as estimate (5.6), we
get

ˆ λε

−λε

ˆ |hλ(g
−1
λ (z1))|

0
|z2|

e
−α

√
z21+

z22
λ2

z21 +
z22
λ2

dz2 dz1

≤
ˆ λε

−λε

ˆ |hλ(g
−1
λ (z1))|

0
|z2|

e−α|z1|

z21
dz2 dz1

≤ 1

2

ˆ g−1
λ (λε)

g−1
λ (−λε)

h2λ(s)
e−α|gλ(s)|

g2λ(s)
ds.

(5.10)

Using the expansions (5.3) and (5.5), we get

1

2

ˆ g−1
λ (λε)

g−1
λ (−λε)

h2λ(s)
e−α|gλ(s)|

g2λ(s)
ds

=
1

8

ˆ g−1
λ (λε)

g−1
λ (−λε)

s2
(
κ2(y) +O(λ−1|s|)

)
e−α|s|(1+O(λ−2s2) ds.

(5.11)
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As g′λ is strictly positive on (−λε, λε), we have λ−1|s| ≤ Cε for all s ∈
(
g−1
λ (−λε), g−1

λ (λε)
)
.

For ε > 0 sufficiently small depending only on ∂Ω, the first error term in identity (5.11) is
estimated by

ˆ g−1
λ (λε)

g−1
λ (−λε)

λ−1|s|3e− α
C
|s| ds ≤ λ−1

ˆ
R
|s|3e− α

C
|s| ds = O(α−4λ−1). (5.12)

Similarly, for all s ∈
(
g−1
λ (−λε), g−1

λ (λε)
)
we have

e−α|s|(1+O(λ−2s2)) ≤ e−(1−Cε)α|s|, (5.13)

so that the identity (5.11) can be estimated from above as

1

2

ˆ g−1
λ (λε)

g−1
λ (−λε)

h2λ(s)
e−α|gλ(s)|

g2λ(s)
ds

≤ κ2(y)

8

ˆ g−1
λ (λε)

g−1
λ (−λε)

s2e−(1−Cε)α|s| ds+O(α−4λ−1).

(5.14)

Finally, explicit integration gives

κ2(y)

8

ˆ g−1
λ (λε)

g−1
λ (−λε)

s2e−(1−Cε)α)|s| ds

≤ κ2(y)

8

ˆ
R
s2e−(1−Cε)α|s| ds

=
κ2(y)

4α3(1− Cε)3

ˆ ∞

0
s2e−s ds

=
κ2(y)

2α3(1− Cε)3
.

(5.15)

Combining the estimates (5.9), (5.10), (5.14), and (5.15), for all ε > 0 sufficiently small
depending only on ∂Ω we get

ˆ
H0

−(e2)∆AλRν(y)(Ω−y)
|z2|

e
−α

√
z21+

z22
λ2

z21 +
z22
λ2

d2z

≤ κ2(y)

2α3(1− Cε)3
+O

(
α−4λ−1 +

λ2

α
e−εαλ

) (5.16)

Choosing ε = λ− 1
2 and integrating over y ∈ ∂Ω, we obtain the statement.

5.2 Lower bound

The argument for the lower bound follows much the same strategy as the upper bound.
However, we of course have to ensure that the computation is valid along a sequence of
only weakly convergent objects. We first point out that the microscopic difference quotients
considered in the proof of Lemma 4.2 in fact converge to the curvature in a weak sense.
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Lemma 5.2. Under the assumptions of Lemma 4.2, let (γnk
) be the subsequence and let γ∞

be its limit from the conclusion of Lemma 4.2. Then, if κ∞ is the curvature of γ∞ we have

λnk

[
νnk

(
t+

s

L(γnk
)λnk

)
− νnk

(t))

]
⇀ sκ∞(t)

γ′∞(t)

L(γ∞)
(5.17)

as k → ∞ in D′(S1;R2) for all s ∈ R, as well as in D′(S1 × R;R2).

For the proof of the lower bound proper, the convergence (5.17) ensures that the limiting
object after the anisotropic blowup is the expected parabola, while the second part of Lemma
4.1 allows us to work at points on which the boundaries along the sequence are not too ill-
behaved. However, the proof is somewhat heavy on standard, measure-theoretic details. We
recall the definition of F̂∞,σ in (2.23).

Proposition 5.3. Let λn → ∞ and αn > 1√
2π

be sequences such that σn = λ2
n

(
1− 1

2πα2
n

)
satisfies

lim
n→∞

σn = σ > 0. (5.18)

Let Ωn ∈ Aπ for n ∈ N be regular sets such that χn → χΩ∞ in L1(R2) for Ω∞ ∈ Aπ and such
that

lim sup
n→∞

λ2
nFλn,αn(Ωn) < ∞. (5.19)

Furthermore, let there exist I ⊂ N finite, and a family γ∞ := {γ∞,i}i∈I ∈ G(Ω∞) of H2-
regular, constant speed curves such that for all i ∈ I we have

γn,i → γ∞,i in H1(S1;R2), (5.20)

as n → ∞, where γn,i for i ∈ I is some sub-collection of curves from the decomposition of Ωn

into its boundary curves. Then

F̂∞,σ(γ∞) ≤ lim inf
n→∞

λ2
nFλn,αn(Ωλn). (5.21)

Proof of Lemma 5.2. Let s ∈ R. Let ξ ∈ C∞(S1) be a smooth, periodic test function
parametrized by t ∈ [0, 1]. By the strong convergence of νn to ν∞ obtained in Lemma
4.2 with the help of identity (2.14), we get

lim
nk→∞

ˆ 1

0
λnk

[
νnk

(
t+

s

L(γnk
)λnk

)
− νnk

(t)

]
ξ(t) dt

= lim
k→∞

ˆ 1

0
νnk

(t)λnk

[
ξ

(
t− s

L(γnk
)λnk

)
− ξ(t)

]
dt

= −
ˆ 1

0
ν∞(t)

s

L(γ∞)
∂tξ(t) dt.

(5.22)

Together with the fact that ν ′∞ = κ∞γ′∞ a.e., see identity (2.16), we get the first desired
convergence in (5.17). To obtain the second, simply repeat the above argument after testing
with a function ξ ∈ C∞(S1 × R) with compact support in the second variable.
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Proof of Proposition 5.3. Step 1: Choose appropriate subsequences.
We first choose a subsequence (not relabeled) such that we may apply Lemma 4.2 to the

sequences γn,i for all i ∈ I and such that∑
n∈N

λ
− 1

2
n < ∞, (5.23)

the latter being chosen to be able to subsequently apply the Borel-Cantelli lemma in Steps 3
and 4.

Let i ∈ I. Furthermore, let us abbreviate L(γn,i) by Ln,i, and recall that |γ′n,i| = Ln,i

everywhere. For all K ∈ N and t ∈ [0, 1] we define

ZK,n,i,t :=
{
y ∈ ∂Ω ∩BKλ−1

n
(γn,i(t)) : ν(y) · ν(γn,i(t)) ≤ 0

}
. (5.24)

Due to the estimate (4.3), Fubini’s theorem, and estimate (3.9), we have for all K ∈ N and
i ∈ I that

Ln,i

ˆ 1

0
H1(ZK,n,i,t) dt ≤ CKP (Ωn)Fλn,α(Ωn) ≤

CK

σn
λ2
nF

2
λn,α(Ωn), (5.25)

for some CK > 0 depending only on K and all n sufficiently large. Therefore, after taking yet
another subsequence, by (5.19) we have for almost all t ∈ [0, 1], all K ∈ N, and all i ∈ I that

lim
n→∞

λ
3
2
nH1(ZK,n,i,t) = 0, (5.26)

where the exponent 3
2 < 2 was chosen as sufficient to complement estimate (5.23) when

passing from estimate (5.80) to estimate (5.82) in what follows.
Let n ∈ N and i ∈ I. For s ∈ R, let Tn,is := (Ln,iλn)

−1s, so that, as in the proof of
Lemma 5.1, the variable s plays the role of a microscopic arc length parameter. In analogy
with the definitions (5.1) and (5.2), for t ∈ [0, 1] and s ∈ R we define τn,i(t) := γ′n,i(t)/Ln,i

and the functions

gn,i,t(s) := λnτn,i(t) · (γn,i(t+ Tn,is)− γn,i(t)) , (5.27)

hn,i,t(s) := λ2
nνn,i(t) · (γn,i(t+ Tn,is)− γn,i(t)) , (5.28)

giving

|g′n,i,t(s)| ≤ 1. (5.29)

Then for s ∈ R, we have

ˆ 1

0

(
1− g′n,i,t(s)

)
dt

=
1

2L2
n,i

ˆ 1

0

(
|γ′n,i(t)|2 + |γ′n,i(t+ Tn,is)|2 − 2γ′n,i(t) · γ′n,i(t+ Tn,is)

)
dt

=
1

2L2
n,i

ˆ 1

0
|γ′n,i(t+ Tn,is)− γ′n,i(t)|2 dt,

(5.30)
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so that together with (5.19) the bound (4.1) implies

lim
n→∞

λ
1
2
n

ˆ 1

0

(
1− g′n,i,t(s)

)
dt = 0 (5.31)

locally uniformly in s, where the exponent 1
2 < 2 is chosen to again complement estimate

(5.23) to arrive at (5.34) in what follows.
Let K ∈ N. Using gn,i,t(0) = 0, integrating in s and using Fubini’s theorem, we obtain

λ
1
2
n

ˆ 1

0
max

s∈[−K,K]
|s− gn,i,t(s)| dt → 0 (5.32)

in the limit n → ∞. Passing to a subsequence, for all i ∈ I and almost all t ∈ [0, 1] we get

λ
1
2
n max

s∈[−K,K]
|s− gn,i,t(s)| → 0, (5.33)

and together with the summability (5.23) that∑
n∈N

max
s∈[−K,K]

|s− gn,i,t(s)| < ∞. (5.34)

Additionally, for t ∈ [0, 1] and all s ∈ R we calculate

h′n,i,t(s) =
λn

Ln,i
νn,i(t) · γ′n,i(t+ Tn,is) = −λn

γ′n,i(t)

Ln,i
· (νλn(t+ Tn,is)− νn,i(t)) (5.35)

Consequently, by (5.19) and Lemma 4.1 we have

sup
n∈N

sup
s∈[−K,K]

ˆ 1

0
|h′n,i,t(s)|2 dt < ∞, (5.36)

and we get from convergence (5.17), a weak-times-strong argument, and |γ′n,i| = Ln,i that

h′n,i,t(s) ⇀ −sκ∞,i(t) (5.37)

in L2
t (0, 1) for all s ∈ R, as well as in L2

t,s((0, 1) × (−K,K)). Here and in the following, the
subscripts in the notation for Lebesgue spaces denote the variables in which the integration
is performed.

Again, using hn,i,t(0) = 0 we may apply the fundamental theorem of calculus in s and
Jensen’s inequality to obtain

sup
n∈N

ˆ 1

0
sup

s∈[−K,K]

|hn,i,t(s)|2
|s| dt ≤ sup

n∈N

ˆ 1

0

ˆ K

−K
|h′n,i,t(s)|2 ds dt

≤ 2K sup
n∈N

sup
s∈[−K,K]

ˆ 1

0
|h′n,i,t(s)|2 dt

< ∞.

(5.38)

For all s ∈ R and ξ ∈ L2(0, 1), we also get

ˆ 1

0
hn,i,t(s)ξ(t) dt =

ˆ s

0

ˆ 1

0
h′n,i,t(s

′)ξ(t) dtds′ → −
ˆ 1

0

s2

2
κ∞,i(t)ξ(t) dt, (5.39)
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γn,i(t)
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τ(t)

2K−1

2λ
1
4

γn,i

Figure 7: Sketch of γn,i(t + Tλs) on S1
K,n,i,t ∩ S2

K,n,i,t. The dotted part of γn,i is outside

S1
K,n,i,t, the dashed part is outside of S2

K,n,i,t.

from the weak L2
t,s((0, 1)× (−K,K)) convergence (5.37). Therefore, for all s ∈ R we have

hn,i,t(s) ⇀ −s2

2
κ∞,i(t) (5.40)

in L2
t (0, 1). Furthermore, estimate (5.38) implies for all i ∈ I and K ∈ N that

λ
− 1

4
n max

s∈[−K,K]
|hn,i,t(s)| → 0 (5.41)

in L2
t (0, 1) as n → ∞ and thus also for almost all t ∈ [0, 1] after passage to one more,

final subsequence. Here, we chose the exponent −1
4 < 0, so that we can later deduce the

convergence (5.95) from the estimate (5.31).
Step 2: Given i ∈ I, identify sets over which the curve γn,i is locally a graph over its

tangent space for sufficiently large n ∈ N.
Let i ∈ I and K ∈ N be fixed throughout this step of the proof.
For every n ∈ N and t ∈ [0, 1], we consider the sets

S1
K,n,i,t :=

{
s ∈ [−K,K] : |gn,i,t(s)| ≥ K−1

}
, (5.42)

S2
K,n,i,t :=

{
s ∈ [−K,K] : |hn,i,t(s)| ≤ λ

1
4
n

}
. (5.43)

The set S1
K,n,i,t cuts away the origin, while the set S2

K,n,i,t makes sure that hn,i,t is not too
large, see Figure 7.

We will want to consider gn,i,t(s) as a parametrization for γn,i around its own tangent line
at γn,i(t). However, there is no reason why it should be injective, see Figure 8. Somewhat
abusing notation, we therefore define the generalized inverse of gn,i,t for n ∈ N, t ∈ [0, 1], and
z1 ∈ gn,i,t([−K,K]) as

g−1
n,i,t(z1) :=

{
inf{s′ ∈ [0,K] : gn,i,t(s

′) ≥ z1} if z1 ≥ 0,

sup{s′ ∈ [−K, 0] : gn,i,t(s
′) ≤ z1} if z1 < 0

(5.44)
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γn,i(t)

ν(t)

τ(t)

z1

γn,i(t + Tn,is)

Figure 8: Sketch of γn,i(t + Tλs) on S3
K,n,i,t. Parts of γn,i outside of S3

K,n,i,t are shown as

dotted. The solid points signify the endpoints contained in S3
K,n,i,t. For z1 ∈ R, the inverse

g−1
n,i,t(z1) is the microscopic arc length parameter s ∈ S3

K,n,i,t such that gn,i,t(s) = z1.

to be left-continuous for positive s and right-continuous for negative s. By continuity of gn,i,t,
we indeed have gn,i,t ◦ g−1

n,i,t(z1) = z1 for all n ∈ N, t ∈ [0, 1], and z1 ∈ gn,i,t([−K,K]). While

we may not have g−1
n,i,t ◦ gn,i,t(s) = s for all s ∈ [−K,K], this does hold for all n ∈ N, t ∈ [0, 1]

on

S3
K,n,i,t :=

{
s ∈ [0,K] : gn,i,t(s

′) < gn,i,t(s) ∀s′ ∈ [0, s)
}

∪
{
s ∈ [−K, 0] : gn,i,t(s

′) > gn,i,t(s) ∀s′ ∈ (s, 0]
}
,

(5.45)

by construction. As a result of gn,i,t(0) = 0, we have sgn(gn,i,t(s)) = sgn(s) for all s ∈ S3
K,n,i,t.

Finally, when comparing Ω with its tangent half-plane, we have to contend with the
possibility of small holes in Ω or small pieces of Ω lying between γn,i and its tangent line at
t, see Figure 9. Therefore, we also consider the parametrized line segment

ln,i,t,s(r) := gn,i,t(s)e1 + rhn,i,t(s)e2 (5.46)

for r ∈ [0, 1] and the set

S4
K,n,i,t :=

{
s ∈ [−K,K] : ∀r ∈ (0, 1) :

ln,i,t,s(r) ∈
(
H0

−(e2) \AλnRνn,i(t) (Ωn − γn,i(t))
)

∪
(
AλnRνn,i(t)

(
Ωn − γn,i(t)

)
\H0

−(e2)
)}

,

(5.47)

which rules out this pathological behaviour. Notice that by definition we have ln,i,t,s(0) ∈
∂H0

−(e2), while ln,i,t,s(1) ∈ AλnRνn,i(t)(∂Ωn − γn,i(t)).
Let

SK,n,i,t := S1
K,n,i,t ∩ S2

K,n,i,t ∩ S3
K,n,i,t ∩ S4

K,n,i,t. (5.48)

34



ln,i,t,s1
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γn,i(t)
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Figure 9: Sketch of γn,i(t + Tλs) on S4
K,n,i,t. The parts of γn,i not along S4

K,n,i,t are shown

as dotted, the set Ω is shown in gray. We have 0, s4 ∈ S4
K,n,i,t, but s1, s2, s3 ̸∈ S4

K,n,i,t. The
corresponding sets Ds1 , Ds2 and Ds3 are shown as red lines, while ys1 , ys2 and ys3 are shown
as small dots.

Additionally, we define the sets SK,∞,i,t and Sj
K,∞,i,t for j = 1, 2, 3, 4 as

SK,∞,i,t :=
⋃
n∈N

⋂
n′∈N:n′>n

SK,n′,i,t, (5.49)

Sj
K,∞,i,t :=

⋃
n∈N

⋂
n′∈N:n′>n

Sj
K,n′,i,t, (5.50)

being the sets of points that for sufficiently large n lie in all sets SK,n′,i,t, resp., S
j
K,n′,i,t for

n′ ≥ n. and observe the decomposition

SK,∞,i,t = S1
K,∞,i,t ∩ S2

K,∞,i,t ∩ S3
K,∞,i,t ∩ S4

K,∞,i,t. (5.51)

The convergence (5.33) states that for all i ∈ I, almost all t ∈ [0, 1], and all s ∈ [−K,K],
we have gn,i,t(s) → s as n → ∞. Therefore, for such t ∈ [0, 1], all s ∈ S1

K,∞,i,t satisfy

s ∈ S1
K,n,i,t for n ∈ N sufficiently large, giving |s| = limn→∞ |gn,i,t(s)| ≥ K−1. Similarly, if

|s| > K−1, then we have |gn,i,t(s)| > K−1 for n ∈ N sufficiently large, giving s ∈ S1
K,∞,i,t.

Consequently, we have

|S1
K,∞,i,t∆

(
[−K,K] \ [−K−1,K−1]

)
| = 0 (5.52)

for almost all t ∈ [0, 1]. By the convergence (5.41), for almost all t ∈ [0, 1] we have

[−K,K] \ S2
K,∞,i,t

=
⋂
n>0

⋃
n′∈N:n′>n

{
s ∈ [−K,K] : λ

− 1
4

n′ |hn′,i,t|(s) > 1

}
= ∅.

(5.53)
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Step 3: For all K ∈ N and i ∈ I, we prove |[−K,K] \ S3
K,∞,i,s| = 0, i.e., we may invert

gn,i,t almost everywhere for sufficiently large n.
Let n ∈ N and t ∈ [0, 1]. We decompose [−K,K] \ S3

K,n,i,t into its at most countably
many connected components in the following way: We claim that there exists a set J ⊂ N
and 0 < aj < bj ≤ K for j ∈ J such that the sets (aj , bj ] are pairwise disjoint and

[0,K] \ S3
K,n,i,t =

⋃
j∈J

(aj , bj ]. (5.54)

Here, the half-open intervals are a result of gn,i,t(s) being left-continuous for s ≥ 0 and the
definition of S3

K,n,i,t.

Let s ∈ [0,K] \ S3
K,n,i,t. Let

as := min

{
s′ ∈ [0, s] : gn,i,t(s

′) = max
[0,s]

gn,i,t

}
, (5.55)

which exists by continuity of gn,i,t. Furthermore, let

bs := max

{
s′ ∈ [s,K] : gn,i,t(r) ≤ max

[0,s]
gn,i,t ∀r ∈ [s, s′]

}
, (5.56)

which also exists by continuity of gn,i,t. By definition of S3
K,n,i,t, we have as < s ≤ bs and

as ∈ S3
K,n,i,t. For all s̃ ∈ (as, s] we have gn,i,t(s̃) ≤ gn,i,t(as) by definition of as, while for

s̃ ∈ (s, bs] the same holds by definition of bs. Thus, for all s̃ ∈ (as, bs] we have s̃ ̸∈ S3
K,n,i,t and

max
[0,s]

gn,i,t = gn,i,t(as) = max
[0,s̃]

gn,i,t. (5.57)

Therefore, we have

as = min

{
s′ ∈ [0, s̃] : gn,i,t(s

′) = max
[0,s̃]

gn,i,t

}
= as̃. (5.58)

In particular, applying the identity (5.57) for s̃ = bs gives gn,i,t(as) = max[0,bs] gn,i,t. Con-
versely, by definition of bs for every ε > 0 there exists r ∈ (bs, bs + ε) such that we have
gn,i,t(r) > max[0,bs] gn,i,t. Consequently, we have

bs = max

{
s′ ∈ [s̃, K] : gn,i,t(r) ≤ max

[0,s̃]
gn,i,t ∀r ∈ [s̃, s′]

}
. (5.59)

Thus, the sets (as, bs] for s ∈ [0,K] \S3
K,n,i,t provide the decomposition of [0,K] \S3

K,n,i,t into
connected components. As each half-open interval must contain at least one rational number,
there may be at most countably many pairwise disjoint, connected components. This proves
the claim, yielding the decomposition in (5.54).

By construction, for all j ∈ J we have gn,i,t(bj) = gn,i,t(aj), unless bj = K, in which case
we only have gn,i,t(bj) ≤ gn,i,t(aj). Therefore, we have

|[aj , bj ]| ≤ bj − aj + gn,i,t(aj)− gn,i,t(bj). (5.60)
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In total, we consequently get∣∣[0,K] \ S3
K,n,i,t

∣∣ ≤∑
j∈J

|(bj − gn,i,t(bj)− (aj − gn,i,t(aj)))| . (5.61)

By an approximation argument using J̃ ⊂ J finite, we get∣∣[0,K] \ S3
K,n,i,t

∣∣ ≤ TV[0,K](s− gn,i,t(s)), (5.62)

where the latter is the one-dimensional total variation of the function s 7→ s − gn,i,t(s) for
s ∈ [0,K]. Due to (5.29), this map is non-decreasing, and therefore∣∣[0,K] \ S3

K,n,i,t

∣∣ ≤ K − gn,i,t(K). (5.63)

An analogous argument works for [−K, 0] \ S3
K,n,i,t, giving in total∣∣[−K,K] \ S3

K,n,i,t

∣∣ ≤ 2K − gn,i,t(K) + gn,i,t(−K). (5.64)

Together with the summability of this expression that follows from (5.34), the Borel-Cantelli
lemma implies

|[−K,K] \ S3
K,∞,i,s| = 0. (5.65)

Step 4: For all K ∈ N and i ∈ I, we prove that S4
K,∞,i,t has full measure.

For t ∈ [0, 1], let s ∈ S2
K,n,i,t \ S4

K,n,i,t for some n ∈ N. In particular, we have hn,i,t(s) ̸= 0.
As the argument in this step is most naturally done in the original coordinates, we define

l̃n,i,t,s(r) := γn,i(t) +RT
νn,i(t)

A−1
λn

ln,i,t,s(r)

= γn,i(t) + λ−1
n gn,i,t(s)τn,i(t) + rλ−2

n hn,i,t(s)νn,i(t).
(5.66)

for r ∈ [0, 1]. Recalling the definitions (5.47) and (3.4), the set

Ds :=
{
r ∈ (0, 1) : ln,i,t,s(r) ̸∈

(
H0

−(e2) \AλnRνn,i(t) (Ωn − γn,i(t))
)

∪
(
AλnRνn,i(t)

(
Ωn − γn,i(t)

)
\H0

−(e2)
)}

,
(5.67)

see Figure 9, is non-empty. Therefore, we have

rmax,s := supDs ∈ (0, 1]. (5.68)

By
(
l̃n,i,t,s(r)− γn,i(t)

)
· νn,i(t) = rλ−2

n hn,i,t(s), for all r ∈ (0, 1] we have

sgn
(
l̃n,i,t,s(r)− γn,i(t)

)
· νn,i(t) = sgnhn,i,t(s) ̸= 0. (5.69)

Consequently, for all r ∈ (0, 1] we have either l̃n,i,t,s(r) ∈ H−(γn,i(t)) or l̃n,i,t,s(r) ∈ R2 \
H−(γn,i(t)). Thus if rmax,s < 1, we have ys := l̃n,i,t,s(rmax,s) ∈ ∂Ωn. If rmax,s = 1, by the
representation (5.66) and the definitions (5.27) and (5.28) we have l̃n,i,t,s(rmax,s) ∈ ∂Ωn. At
the same time, a direct computation gives

∂r

(
ν(ys) · l̃n,i,t,s(r)

)
= λ−2

n ν(ys) · νn,i(t)hn,i,t(s). (5.70)
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Let us consider the case l̃n,i,t,s(r) ∈ H−(γn,i(t)) for all r ∈ (0, 1]. Then by identity (5.69),
we have hn,i,t(s) < 0, so that

sgn ∂r

(
ν(ys) · l̃n,i,t,s(r)

)
= − sgn ν(ys) · νn,i(t). (5.71)

For r ∈ Ds, we furthermore get l̃n,i,t,s(r) ∈ Ωn. As Ωn is regular and ν(ys) is the outer unit

normal to Ωn, there exists ε > 0 such that l̃n,i,t,s(r) ∈ H−(ys) for r ∈ (rmax,s − ε, rmax,s).
Consequently, linearity of l̃n,i,t,s(r) as a function of r gives

∂r

(
ν(ys) · l̃n,i,t,s(r)

)
≥ 0. (5.72)

so that (5.71) implies ν(ys) · νn,i(t) ≤ 0.

In the case l̃n,i,t,s(r) ∈ R2 \H−(γn,i(t)) for all r ∈ (0, 1], we instead have hn,i,t(s) > 0 and

sgn ∂r

(
ν(ys) · l̃n,i,t,s(r)

)
= sgn ν(ys) · νn,i(t). (5.73)

Additionally, we have l̃n,i,t,s(r) ̸∈ Ωn for all r ∈ Ds. Therefore, we have l̃n,i,t,s(r) ̸∈ H−(ys)
for all r ∈ (rmax,s − ε, rmax,s) and ε > 0 small enough. As a result, we also have

∂r

(
ν(ys) · l̃n,i,t,s(r)

)
≤ 0, (5.74)

resulting in ν(ys) · νn,i(t) ≤ 0.
Furthermore, as a result of (5.66), (5.29) and s ∈ S2

K,n,i,t we have

|y − γn,i(t)| ≤ λ−1
n |s|+ λ−2

n |hn,i,t(s)| ≤ Kλ−1
n + λ

− 7
4

n . (5.75)

For n ∈ N sufficiently big, we thus have y ∈ Z2K,n,i,t, see the definition in (5.24). Additionally,
representation (5.66) implies

p(y) = gn,i,t(s), (5.76)

where p(y) := λn (y − γn,i(t)) · τn,i(t) for y ∈ R2.
The above can therefore be compiled into the statement

gn,i,t
(
S2
K,n,i,t \ S4

K,n,i,t

)
⊂ p(Z2K,n,i,t), (5.77)

so that p being a λn-Lipschitz map ensures∣∣gn,i,t (S2
K,n,i,t \ S4

K,n,i,t

)∣∣ ≤ |p(Z2K,n,i,t)| ≤ λnH1(Z2K,n,i,t). (5.78)

As gK,n,i,t is injective on S3
K,n,i,t, the coarea-formula thus gives

ˆ
(S2

K,n,i,t∩S
3
K,n,i,t)\S

4
K,n,i,t

∣∣g′n,i,t∣∣ (s) ds ≤ ∣∣gn,i,t ((S2
K,n,i,t ∩ S3

K,n,i,t

)
\ S4

K,n,i,t

)∣∣
≤ λnH1(Z2K,n,i,t).

(5.79)
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Let AK,n,i,t := {s ∈ [−K,K] : |g′n,i,t(s)| ≤ 1
2K }. Then from (5.79) we have the estimate∣∣(S2

K,n,i,t ∩ S3
K,n,i,t

)
\ S4

K,n,i,t

∣∣ = ∣∣((S2
K,n,i,t ∩ S3

K,n,i,t

)
\ S4

K,n,i,t

)
\AK,n,i,t

∣∣
+
∣∣((S2

K,n,i,t ∩ S3
K,n,i,t

)
\ S4

K,n,i,t

)
∩AK,n,i,t

∣∣
≤ 2K

ˆ
((S2

K,n,i,t∩S
3
K,n,i,t)\S

4
K,n,i,t)\AK,n,i,t

∣∣g′n,i,t∣∣ (s) ds
+
∣∣((S2

K,n,i,t ∩ S3
K,n,i,t

)
\ S4

K,n,i,t

)
∩AK,n,i,t

∣∣
≤ 2KλnH1(Z2K,n,i,t) + |AK,n,i,t|.

(5.80)

On the other hand, using (5.29) we may compute(
1− 1

2K

)
|AK,n,i,t| ≤

ˆ
AK,n,i,t

(
1− g′n,i,t(s)

)
ds ≤ max

s∈[−K,K]
|s− gn,i,t(s)|. (5.81)

Therefore, combining this with estimates (5.80), (5.23), (5.26), and (5.34) gives∑
n∈N

∣∣(S2
K,n,i,t ∩ S3

K,n,i,t

)
\ S4

K,n,i,t

∣∣ < ∞. (5.82)

Again, we employ the Borel-Cantelli lemma to get∣∣∣∣∣⋂
n∈N

⋃
n′∈N:n′>n

(
S2
K,n′,i,t ∩ S3

K,n′,i,t

)
\ S4

K,n′,i,t

∣∣∣∣∣ = 0. (5.83)

If s ∈
(
S2
K,∞,i,t ∩ S3

K,∞,i,t

)
\ S4

K,∞,i,t, by definition (5.50) we have s ∈ S2
K,n′,i,t ∩ S3

K,n′,i,t

for sufficiently big n ∈ N and all n′ ∈ N, n′ ≥ n. Conversely, for all n ∈ N there exists n′ ∈ N
with n′ ≥ n such that s ̸∈ S4

K,n′,i,t. In particular, for all n ∈ N sufficiently big there exists

n′ ∈ N with n′ ≥ n such that s ∈
(
S2
K,n′,i,t ∩ S3

K,n′,i,t

)
\ S4

K,n′,i,t. Therefore, from (5.83) we

obtain ∣∣(S2
K,∞,i,t ∩ S3

K,∞,i,t

)
\ S4

K,∞,i,t

∣∣ = 0. (5.84)

Finally, computing the set inclusions

SK,∞,i,t∆
(
[−K,K] \ [−K−1,K−1]

)
⊂ S1

K,∞,i,t \
(
[−K,K] \ [−K−1,K−1]

)
∪

4⋃
j=1

(
[−K,K] \ [−K−1,K−1]

)
\ Sj

K,∞,i,t

⊂ S1
K,∞,i,t∆

(
[−K,K] \ [−K−1,K−1]

)
∪
(
[−K,K] \ S2

K,∞,i,t

)
∪
(
[−K,K] \ S3

K,∞,i,t

)
∪
(
S2
K,∞,i,t ∩ S3

K,∞,i,t

)
\ S4

K,∞,i,t,

(5.85)

we get from the identities (5.51), (5.52), (5.53), (5.65), and (5.84) that∣∣SK,∞,i,t∆
(
[−K,K] \ [−K−1,K−1]

)∣∣ = 0. (5.86)
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Step 5: For all i ∈ I, prove

lim inf
n→∞

ˆ 1

0

ˆ
H0

−(e2)∆AλnRνn,i(t)
(Ωn−γn,i(t))

|z2|
e
−αn

√
z21+

z22
λ2n

z21 +
z22
λ2
n

d2z dt

≥ 2
1
2π

3
2

ˆ 1

0
κ2∞,i(t) dt.

(5.87)

Let t ∈ [0, 1], n ∈ N, and K ∈ N. By the properties of S3
K,n,i,t and S4

K,n,i,t , as well as the

fact that ∂H0
−(e2) and ∂Ωn are sets of two-dimensional Lebesgue measure zero, we have

ˆ
H0

−(e2)∆AλnRνn,i(t)
(Ωn−γn,i(t))

|z2|
e
−αn

√
z21+

z22
λ2n

z21 +
z22
λ2
n

d2z

≥
ˆ
gn,i,t(SK,n,i,t)

ˆ |hn,i,t(g
−1
n,i,t(z1))|

0
z2

e
−αn

√
z21+

z22
λ2n

z21 +
z22
λ2
n

dz2 dz1.

(5.88)

Due to definition (5.43) and invertibility of gn,i,t on S3
K,n,i,t, for all z1 ∈ gn,i,t (SK,n,i,t)

we have the bound |hn,i,t(g−1
n,i,t(z1))| ≤ λ

1
2
n for n large enough. Therefore, for all 0 ≤ z2 ≤

|hn,i,t(g−1
n,i,t(z1))| we have by monotonicity

e
−αn

√
z21+

z22
λ2n

z21 +
z22
λ2
n

≥ e
−αn

√
z21+

1
λn

z21 +
1
λn

. (5.89)

Furthermore, we calculate using concavity of the square root and convexity of the exponential

0 ≤ e−αn|z1|

z21
− e

−αn

√
z21+

1
λn

z21 +
1
λn

=
e−αn|z1|

z21

1− e
−αn|z1|

(√
1+ 1

λnz21
−1

)+
e
−αn

√
z21+

1
λn

λnz21

(
z21 +

1
λn

)
≤ e−αn|z1|

z21

(
1− e

− αn
2λn|z1|

)
+

e
− αn√

λn

λnz21

(
z21 +

1
λn

)
≤ αne

−αn|z1|

2λn|z1|3
+

e
− αn√

λn

z21

≤ αn

2λn|z1|3
+

e
− αn√

λn

z21
.

(5.90)

Similarly, we have

e
− |z1|√

2π

z21
− e−αn|z1|

z21
=

e
− |z1|√

2π

z21

(
1− e

−
(
αn− 1√

2π

)
|z1|
)

≤
αn − 1√

2π

|z1|
. (5.91)
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Combining (5.90) and (5.91), for all z1 ∈ gn,i,t (SK,n,i,t) we have by definition (5.42) that

e
− |z1|√

2π

z21
− e

−αn

√
z21+

1
λn

z21 +
1
λn

≤ an :=
αnK

3

2λn
+K2e

− αn√
λn +K

(
αn − 1√

2π

)
, (5.92)

which vanishes in the limit n → ∞. Therefore, explicitly computing the remaining, trivial
integral over z2, we have

ˆ
gn,i,t(SK,n,i,t)

ˆ |hn,i,t(g
−1
n,i,t(z1))|

0
z2

e
−αn

√
z21+

z22
λ2n

z21 +
z22
λ2
n

dz2 dz1

≥ 1

2

ˆ
gn,i,t(SK,n,i,t)

h2n,i,t(g
−1
n,i,t(z1))

e
− |z1|√

2π

z21
− an

 dz1

=
1

2

ˆ
SK,n,i,t

h2n,i,t(s)

e
−

|gn,i,t(s)|√
2π

g2n,i,t(s)
− an

 |g′n,i,t(s)| ds.

(5.93)

Now, due to (5.29) and estimate (5.38), we have

lim sup
n→∞

an

ˆ 1

0

ˆ
SK,n,i,t

h2n,i,t(s)|g′n,i,t(s)| dsdt = 0. (5.94)

Combining the bounds |hn,i,t(s)| ≤ λ
1
4
n and |gn,i,t(s)| > K−1 for s ∈ SK,n,i,t with the conver-

gence (5.31), we obtain

lim sup
n→∞

1

2

ˆ 1

0

ˆ
SK,n,i,t

h2n,i,t(s)
e
−

|gn,i,t(s)|√
2π

g2n,i,t(s)

(
1− |g′n,i,t(s)|

)
ds dt

≤ lim sup
n→∞

K2

2

ˆ 1

0

ˆ
SK,n,i,t

λ
1
2
n

(
1− g′n,i,t(s)

)
ds dt

= 0.

(5.95)

Using |gn,i,t(s)| ≤ |s| obtained by integrating the bound (5.29) from gn,i,t(0) = 0, we get

1

2

ˆ
SK,n,i,t

h2n,i,t(s)
e
−

|gn,i,t(s)|√
2π

g2n,i,t(s)
ds ≥ 1

2

ˆ
SK,n,i,t

h2n,i,t(s)
e
− |s|√

2π

s2
ds. (5.96)

Let n̄ ∈ N. For n ∈ N with n ≥ n̄, we have

S̃K,n̄,i,t :=
∞⋂

n′=n̄

SK,n′,i,t ⊂ SK,n,i,t ⊂ [−K,K]. (5.97)
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Therefore, using Fubini’s theorem we obtain

lim inf
n→∞

1

2

ˆ 1

0

ˆ
SK,n,i,t

h2n,i,t(s)
e
− |s|√

2π

s2
ds dt

≥ lim inf
n→∞

1

2

ˆ 1

0

ˆ
S̃K,n̄,i,t

h2n,i,t(s)
e
− |s|√

2π

s2
ds dt

= lim inf
n→∞

1

2

ˆ K

−K

e
− |s|√

2π

s2

ˆ 1

0
χS̃K,n̄,i,t

(s)h2n,i,t(s) dtds.

(5.98)

As χS̃K,n̄,i,t
= χ2

S̃K,n̄,i,t
, we also get

lim inf
n→∞

1

2

ˆ 1

0

ˆ
SK,n,i,t

h2n,i,t(s)
e
− |s|√

2π

s2
ds dt

≥ lim inf
n→∞

1

2

ˆ K

−K

e
− |s|√

2π

s2

ˆ 1

0

(
χS̃K,n̄,i,t

(s)hn,i,t(s)
)2

dt ds.

(5.99)

For all s ∈ R, the convergence (5.40) then gives

χS̃K,n̄,i,t
(s)hn,i,t(s) ⇀ −χS̃K,n̄,i,t

(s)
s2

2
κ∞,i(t) (5.100)

in L2
t (0, 1). Fatou’s Lemma and weak lower-semicontinuity of the L2-norm imply

lim inf
n→∞

1

2

ˆ K

−K

e
− |s|√

2π

s2

ˆ 1

0

(
χS̃K,n̄,i,t

(s)hn,i,t(s)
)2

dt ds

≥ 1

2

ˆ K

−K

e
− |s|√

2π

s2
lim inf
n→∞

ˆ 1

0

(
χS̃K,n̄,i,t

(s)hn,i,t(s)
)2

dt ds

≥ 1

8

ˆ K

−K
e
− |s|√

2π s2
ˆ 1

0
χS̃K,n̄,i,t

(s)κ2∞,i(t) dtds.

(5.101)

Combining this with estimate (5.99), we get

lim inf
n→∞

1

2

ˆ 1

0

ˆ
SK,n,i,t

h2n,i,t(s)
e
− |s|√

2π

s2
ds dt

≥ 1

8

ˆ K

−K
e
− |s|√

2π s2
ˆ 1

0
χS̃K,n̄,i,t

(s)κ2∞,i(t) dtds.

(5.102)

On the other hand, as the sets S̃K,n̄,i,t are increasing in n̄, we may take the supremum in
n̄ on the right hand side of estimate (5.102) and get after an application of Fubini’s theorem
and the monotone convergence theorem that

lim inf
n→∞

1

2

ˆ 1

0

ˆ
SK,n,i,t

h2n,i,t(s)
e
− |s|√

2π

s2
ds dt ≥ 1

8

ˆ 1

0
κ2∞,i(t)

ˆ
SK,∞,i,t

e
− |s|√

2π s2 ds dt. (5.103)
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Equation (5.86) then gives

lim inf
n→∞

1

2

ˆ 1

0

ˆ
SK,n,i,t

h2n,i,t(s)
e
− |s|√

2π

s2
ds dt ≥ 1

4

ˆ 1

0
κ2∞,i(t)

ˆ K

K−1

e
− |s|√

2π s2 ds dt. (5.104)

Chaining together estimates (5.88), (5.93), (5.94), (5.95), (5.96), and (5.104) and noticing
that the estimates apply for all K ∈ N, we get

lim inf
n→∞

ˆ 1

0

ˆ
H0

−(e2)∆AλnRνn,i(t)
(Ωn−γn,i(t))

|z2|
e
−αn

√
z21+

z22
λ2n

z21 +
z22
λ2
n

d2z dt

=
1

4
sup
K∈N

ˆ 1

0
κ2∞,i(t)

ˆ K

K−1

e
− |s|√

2π s2 ds dt

=
1

4

ˆ 1

0
κ2∞,i(t)

ˆ ∞

0
e
− |s|√

2π s2 ds dt

= 2
1
2π

3
2

ˆ 1

0
κ2∞,i(s) dt,

(5.105)

which is what we claimed for this step of the proof.
Step 6: Combine all limit curves. Note that since the boundary curves converge strongly

in H1(S1;R2), we have L(γn,i) → L(γ∞,i) as n → ∞. Inserting this with σn → σ, αn → 1√
2π

as n → ∞, and the estimate (5.87) into the representation (3.8) we get

lim inf
λ→∞

λ2
nFλ,α(Ωλ) ≥

∑
i∈I

L(γ∞,i)

(
σ +

π

2

ˆ 1

0
κ2∞,i(t) dt

)
= F̂∞,σ(γ), (5.106)

concluding the proof.

5.3 Concluding arguments

Finally, the proofs of Proposition 2.3, Theorem 2.4 and Corollary 2.5 essentially consist of
putting together all the information at hand. Additionally, we provide the proof for Propo-
sition 2.7.

Proof of Proposition 2.3. The upper bound is given by Lemma 5.1, while the lower bound
follows by applying Proposition 5.3 to the constant sequence n 7→ Ω for n ∈ N.

Proof of Theorem 2.4. By the fact that F∞,σ is the L1-relaxation of the functional in (2.8),
the upper bound follows immediately from Proposition 2.3.

To prove the lower bound let Ωn ∈ Aπ for n ∈ N be sets such that χΩn → χΩ∞ for
Ω∞ ∈ Aπ and such that

lim inf
n→∞

λ2
nFλn,αn(Ωn) < ∞. (5.107)

By a standard approximation argument, we may suppose the set Ωn to be regular for all
n ∈ N. Combining Theorem 2.11 with Propositions 4.4 and 5.3, we get a system of curves
{γ∞,i}i∈I ∈ G(Ω∞) such that

F∞,σ(Ω∞) ≤ F̂∞,σ(γ∞) ≤ lim inf
n→∞

λ2
nFλn,αn(Ωn), (5.108)

concluding the proof.
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Proof of Corollary 2.5. Existence of minimizers follows from Proposition 2.2. As the mini-
mizers are connected, after a suitable translation and by the bound on the perimeter there
exists Ω∞ ∈ Aπ and a subsequence (not relabeled) such that χΩn → χΩ∞ in L1(R2). We then
have by the lower bound that

inf
Aπ

F∞,σ ≤ F∞,σ(Ω∞) ≤ lim inf
n→∞

λ2
nFλn,αn(Ωn) = lim inf

n→∞
inf
Aπ

λ2
nFλn,αn , (5.109)

while the upper bound implies

lim inf
n→∞

inf
Aπ

λ2
nFλn,αn ≤ inf

Aπ

F∞,σ. (5.110)

Therefore, we have equality everywhere and Ω∞ is a minimizer of F∞,σ. The characterization
of minimizers in the limit was carried out by Goldman, Novaga, and Röger [22].

Proof of Proposition 2.7. The alternative representation of f immediately follows from

ˆ
Ωx

ˆ
R2

K(|y − z|) d2y d2z = 2π2

ˆ ∞

0
rK(r) dr. (5.111)

Setting R :=
√
1 + r2, we calculate

f(x) =

ˆ
BR(0)

ˆ
BR(0)

K(|y − z|) d2y d2z +
ˆ
Br(x)

ˆ
Br(x)

K(|y − z|) d2y d2z

− 2

ˆ
BR(0)

ˆ
Br(x)

K(|y − z|) d2y d2z

=

ˆ
BR(0)

ˆ
BR(0)

K(|y − z|) d2y d2z +
ˆ
Br(0)

ˆ
Br(0)

K(|y − z|) d2y d2z

− 2

ˆ
BR(0)

ˆ
Br(x)

K(|y − z|) d2y d2z.

(5.112)

By the Riesz rearrangement inequality applied to the last term, see [29, Lemma 3] for a
sharp version of the inequality, we get f(x) ≥ f(0). If K is additionally strictly monotone
decreasing, the sharp version implies that x = 0 is the only minimizer.

A Model derivation

For the sake of the reader’s convenience, below we present a first principles derivation of the
energy in (2.1) along the lines of Ref. [3], except that we take the sharp interface approach
and model the Langmuir layer as an incompressible two-dimensional patch of amphiphilic
molecules. For a fixed patch area there is, therefore, no non-trivial local contribution to the
energy from the interior of the patch and all the local interactions due to van der Waals forces
can be captured by an interfacial energy term representing line tension. We also focus on
a regime that takes advantage of the large dielectric constant of water at moderate droplet
sizes (see further discussion at the end of this section). For the clarity of the derivation, in
this section we adhere to the standard physics notations.

Consider a monolayer of amphiphilic molecules at the air-water interface located at the
z = 0 plane in R3, with water occupying the z < 0 half-plane. The molecules are restricted
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to a set Ω ⊂ R2 with fixed area |Ω| in the xy-plane. The excess energy associated with this
monolayer patch may be written as

E(Ω) = Esurf(Ω) + Elong-range(Ω), (A.1)

where the first term is the surface energy of the patch:

Esurf = γP (Ω), (A.2)

with P (Ω) being the perimeter of the set Ω, coinciding with the one-dimensional Hausdorff
measure H1(∂Ω) of the boundary of Ω for sufficiently regular sets [1], and γ > 0 being the line
tension. The long-range part Elong-range(Ω) of the energy is due to the electrostatic interaction
of the charged polar heads of the amphiphilic molecules immersed in water:

Elong-range(Ω) =
1

2

ˆ
Ω
qρŪd2r, (A.3)

where −q is the charge taken away from the amphiphilic molecule’s polar head by water, ρ is
the areal density of the amphiphilic molecules, and Ū is the electrostatic potential at z = 0.
The latter may be found with the help of the Debye-Hückel theory by solving for the potential
U in the whole space (in the SI units) [3]:

∆U − κ2U = 0, z < 0. (A.4)

∆U = 0, z > 0, (A.5)

subject to the conditions at the air-water interface:

lim
z→0−

U(·, z) = lim
z→0+

U(·, z), (A.6)

ϵd lim
z→0−

Uz(·, z)− lim
z→0+

Uz(·, z) =
q

ϵ0
ρχΩ, (A.7)

with U vanishing at infinity. Here κ is the Debye-Hückel screening parameter equal to the
inverse of the screening length in water, ϵd is water’s dielectric constant, ϵ0 is the vacuum
permittivity, and χΩ is the characteristic function of Ω.

For a given bounded set Ω, this elliptic problem has a unique solution, which can be found
by means of the Fourier transform with respect to the in-plane variables. Denoting

Ûk(z) :=

ˆ
R2

eik·rU(r, z) d2r k ∈ R2, (A.8)

and passing to the Fourier space in (A.4)–(A.7), after some simple algebra we obtain [3]

Ûk(z) =
qρez

√
κ2+|k|2χ̂Ω(k)

ϵ0(ϵd
√
κ2 + |k|2 + |k|)

, z < 0, (A.9)

Ûk(z) =
qρe−z|k|χ̂Ω(k)

ϵ0(ϵd
√
κ2 + |k|2 + |k|)

, z > 0, (A.10)

where χ̂Ω(k) is the Fourier transform of χΩ. Notice that since ϵd ≃ 80 is very large for water,
with a very good accuracy one could neglect the |k| term compared to ϵd

√
κ2 + |k|2 in the

expression for Ûk(0). Thus, we have

Ûk(0) ≃
qρχ̂Ω(k)

ϵ0ϵd
√

κ2 + |k|2
, (A.11)
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and returning to the real space, we get

Ū(r) ≃ qρ

2πϵ0ϵd

ˆ
Ω

e−κ|r−r′|

|r− r′| d2r′ (A.12)

at the air-water interface. Thus, the non-local part of the energy is, to the leading order in
ϵd ≫ 1:

Elong-range(Ω) =
q2ρ2

4πϵ0ϵd

ˆ
Ω

ˆ
Ω

e−κ|r−r′|

|r− r′| d2r d2r′. (A.13)

We now carry out a non-dimensionalization, introducing

E(Ω) := P (Ω) +
1

4π

ˆ
Ω

ˆ
Ω

e−α|r−r′|

|r− r′| d2r d2r′, (A.14)

and noting that E(ℓΩ) = γℓE(Ω) with the choices of the scale and the dimensionless screening
parameter, respectively:

ℓ =

√
ϵ0ϵdγ

qρ
, α =

κ
√
ϵ0ϵdγ

qρ
. (A.15)

Taking into account that
´
R2 r

−1e−αrd2r = 2π/α, we can then rewrite the energy E(Ω) as

E(Ω) = Eα(Ω) +
|Ω|
2α

, (A.16)

and so, up to an additive constant the energy E(Ω) coincides with that in (2.1).
We note that the kernel appearing in (A.12) exhibits exponential decay due to the fact

that we neglected the |k| term in the Fourier transform of Ū for large ϵd. This, however,
becomes invalid for arbitrarily large separations, for which the kernel can be shown to exhibit
an algebraic decay of the form q2ρ2/(2πϵ0ϵ

2
dκ

2|r−r′|3), up to an additive constant. Therefore,
in agreement with the conventional wisdom the limit of large droplets should be described by
the model in which the long-range part of the energy is of dipolar type [5, 33]. This model
corresponds to the case of strong ionic solutions and was first studied rigorously in Ref. [40].
Nevertheless, for ϵd ≫ 1 the model in (A.14) is appropriate in a certain range of droplet sizes,
which corresponds to the case of weak ionic solutions [3].
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