The Total Variation Flow

Matteo Novaga

Abstract. I consider the gradient flow of the total variation functional, stating
general existence and uniqueness results. Particular attention is paid to self-
similar solutions, which are partially classified. Finally, as an application, some
explicit solutions of the denoising problem are given.

1. Introduction

The aim of this paper is to analyze the following variational parabolic equation

. Du
ug — div (W) =0, u € L}, (]0, +oo[ xRY), (1)
coupled with the initial condition
U(O,HL’) = Uo(.’L’) € Llloc(RN)a (2)

illustrating results which have been proved in [5], [6].
This equation corresponds to the L?-gradient flow for the total variation

functional
u— / | Dul,
RN

starting from ug. Such a flow has many applications to image denoising and recon-
struction, and numerical simulations have been performed by several authors [13],
[10], [9], [16], [15]. Existence and uniqueness for solutions of (1) has first been es-
tablished in the case of bounded domains (see [4] and references therein) and then
extended to R in [5] (see Theorem 2.4 below). The notion of solution employed
in these papers is the so-called entropy solution, introduced by Kruzhkov [12] for
scalar conservation laws, and first applied to parabolic equations in divergence
form by Andreu et al. [2], in order to prove uniqueness with initial data in Lj .

It has been proved in [3] that the solution of (1) reaches its asymptotic state in
finite time, with an extinction profile which solves (up to a rescaling) the following
eigenvalue problem

. Du
—div (m) =u, u € Llloc(RN). (3)
In [6] (see also Sections 3 and 4) the solutions of (3) are partially characterized, in
the case N = 2. Particular relevance is given to solutions which are in Wﬁ)’cl(R2)
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(see Proposition 3.4), or which are a finite sum of characteristic functions (see
Theorems 4.1, 4.6 and 4.7).

The solutions v which have no jumps, i.e. (—M)VuAM € Wlﬁcl(]RN) for any
M > 0, can be constructed starting from the “fundamental solutions” u(z) = :I:‘;—‘
(Proposition 3.4), and can be obtained as limits of “tower solutions”.

If a solution u of (3) is positive, then all the connected components of the
sets {u > t} are convex (see Proposition 3.1), and one can construct solutions
which look like a tower, i.e. u = Y7, a;xa;, for any choice of balls B; such that
By D By D ... D B, and for suitable constants a; > 0 (see Section 5). More
generally, at least in two dimensions, one can construct more complicated towers
(which can also oscillate) starting from sets which are not necessarily circles, but
which must satisfy a suitable condition on the curvature of the boundary and on
the mutual distance (see Theorem 4.6 and Section 5). These towers correspond to
solutions of (3) which change sign, and in turn provide new solutions of problem
(4) below.

Indeed, a related question is to find solutions of the so-called denoising prob-
lem, i.e.

. 1 2
R T A @

and, in particular, to determine functions f € L?(R?) for which the solution u of
(4) is constructed by the soft-thresholding rule. In Propositions 6.1 and 6.2 below,
it is shown how to construct solutions of problem (4), starting from solutions of

(3)-

2. Existence and uniqueness of solutions
In the following, I denote by L, (]0, T[; BV (RY)) the space of functions w : [0,T] —
BV (RN) such that w € L'(]0,T[xRY), the maps t = [y ¢pdDw(t) are mea-

surable for any ¢ € CY(RN;RY) and f0T|Dw(t)|(RN)dt < +o0o0. I denote by
L]0, T[; BVioc(RY)) the space of functions w : [0,T] — BViee(RY) such that
weé € LL (10, T[; BV(RN)) for any ¢ € C°(RN).

Definition 2.1. A function u € C([0,T]; L2(RN)) is called a strong solution of (1)
! u € Wiz (0,75 L*(RY)) 1 Ly, (10, T; BV (RY))
and there ezists z € L (]0, T[xRY; RN ) with ||2]|co < 1 such that
w=divz in D' (]0,T[xR")
and
/RN(u(t) —whu(t) = /RN(z(t),Dw) _ /RN Du(t)] Vw € L2(RY) N BV (RY),
(5)
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for a.e. t € [0,T].

Notice that a solution of (1) of class C! and such that Du # 0 is also a strong
solution, setting 2 := \113—Z|'

I recall from [5, Theorem 2] the following result.

Theorem 2.2. Let ug € L2(RN). Then there exists a unique strong solution u of
(1) and (2) in [0,T] x RN for every T > 0. Moreover, if u and v are the strong
solutions of (1) corresponding to the initial conditions ug,vo € L2(RY), then

ll(u(t) —v(8)) VOllz < [[(uo — vo) VOll2  for any t > 0. (6)

Since (1) is the gradient flow of a convex functional on L#(RY), which is an
Hilbert space, Theorem 2.2 can be proved by means of classical techniques, up to
minor modifications (see [7] for a general approach to these problems).

Notice that, putting w = u(t) in (5), it follows

/RN(z,Du) - /RN \Dul. (7)

Let us give a heuristic explanation of what the vector field z represents. Given a
set E C RN of finite perimeter, denote by 8*E the reduced boundary of E in the
sense of De Giorgi (see [1]). Condition (7) essentially means that z has unit norm
and is orthogonal to the level sets of u. In some sense, z is invariant under local
contrast changes. To be more precise, observe that if u = Zle c;xE; where E;
are sets of finite perimeter with disjoint closure, ¢; € R and

—div (£—Z> — fe I2(RY), (8)

then also _diV(|BZ\) = ffor any v = Y ? | d;xg, where d; € R and sign(d;) =

sign(c¢;). In an informal way, this means that a local contrast change of a solution
of (8) produces a new solution.

2.1. Entropy solutions
In order to generalize the previous result by allowing initial data which are only
in L (RY), I introduce the set P C W1*°(R) as follows

P:={pe WL (R) : p' >0, spt(p') compact}.
Definition 2.3. A function u € C([0,T]; L], .(RY)) is called an entropy solution of
(1) and (2) if u(t) converges to ug in LL (RV) ast — 0F,

p(u) € L,(10,T[; BVioe(RY))  VpeP,

and there ezists z € L™ (]0, T[xRY; RN ) with ||z]|oo < 1 such that

w=divz in D' (J0,T[xR"Y) 9)
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and
T T T
[ i [ napea-n)+ [ [ eV <o
0o JrN o JrW o JrY
(10)
for alll € R, all n € C* (]0,T[xRY), with n > 0, n(t,z) = ¢(t)(z), being
¢ € C(10,T]), v € C(RY), and all p € P, where j(r) := / p(s) ds.
0
Inequality (10) is a weak way to impose equality (5); indeed, substituting wu

with divz in (5) and integrating by parts, using also ||z||cc < 1 and the fact that
71 is nonnegative, one gets

/RNz-Vnp(u—l) —/RNj(u—l)tn—/RNnd(z,D(p(u—l)))

v

—/ j(u—l)m—/ 0 d(z, D (p(u— 1)),
RN RN

which, after integration in time, gives the opposite inequality in (10).
From [5, Theorem 3, Proposition 4] one gets the following results.

Theorem 2.4. Let ug € Llloc(RN ). Then there exists a unique entropy solution of

(1) and (2) in [0,T) x RN for all T > 0. Moreover, if ug,uor, € LL _(RY) are such

loc
that uor — ug n LIIOC(RN ) and u,ur, denote the corresponding entropy solutions,

then u, — u in C([0,T); LL .(RY)) as k — +o0.

loc

Theorem 2.5. Let ug € L (RY) and u be the entropy solution of (1) and (2).
Then

p(u)e € Lie(0,00 L3 (RY)),  #2p(u)s € Lio([0,00[; L (RY)),  VpeP.
Moreover, if ug > —M for some M > 0, it follows

u(t) + M

u'(t) < ;

for a.e. t > 0.

Finally,

us € Ly (10, T[; Lo (RY))

loc

for any T > 0. A similar statement holds if ug < M for some M > 0.

Remark 2.6. If ug € L2(RV), then the strong solution of (1) and (2) coincides
with the (unique) entropy solution.
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3. Self-similar solutions

The aim of this section is to characterize the solutions of (3), when N = 2, i.e. to
characterize the solutions of equation (1) which are self-similar. Therefore, I shall
consider to the following eigenvalue problem

. Du
—div <m) =u, u € L}, .(R?). (11)
An entropy solution of (11) is such that p(u) € BViec(R?), for any p € P. In
particular, it follows that u € GBViec(R2).

We recall from [6] the following regularity result.

Proposition 3.1. Let u be a solution of (11). Assume that u € LY. () for some

loc

p > 2 and for some open set @ C R?. The following assertions hold.

(a) For anyt € R the sets {u >t} and {u >t} have boundary of class C"*
in Q, for some a € 10,1[ (C' when u € LS.()).

(b) Ifu>a in Q (resp. u < a in Q) for some a € R then, for any t € R, the
curvatures £ of 0{u > t} NQ and h of {u > t} NN satisfy k > a and

h>a (resp. kK <a and h < a) in the sense of distributions.

In the sequel, given a function u as in Proposition 3.1 and ¢ € R, I shall always
identify the set {u > t} (resp. {u < t}) with its points of density one, which is an
open set, and accordingly define {u > t} as the complement of {u < t}.

Proposition 3.2. Let u be a solution of (11). Assume that u € W, (Q) N L2 ()
for some open set Q C R2. Then for anyt € R, t # 0, every connected component
of 0{u >t} NQ is contained in the boundary of a ball of radius 1/|t|.

Proof. Lett € R, t # 0, let € > 0 and let Q, be the open set defined as Q. := {z €
Q: |u(z) —t| < €}. Let also v := 0{u > t} N Q. Since u € L{.(Q), by Proposition
3.1 the curve v and the two curves v, :=0{u > t—€}NQ, vF = 0{u<t+e}NQ
are of class C1'1. Moreover, since u € Wlf)’cl(ﬂ), the two sets ¥ := y_ N~y and
Bt := yF Ny are closed sets of zero H!'-measure. Then the curve v\ (X7 UXT)
is contained in 2, for any € > 0. Since v is of class C*1, by (b) of Proposition 3.1
it follows that ~ has curvature belonging to (¢t —€,t + €) for any € > 0. The thesis

follows letting € — 0. O

Note that if u is as in Proposition 3.2 then the set {u > t} is a disjoint union
of circles of radius ﬁ, for any t # 0 such that the boundary of {u > t} is entirely
contained in (2.

The following result shows that there are no nontrivial solutions of (11) which
are locally bounded and have no jumps.

Lemma 3.3. Let u € W,2! (R2) N L (R2) be a solution of (11). Then u = 0.

loc loc
Proof. Assume by contradiction that supu > 0 (the case inf 4 < 0 can be treated
in a similar way). From Proposition 3.2 it follows that the set {u > t} contains
an open ball B; of radius %, for any ¢t € (0,supu). Fix t € (0,supu) and let
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t* ;= supp, u > t. Then a connected component of the set {u = t*} is a closed ball
Dy C By of radius . From (11) one gets

*)2 *\2 *\2
t*=ﬂ/ udwzﬂ/ udwz—u divz dx = 2t*,
Dy« Dy~

T T © Jp,.
which is a contradiction. O

From now on, I shall consider solutions u of (11) which satisfy the following
property
V¢ € R there exists an open set Uy D 0{u > t} such that u € Ly (Uy).  (12)

Observe that, if u satisfies (12), thanks to Proposition 3.1 all the level sets of u
have boundary of class C'.

The following proposition characterizes the solutions of (11) with have no
jumps (see [6, Section 4]).

Proposition 3.4. Assume that a solution u of (11) satisfies (12) and (—M)V u A
M e WEHR?) for any M > 0. Then one of the following possibilities holds:

loc

(i) u=0;

(if) u is positive and the set {u >t} is a ball of radius %, for any t > 0;

(iii) w is negative and the set {u < t} is a ball of radius —%, for any t < 0;

(iv) u is nonnegative, {u > 0} is a halfspace and the set {u > t} is a ball of
radius %, for any t > 0;

(v) w is nonpositive, {u < 0} is a halfspace and the set {u < t} is a ball of
radius —%, for any t <0;

(vi) both {u > 0} and {u < 0} are halfspaces, the set {u > t} is a ball of radius

%, for anyt > 0, and the set {u < 7} is a ball of radius —%, for any T < 0.

Proposition 3.4 essentially means that the solutions of (11) with no jumps can
be obtained from the fundamental solutions u(z) = j:ﬁ, by a suitable translation
of the level-sets {u > t} (or {u < t}).

4. Properties of the level-sets

In this section I shall consider “tower solutions” of (11), i.e. solutions of the type
u=3>"_ ¢ixp, for a suitable choice of sets E; C R? and constants ¢; € R.
Denote in the following by Coy, C1, ... C,, open sets with boundary of class
C1! with the following properties:
C; C Cp for any i € {1,... ,m};
CinCj=0foranyi,je{l,...,m}.
Choosing k € {0,...,m}, define

F:=CO\OE, F=ru |J C

=1 j=k+1
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Let also v be the exterior unit normal to OF.
I want to identify necessary and sufficient conditions on F' in order to have
F ={u=t}and U;n:k_H C; = {u > t}, for some ¢t € R and for some tower solution
u of (11). Using (9) this implies that there exists a vector field z € L™ (F, R?) such
that
—divz =t on F,
Iolleo <1,
[2,vF] = -1 H'-a.e. on 8C;,i € {1,...k},
[z,vF] =1 H'-ae.on 9C;,j € {k+1,...m},

(13)

where [z, v¥'] denotes the trace of the scalar product between z and v (see [5] for
precise definition and properties).

Notice that a problem closely related to (13) has already been considered in
the literature related to capillarity problems, see [11], [8].

On the other hand, given a function v = Efi L tixF,, where F; C R? are
disjoint, with boundary of class C*! and such that Ufil F; = R?, then u is a
solution of (11) if and only if there exist vector fields z; € L®(F;, R?) satisfying
(13) for any i € {1,... , M} and such that [2,4]] + [2,#]] = 0 on 8F; N OF;.

It follows that the characterization of the tower solutions of (11) reduces to
solve problem (13).

4.1. Bounded domains

Let us first consider the case when the set I is bounded. Set

Sr o P(C) = Y i P(Cy)

Jo = |F| )
k m
Fr(E) = P(E,F)+) |0"EN3C;|— Y [8"EN3C;| — jolEl.
i=0 j=k+1

By the Gauss—Green Formula, problem (13) reduces to

—dive =jo onF,
lzllee <1,
[2,v"] =-1 on8C;,i€{0,...k}, (14)

[z,v] =1 ondCj,je{k+1,...m}.

Finally, denote by A the family of all sets E C F such that 0F N int(F') consists
of pieces of circumferences of radius 1/j, which meet OF tangentially and which
span an angle less than or equal to . I also require that the contact angle is 7 on
U%_, 8C; and zero on Ujzry1 9C;j, and that {0, F'} € A.

The following result is proved in [6].

Theorem 4.1. The following conditions are equivalent.
(a) There exists a vector field z : F — R? satisfying (14).
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(b) It holds

k
jo/wS/|Dw|+ / w—
F F ;801'

(¢) For any E C F of finite perimeter, it holds

> /ac,.w Yuw € BV (F). (15)

j=k+1

Fr(E) > 0. (16)
(d) It holds
glel?ctj:F(E) =0. (17)

Remark 4.2. Notice that, when k = 0, jo tends to zero as Cy tends to R2; in this

case, the minimum problem (17) reduces to the problem considered in [5, Theorem
6].

Notice that, in most of the cases, the family A is a finite set, hence condition
(d) is often easy to verify. Howerver, Theorem 4.6 below will provide more explicit
conditions, involving the curvature of 0F and the distance between the sets C;.

I start with the definition of the so-called ball condition [8].

Definition 4.3. Let O C R? be an open set with boundary of class C1'', and let
p > 0. I say that Q) satisfies the p-ball condition if a ball of radius p can be rotated
along 0N in the interior of Q such that no antipods of the ball lie on Of).

I recall the following result [8, Theorem 4.1].

Lemma 4.4. Let Q C R? be an open set satisfying the p-ball condition, for some
p > 0. Then supgq k < %. Moreover, given a ball B C Q of radius p and tangent
to 0N, the set T' N OB is connected, for any connected component T' of 0N, and
spans an angle less than 7.

Observe that, in general, the inequality supgq & < % does not imply the p-
ball condition for the set (2. Notice also that if 2 is a convex set with boundary of
class C1'! such that supgg £ < %, then ) satisfies the p-ball condition.

Let F be as in Theorem 4.1. In the following, when I say that F' or F satisfies
the ball condition, I shall always mean the jlo—ball condition.

Remark 4.5. If C; is convex for any i € {0,...m}, supsc, k < jo and
2
dist(BC’,-,aCj) > ]_ V(l,J) € {0, .. k}, i # 7,
0
then F satisfies the ball condition.

The following result, proved in [6], provides a necessary condition and a
sufficient condition for the existence of a vector field z : F — R? satisfying (14).
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Theorem 4.6. Let F' be as above and denote by k the curvature of OF. Assume
that there exists a vector field z : F — R? satisfying (14). Then

sup k < jo < inf (—k), i€{0,... .k}, je{k+1,... ,m} (18)
aC; aC;

Conversely, assume that F satisfies the ball condition, the inequalities at the right
hand side of (18) hold, and

dist(@C,-,@Cj)>jz V0, 5) €40, KU+ 1,... m}%i#j  (19)
0

Then there exists a vector field z : F — R? satisfying (14).

4.2. Unbounded domains

Let us now consider the case Cq = R? and Cj, ... ,C,, as above, which means the
F is unbounded but R? \ F is bounded. In this case, problem (13) reduces to the
existence of a vector field z € L°°(F,R?) such that

—divz=0 on F,
llzlloo <1,

[2,v1] = —1 H'-a.e. on 8C;,i € {1,...k}, (20)
[z, 0] =1 H'-a.e.on 8Cj,j € {k+1,...m}.
It holds a result analogous to Theorem 4.1.
Theorem 4.7. The following conditions are equivalent
(i) Problem (20) has a solution.
(if) It holds
k m
0§/Dw+ / w — / w Yw € BV(F). 21
F| | ,zzl ac; j:;ﬂ ac; () )
(iii) For any X C F of finite perimeter, it holds
m k
P(X,F)>| > H{O*'XNC)j) =) H(0"XNCi)|. (22)
j=k+1 i=1

(iv) let Ey be a solution of the variational problem

m k
min{P(E): U ngEgR2\UC,~}, (23)

j=k+1 i=1

then it holds

m

PE) = Y P(C)); (24)

j=k+1
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let E5 be a solution of the variational problem

k m
min{ P(E): | JC;CECR\ |J Cjo¢, (25)
i=1 j=k+1
then it holds

k
P(B>) = ZP(ci). (26)

Notice that (iv) implies that each C; is a convex set. Moreover, since any
minimizer of problems (23) and (25) has boundary (lying inside F') made of a
finite number of segments which intersect tangentially OF (and there are only a
finite number of such segments), the number of such minimizers is finite. Finally,
conditions (24) and (26) are essentially distance conditions between sets C; of
the same type, for example they are satisfied if dist(9C;,0C;) > P(Cy), for any
(i,5,0) € {1,... ,k} U{k+1,... m}> i#j.

5. Some examples

In order to clarify the conditions given in Section 4, I shall discuss some explicit

examples.

Example 1. Let u(z,y) = wzzT””yz; then u is a solution of (11) with no jumps,

satisfying condition (vi) of Proposition (3.4). Notice that « is not continuous at

(0,0).

Example 2. Let F C R? be the set in Figure 1. It is easy to check that F satisfies

the assumptions of Theorem 4.6, since it is a convex set with C*! boundary and

it holds

1 27nr+2L  P(F)
7 S AT I

Moreover, since the inequality in (27) is strict, the solution of (1) starting from x g

remains a characteristic function for any convex set F” of class C''! close enough

to F in the C*!'-norm.

Example 3. Let ' C R? be the union of two disjoint balls of radius » whose centers

are at distance L. In this case, conditions (24), (26) of Theorem 4.7 become

L>7r.

It follows that, under this condition, the function u = 2xp is a solution of (11).

(27)

Example 4. I shall now describe a class of radially symmetric tower solutions. Let
0=Ro<Ri <---<Rp<Rpy1 =+oc,andlet Q; := BR,-\FR,-_“i =1,...,p+1
(where we set By = 0, Byoo = R?). Let also ay,...,a,41 be real numbers such
that apt+1 = 0 and a; # a441, for ¢ = 1,... ,p. Then, there exist real numbers
bi,... ,bpt1, with by 1 = 0 and b; # b;41, such that sign(b;11—b;) = sign(a;+1 —a;)
for any i € {1,...,p} (i-e. the numbers b; have the same “qualitative ordering”
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bean.eps

FIGURE 1. A bean—shaped admissible set

of a;) and the function u = % | bixq, is a solution of (11). Indeed, applying
Theorem 4.6 to the sets §2;, one can check that the function u is a solution of (11)
when

2

B sign(a; — a;_1)R;_1 + sign(a;y1 — a;)R;

P =

Notice that, since R; > R;_1, it follows sign(b;) = —sign(a;+1 — a;).
This example has already been discussed in [14].

6. Solutions of the denoising problem

In this last section, I will show how to obtain explicit solutions of the denoising
problem (4), starting from solutions of (11), see [5, Proposition 7, Proposition 8].

Proposition 6.1. Let A > 0, b € R and u € BV (R?) a solution of (11). Then
the function v = au is the solution of the wvariational problem (4) with a :=
sign(b)[(|b] — A) V 0] and f := bu. Conversely, if v = au € BV (R?) is the so-
lution of (4) with f = bu, for some a,b € R with b —a = %\, then the function u
is a solution of (11).

The following proposition, which extends the previous result, clarifies how to
construct solutions of (4) from tower solutions of (11).

Proposition 6.2. Let Cy,C1,...,C, C R2 be open sets with boundary of class
CY1, such that C;NC; =0 for i # j, Uing Ci = R? and C; is bounded for any
i € {1,...,m}. Assume that the functionu = Y ;" ¢;xc; is a solution of (11), for
somec; € R. Let nowb; € R, i € {1,...,m}, A > 0 and a; = sign(h;)[(Jb;| — ) VO].
Then the function u = ;" a;cixc; is the solution of the variational problem (4)
with f = 2211 bicixc; -
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