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Abstract

We collect here some known results on the subdifferential of one-homogeneous func-

tionals, which are anisotropic and nonhomogeneous variants of the total variation, and

establish a new relationship between Lebesgue points of the calibrating field and regular

points of the level lines of the corresponding calibrated function.

1 Introduction

In this note we recall some classical results on the structure of the subdifferential of first order

one-homogeneous functionals, and we give new regularity results which extend and precise

previous work by G. Anzellotti [5, 6, 7].

Given an open set Ω ⊂ Rd with Lipschitz boundary, and a function u ∈ C1(Ω) ∩BV (Ω), we

consider the functional

J(u) :=

∫
Ω

F (x,Du)

where F : Ω×Rd → [0,+∞) is continuous in x and F (x, ·) is a smooth and uniformly convex

norm on Rd, for all x ∈ Ω.

Since BV (Ω) ⊂ Ld/(d−1)(Ω), it is natural to consider J as a convex, l.s.c. function on the

whole of Ld/(d−1)(Ω), with value +∞ when u 6∈ BV (Ω) (see [2]). In this framework, for any

u ∈ Ld/(d−1)(Ω) we can define the subgradient of a u in the duality (Ld/(d−1), Ld) as

∂J(u) =

{
g ∈ Ld(Ω) : J(v) ≥ J(u) +

∫
Ω

g(x)(v(x)− u(x)) dx ∀v ∈ Ld/(d−1)(Ω)

}
.
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The goal of this paper is to investigate the particular structure of the functions u and g ∈
∂J(u), when the subgradient is nonempty. Since J can be defined by duality as

J(u) = sup

{
−
∫

Ω

u(x)div z(x) dx : z ∈ C∞c (Ω;Rd) , F ∗(x, z(x)) = 0 ∀x ∈ Ω

}
where F ∗(x, ·) is the Legendre-Fenchel transform of F (x, ·) (it is equivalent to require that

F ◦(x, z(x)) ≤ 1, F ◦(x, ·) being the convex polar of F defined in (4)), it is easy to see that such

a g has necessarily the form g = −div z, for some field z ∈ L∞(Ω;Rd) with F ∗(x, z(x)) = 0

a.e. in Ω.

Since by a formal integration by parts one gets z ·Du = F (x,Du), |Du|-a.e., natural questions

are: in what sense can this relation be true? can one assign a precise value to z on the support

of the measure Du?

The first question has been answered by Anzelotti in the series of papers [5, 6, 7]. However, for

the particular vector fields we are interested in, we can be more precise and obtain pointwise

properties of z on the level sets of the function u. Indeed, we shall show that z has a pointwise

meaning on all level sets of u, up to H d−1-negligible sets (which is much more than |Du|-a.e.,

as illustrated by the function u =
∑+∞
n=1 2−nχ(0,xn), defined in the interval (0, 1), with (xn)

a dense sequence in that interval).

We will therefore focus on the properties of the vector fields z ∈ L∞(Ω,Rd) such that

F ∗(x, z(x)) = 0 a.e. in Ω and g = −div z ∈ Ld(Ω), and such that there exists a function u

such that for any φ ∈ C∞c (Ω),

−
∫

Ω

div z(x)u(x)φ(x) dx =

∫
Ω

u(x) z(x) · ∇φ(x) dx+

∫
Ω

φ(x)F (x,Du) .

In particular, one checks easily that u minimizes the functional∫
Ω

F (x,Du)−
∫

Ω

g(x)u(x) dx (1)

among perturbations with compact support in Ω. Conversely, given g ∈ Ld(Ω) with ‖g‖Ld
sufficiently small, there exist functions u which minimize (1) under various types of boundary

conditions, and corresponding fields z.

This kind of functionals appears in many contexts including image processing and plasticity

[4, 17]. Notice also that, by the Coarea Formula [2], it holds∫
Ω

F (x,Du)−
∫

Ω

gu dx =

∫
R

(∫
∂∗{u>s}

F (x, ν)−
∫
{u>s}

g dx

)
ds ,

where ν is the unit normal to {u > s}, and one can show (see for instance [10]) that the

characteristic function of any level set of the form {u > s} or {u ≥ s} is a minimizer of the

geometric functional ∫
∂∗E

F (x, ν)−
∫
E

g(x) dx . (2)
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The canonical example of such functionals is given by the total variation, corresponding to

F (x,Du) = |Du|. In this case, (2) boils down to

P (E)−
∫
E

g(x) dx. (3)

In [8], it is shown that every set with finite perimeter in Ω is a minimizer of (3) for some

g ∈ L1(Ω). However, if g ∈ Lp(Ω) with p > d, and E is a minimizer of (2), then ∂E is

locally C1,α for some α > 0, out of a closed singular set of zero H d−3-measure [1]. When

g ∈ Ld(Ω), the boundary ∂E is only of class Cα out of the singular set (see [3]). Since the

Euler-Lagrange equation of (2) relates z to the normal to E, understanding the regularity of

z is closely related to understanding the regularity of ∂E.

Our main result is that the Lebesgue points of z correspond to regular points of ∂{u > s} or

∂{u ≥ s} (Theorem 3.7), and that the converse is true in dimension d ≤ 3 (Theorem 3.8).

2 Preliminaries

2.1 BV functions

We briefly recall the definition of function of bounded variation and set of finite perimeter.

For a complete presentation we refer to [2].

Definition 2.1. Let Ω be an open set of Rd, we say that a function u ∈ L1(Ω) is a function

of bounded variation if ∫
Ω

|Du| := sup
z∈C1c (Ω)

|z|∞≤1

∫
Ω

u div z dx < +∞.

We denote by BV (Ω) the set of functions of bounded variation in Ω (when Ω = Rd we simply

write BV instead of BV (Rd)).

We say that a set E ⊂ Rd is of finite perimeter if its characteristic function χE is of bounded

variation and denote its perimeter in an open set Ω by P (E,Ω) :=
∫

Ω
|DχE |, and write

simply P (E) when Ω = Rd.

Definition 2.2. Let E be a set of finite perimeter and let t ∈ [0; 1]. We define

E(t) :=

{
x ∈ Rd : lim

r↓0

|E ∩Br(x)|
|Br(x)|

= t

}
.

We denote by ∂E :=
(
E(0) ∪ E(1)

)c
the measure theoretical boundary of E. We define the

reduced boundary of E by:

∂∗E :=

{
x ∈ Spt(|DχE |) : νE(x) := lim

r↓0

DχE(Br(x))

|DχE |(Br(x))
exists and |νE(x)| = 1

}
⊂ E( 1

2 ).
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The vector νE(x) is the measure theoretical inward normal to the set E.

Proposition 2.3. If E is a set of finite perimeter then DχE = νE H d−1 ∂∗E, P (E) =

H d−1(∂∗E) and H d−1(∂E \ ∂∗E) = 0.

Definition 2.4. We say that x is an approximate jump point of u ∈ BV (Ω) if there exist

ξ ∈ Sd−1 and distinct a, b ∈ R such that

lim
ρ→0

1

|B+
ρ (x, ξ)|

∫
B+
ρ (x,ξ)

|u(y)− a| dy = 0 and lim
ρ→0

1

|B−ρ (x, ξ)|

∫
B−ρ (x,ξ)

|u(y)− b| dy = 0,

where B±ρ (x, ξ) := {y ∈ Bρ(x) : ±(y − x) · ξ > 0}. Up to a permutation of a and b and a

change of sign of ξ, this characterize the triplet (a, b, ξ) which is then denoted by (u+, u−, νu).

The set of approximate jump points is denoted by Ju.

The following proposition can be found in [2, Proposition 3.92].

Proposition 2.5. Let u ∈ BV (Ω). Then, defining

Θu := {x ∈ Ω / lim inf
ρ→0

ρ1−d|Du|(Bρ(x)) > 0},

there holds Ju ⊂ Θu and H d−1(Θu\Ju) = 0.

2.2 Anisotropies

Let F (x, p) : Rd × Rd → R be a convex one-homogeneous function in the second variable

such that there exists c0 with

c0|p| ≤ F (x, p) ≤ 1

c0
|p| ∀(x, p) ∈ Rd × Rd.

We say that F is uniformly elliptic if for some δ > 0, the function p 7→ F (p) − δ|p| is still a

convex function. We define the polar function of F by

F ◦(x, z) := sup
{F (x,p)≤1}

z · p (4)

so that (F ◦)◦ = F . It is easy to check that (∗ denoting the Legendre-Fenchel convex

conjugate) [F (x, ·)2/2]∗ = F ◦(x, ·)2/2, in particular (if differentiable), F (x, ·)∇pF (x, ·) and

F ◦(x, ·)∇zF ◦(x, ·) are inverse monotone operators. If we denote by F ∗ the convex conjugate

of F with respect to the second variable, then F ∗(x, z) = 0 if and only if F ◦(x, z) ≤ 1.

If F (x, ·) is differentiable then, for every p ∈ Rd,

F (x, p) = p · ∇pF (x, p) (Euler′s identity)

and

z ∈ {F ◦(x, ·) ≤ 1} with p · z = F (x, p) ⇐⇒ z = ∇pF (x, p).
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If F is elliptic and of class C2(Rd ×Rd \ {0}), then F ◦ is also elliptic and C2(Rd ×Rd \ {0}).
We will then say that F is a smooth elliptic anisotropy. Observe that, in this case, the

function F 2/2 is also uniformly δ2-convex (this follows from the inequalities D2F (x, p) ≥
δ/|p|(I − p⊗ p/|p|2) and F (x, p) ≥ δ|p|). In particular, for every x, y, z ∈ Rd, there holds

F 2(x, y)− F 2(x, z) ≥ 2 (F (x, z)∇pF (x, z)) · (y − z) + δ2|y − z|2, (5)

and a similar inequality holds for F ◦. We refer to [16] for general results on convex norms

and convex bodies.

2.3 Pairings between measures and bounded functions

Following [5] we define a generalized trace [z,Du] for functions u with bounded variation and

bounded vector fields z with divergence in Ld.

Definition 2.6. Let Ω be an open set with Lipschitz boundary, u ∈ BV (Ω) and z ∈
L∞(Ω,Rd) with div z ∈ Ld(Ω). We define the distribution [z,Du] by

〈[z,Du], ψ〉 = −
∫

Ω

uψ div z −
∫

Ω

u z · ∇ψ ∀ψ ∈ C∞c (Ω).

Proposition 2.7. The distribution [z,Du] is a bounded Radon measure on Ω and if ν is the

inward unit normal to Ω, there exists a function [z, ν] ∈ L∞(∂Ω) such that the generalized

Green’s formula holds, ∫
Ω

[z,Du] = −
∫

Ω

udiv z −
∫
∂Ω

[z, ν]u dH d−1.

The function [z, ν] is the generalized (inward) normal trace of z on ∂Ω.

Given z ∈ L∞(Ω,Rd), with div z ∈ Ld(Ω), we can also define the generalized trace of z on

∂E, where E is a set of locally finite perimeter. Indeed, for every bounded open set Ω with

Lipschitz boundary, we can define as above the measure [z,DχE ] on Ω. Since this measure

is absolutely continuous with respect to |DχE | = H d−1 ∂∗E we have

[z,DχE ] = ψz(x)H d−1 ∂∗E

with ψz ∈ L∞(∂∗E) independent of Ω. We denote by [z, νE ] := ψz the generalized (inward)

normal trace of z on ∂E. If E is a bounded set of finite perimeter, by taking Ω strictly

containing E, we have the generalized Gauss-Green Formula∫
E

div z = −
∫
∂∗E

[z, νE ]dH d−1.

Anzellotti proved the following alternative definition of [z, νE ] [6, 7]
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Proposition 2.8. Let (x, α) ∈ Rd × Rd\{0}. For any r > 0, ρ > 0 we let

Cr,ρ(x, α) := {ξ ∈ Rd : |(ξ − x) · α| < r, |(ξ − x)− [(ξ − x) · α]α| < ρ}.

There holds

[z, α](x) = lim
ρ→0

lim
r→0

1

2rωd−1ρd−1

∫
Cr,ρ(x,α)

z · α

where ωd−1 is the volume of the unit ball in Rd−1.

3 The subdifferential of anisotropic total variations

3.1 Characterization of the subdifferential

The following characterization of the subdifferential of J is classical and readily follows for

example from the representation formula [9, (4.19)].

Proposition 3.1. Let F be a smooth elliptic anisotropy and g ∈ Ld(Ω) then u is a local

minimizer of (1) if and only if there exists z ∈ L∞(Ω) with div z = g, F ∗(x, z(x)) = 0 a.e.

and

[z,Du] = F (x,Du).

Moreover, for every t ∈ R, for the set E = {u > t} there holds [z, νE ] = F (x, νE) H d−1-a.e.

on ∂E. We will say that such a vector field is a calibration of the set E for the minimum

problem (2).

Remark 3.2. In [5], it is proven that if zρ(x) := 1
|Bρ(x)|

∫
Bρ(x)

z(y) dy, then zρ · νE weakly*

converges to [z, νE ] in L∞loc(H
d−1 ∂∗E). Using (5) it is then possible to prove that if z

calibrates E then zρ converges to ∇pF (x, νE) in L2(H d−1 ∂∗E) yielding that up to a

subsequence, zφ(ρ) converges H d−1-a.e. to ∇pF (x, νE). Unfortunately this is still a very

weak statement since it is a priori impossible to recover from this the convergence of the full

sequence zρ.

The main question we want to investigate now is whether we can give a classical meaning to

[z, νE ] (that is understand if [z, νE ] = z · νE). We observe that a priori the value of z is not

well defined on ∂E which has zero Lebesgue measure (since z has Lebesgue points only a.e.).

We let S := supp(Du) ⊂ Ω be the smallest closed set in Ω such that |Du|(Ω \ S) = 0. The

next result is classical.

Lemma 3.3 (Density estimate). There exists ρ0 > 0 (depending on g) and a constant γ > 0

(which depends only on d), such that for any Bρ(x) ⊂ Ω with ρ ≤ ρ0, and any level set E of

u (that is, E ∈ {{u > s}, {u ≥ s}, {u < s}, {u ≤ s}, s ∈ R}), if |Bρ(x) ∩ E| < γ|Bρ(x)| then

|Bρ/2(x)∩E| = 0. As a consequence, E0 and E1 are open, ∂E is the topological boundary of

E1, and (possibly changing slightly γ) if x ∈ ∂E, then H d−1(∂E ∩Bρ(x)) ≥ γρd−1.
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For a proof we refer to [13, 12]. This is not true anymore if g 6∈ Ld(Ω) [12]. If ∂Ω is Lipschitz,

it is true up to the boundary.

Corollary 3.4. It follows that u ∈ L∞loc(Ω) and u ∈ C(Ω\Θu).

Proof. For any ball Bρ(x) ⊂ Ω and infBρ/2(x) u < a < b < supBρ/2(x) u, one has

+∞ > |Du|(Bρ(x)) ≥
∫ b

a

P ({u > s}, Bρ(x)) ds ≥ (b− a)γ
(ρ

2

)d−1

,

so that oscBρ/2(x)(u) must be bounded and thus u ∈ L∞loc(Ω). Moreover, if x ∈ Ω\Θu we find

that limρ→0 oscBρ(x)(u) = 0 so that u is continuous at the point x.

It also follows from Lemma 3.3 that all points in the support of Du must be on the boundary

of a level set of u:

Proposition 3.5. For any x ∈ S, there exists s ∈ R such that either x ∈ ∂{u > s} or

x ∈ ∂{u ≥ s}.

Proof. First, if x 6∈ S then |Du|(Bρ(x)) = 0 for some ρ > 0 and clearly x cannot be on the

boundary of a level set of u. On the other hand, if x ∈ S, then for any ball B1/n(x) (n large)

there is a level sn (uniformly bounded) with ∂{u > sn} ∩ B1/n(x) 6= ∅ and by Hausdorff

convergence, we deduce that either x ∈ ∂{u > s} or x ∈ ∂{u ≥ s} where s is the limit of the

sequence (sn)n (which must actually converge).

The following stability property is classical (see e.g. [11]).

Proposition 3.6. Let En be local minimizers of (2), with a function g = gn ∈ Ld(Ω), and

converging in the L1-topology to a set E. Assume that the sets En are calibrated by zn, that

zn
∗
⇀ z weakly-∗ in L∞ and gn → g = −div z ∈ Ld(Ω), in L1(Ω) as n → ∞. Then z

calibrates E, which is thus also a minimizer of (2).

In particular, one must notice that when zn
∗
⇀ z and F ◦(x, zn) ≤ 1 a.e., then in the limit

one still has F ◦(x, z) ≤ 1 a.e. (thanks to the convexity, and continuity w.r. the variable x).

3.2 The Lebesgue points of the calibration.

The next result shows that the regularity of the calibration z implies some regularity of the

calibrated set.

Theorem 3.7. Let x̄ ∈ ∂E be a Lebesgue point of z, with E = {u > t} or E = {u ≥ t}.
Then, x̄ ∈ ∂∗E and

z(x̄) = ∇pF (x̄, νE(x̄)). (6)
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Proof. We follow [11, Th. 4.5] and let zρ(y) := z(x̄ + ρy). Since x̄ is a Lebesgue point of

z, we have that zρ → z̄ in L1(BR), hence also weakly-∗ in L∞(BR) for any R > 0, where

z̄ ∈ Rd is a constant vector.

We let Eρ := (E − x̄)/ρ and gρ(y) = g(x̄ + ρy) (so that div zρ = ρgρ). Observe that Eρ

minimizes ∫
∂∗Eρ∩BR

F (x̄+ ρy, νEρ(y)) dH d−1(y) + ρ

∫
Eρ∩BR

gρ(y) dy ,

with respect to compactly supported perturbations of the set (in the fixed ball BR). Also,

‖ρgρ‖Ld(BR) = ‖g‖Ld(BρR)
ρ→0−→ 0 .

By Lemma 3.3, the sets Eρ (and the boundaries ∂Eρ) satisfy uniform density bounds, and

hence are compact with respect to both local L1 and Hausdorff convergence.

Hence, up to extracting a subsequence, we can assume that Eρ → Ē, with 0 ∈ ∂Ē. Proposi-

tion 3.6 shows that z̄ is a calibration for the energy
∫
∂Ē∩BR F (x̄, νĒ(y)) dH d−1(y), and that

Ē is a minimizer calibrated by z̄.

It follows that [z̄, νĒ ] = F (x̄, νĒ(y)) for H d−1-a.e. y in ∂Ē, but since z̄ is a constant, we

deduce that Ē = {y·ν̄ ≥ 0} with ν̄/F (x̄, ν̄) = ∇pF ◦(x̄, z̄)1. In particular the limit Ē is unique,

hence we obtain the global convergence of Eρ → Ē, without passing to a subsequence.

We want to deduce that x̄ ∈ ∂∗E, with νE(x̄) = F (x̄, νE(x̄))∇pF ◦(x̄, z̄), which is equivalent

to (6). The last identity is obvious from the arguments above, so that we only need to show

that

lim
ρ→0

DχEρ(B1)

|DχEρ |(B1)
= ν̄ . (7)

Assume we can show that

lim
ρ→0
|DχEρ |(BR) = |DχĒ |(BR)

(
= ωd−1R

d−1
)

(8)

for any R > 0, then for any ψ ∈ C∞c (BR;Rd) we would get

1

|DχEρ |(BR)

∫
BR

ψ ·DχEρ = − 1

|DχEρ |(BR)

∫
BR∩Eρ

divψ(x) dx

−→ − 1

|DχĒ |(BR)

∫
BR∩Ē

divψ(x) dx =
1

|DχĒ |(BR)

∫
BR

ψ ·DχĒ

and deduce that the measure DχEρ/(|DχEρ |(BR)) weakly-∗ converges to DχĒ/(|DχĒ |(BR)).

Using again (8)), we then obtain that

lim
ρ→0

DχEρ(BR)

|DχEρ |(BR)
= ν̄ (9)

1We use here that F (x̄, ·)∇F (x̄, ·) = [F ◦(x̄, ·)∇F ◦(x̄, ·)]−1, so that z̄ = ∇F (x̄, νĒ(y)) implies both

F ◦(x̄, z̄) = 1 and νĒ(y)/F (x̄, νĒ)(y) = ∇F ◦(x̄, z̄)
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for almost every R > 0. Since DχEρ(BµR)/(|DχEρ |(BµR)) = DχEρ/µ(BR)/(|DχEρ/µ |(BR))

for any µ > 0, (9) holds in fact for any R > 0 and (7) follows, so that x̄ ∈ ∂∗E.

It remains to show (8). First, we observe that, by minimality of Eρ and Ē plus the Hausdorff

convergence of ∂Eρ in balls, we can easily show the convergence of the energies

lim
ρ→0

∫
∂Eρ∩BR

F (x̄+ ρy, νEρ(y)) dH d−1(y) + ρ

∫
Eρ∩BR

gρ(y) dy

=

∫
∂Ē∩BR

F (x̄, νĒ(y)) dH d−1(y)

and, by the continuity of F ,

lim
ρ→0

∫
∂Eρ∩BR

F (x̄, νEρ(y)) dH d−1(y) =

∫
∂Ē∩BR

F (x̄, νĒ(y)) dH d−1(y) . (10)

Then, (7) follows from Reshetnyak’s continuity theorem where, instead of using the Euclidean

norm as reference norm, we use the uniformly convex norm F (x̄, ·) and the convergence of

the measures F (x̄, DχEρ) to F (x̄, DχĒ) (see [15, 11]).

In dimension 2 and 3 we can also show the reverse implication, proving that regular points

of the boundary corresponds to Lebesgue points of the calibration. The idea is to show that

the parameters r, ρ in Proposition 2.8 can be taken of the same order.

Theorem 3.8. Assume the dimension is d = 2 or d = 3. Let x, s be as in Proposition 3.5,

E be a minimizer of (2) and assume x ∈ ∂∗E. Then x is a Lebesgue point of z and

z(x) = ∇pF (x, νE) .

Proof. We divide the proof into two steps.

Step 1. We first consider anisotropies F which are not depending on the x variable. Without

loss of generality we assume x = 0. By assumption, there exists the limit

ν = lim
ρ→0

DχE(Bρ(0))

|DχE |(Bρ(0))|
(11)

and, without loss of generality, we assume that it coincides with the vector ed corresponding

to the last coordinate of y ∈ Rd.
Also, if we let Eρ = E/ρ, the sets Eρ, E

c
ρ, ∂Eρ converge in B1(0), in the Hausdorff sense

(thanks to the uniform density estimates), respectively to {yd ≥ 0}, {yd = 0}, {yd ≤ 0}.
We also let zρ(y) = z(ρy) and gρ(y) = g(ρy), in particular −div zρ = ρgρ. We let

ω(ρ) = sup
x∈Ω
‖g‖Ld(Bρ(x)∩Ω) (12)
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which is continuously increasing and goes to 0 as ρ→ 0, since |g|d is equi-integrable.

We introduce the following notation: a point in Rd is denoted by y = (y′, yd), with y′ ∈ Rd−1.

We let Ds := {|y′| ≤ s}, z̄ := ∇F (ν) and Dt
s = {Ds + λz̄ : |λ| ≤ t} and denote with ∂Ds the

relative boundary of Ds in {yd = 0}.
We choose s ≤ 1, 0 < t ≤ s, (t is chosen small enough so that Dt

s ⊂ B1(0), that is

t < (1/|z̄|)
√

1− s2). We integrate in Dt
s the divergence ρgρ = −div zρ = div (z̄ − zρ) against

the function (2χE − 1)t − ν·y
F (ν) , which vanishes for yd = ±tF (ν) if ρ is small enough (given

t > 0), so that ∂Eρ ∩B1(0) ⊂ {|yd| ≤ tF (ν)}. For y on the lateral boundary of the cylinder

Dt
s, let ξ(y) be the internal normal to ∂Ds + (−t, t)z̄ at the point y. Using the fact that zρ

is a calibration for Eρ, we easily get that for almost all s,∫
Dts

ρgρ

(
(2χE − 1)t− ν · y

F (ν)

)
dy

=

∫
∂Ds+(−t,t)z̄

(
(2χE − 1)t− ν · y

F (ν)

)
[(z̄ − zρ), ξ(y)] dH d−1

− 2t

∫
∂Eρ∩Dts

(
z̄ · νEρ − F (νEρ)

)
dH d−1 +

∫
Dts

(
1− zρ · ν

F (ν)

)
dy . (13)

Now since F ◦(∇F (ν)) = 1, there holds z̄ · νEρ − F (νEρ) ≤ 0 and using that z̄ · ξ(y) = 0 on

∂Ds + (−t, t)z̄, we get∫
Dts

(
1− zρ · ν

F (ν̄)

)
dy ≤

∫
Dts

ρgρ

(
(2χE − 1)t− ν · y

F (ν)

)
dy∫

∂Ds+(−t,t)z̄

(
(2χE − 1)t− ν · y

F (ν)

)
zρ · ξ(y) dH d−1 . (14)

We claim that for |ξ| ≤ 1 with ξ · z̄ = 0, there holds

(ξ · zρ)2 ≤ C(F (ν)− ν · zρ) (15)

Since

(ξ · zρ)2 ≤ |zρ|2 − [zρ · (z̄/|z̄|)]2

it is enough to prove

|zρ|2 − [zρ · (z̄/|z̄|)]2 ≤ C(F (ν)− ν · zρ).

Using that ν/F (ν) = ∇F ◦(z̄), from (5) applied to F ◦ together with F ◦(z̄) = 1 ≥ F ◦(zρ), we

find

(F (ν)− ν · zρ) = F (ν)(1− zρ · ∇F ◦(z̄)) ≥ C|zρ − z̄|2.

10



which readily implies (15). We thus have∫
∂Ds+(−t,t)z̄

(
(2χEρ − 1)t− ν · y

F (ν)

)
(zρ · ξ) dH d−1

≤ 2C
√
F (ν)t

∫
∂Ds+(−t,t)z̄

√
1− zρ · ν

F (ν)
dH d−1

≤ 2CF (ν)t
√
t

(∫
∂Ds+(−t,t)z̄

(
1− zρ · ν

F (ν)

)
dH d−1

) 1
2 √

H d−2(∂Ds) . (16)

Now, we also have

ρ

∫
Dts

(
(2χEρ − 1)t− ν · y

F (ν)

)
gρ(y) dy ≤ 2tρ1−d

∫
Dρtρs

g(x) dx

≤ 2tρ1−d‖g‖Ld(Bρs(0))|Dρt
ρs|1−1/d ≤ ct2−1/dsd−2+1/dω(ρs) (17)

where here, c = 2H d−1(D1)1−1/d, and ω is defined in (12).

We choose a < 1, close to 1, and choose t ∈ (0, (1/|z̄|)
√

1− a2). If ρ > 0 is small enough (so

that ∂Eρ ∩B1 is in {|yd| ≤ tF (ν)}), letting f(s) :=
∫
Dts

(
1− zρ·ν

F (ν)

)
dy, we deduce from (14),

(16) and (17) that for a.e. s with t ≤ s ≤ a, one has (possibly increasing the constant c)

f(s)2 ≤ c
(
sd−2t3f ′(s) + t4−2/ds2d−4+2/dω(ρs)2

)
. (18)

Unfortunately, this estimate does not give much information for d > 3. It seems it allows

to conclude only whenever d ∈ {2, 3}. Since the case d = 2 is simpler, we focus on d = 3.

Estimate (18) becomes

f(s)2 ≤ c
(
st3f ′(s) + t10/3s8/3ω(ρs)2

)
. (19)

Given M > 0, we fix a value t > 0 such that log(a/t) ≥ cM . If ρ is chosen small enough,

then ∂Eρ ∩B1(0) ⊂ {|yd| < tF (ν)}, and (19) holds. It yields (assuming f(t) > 0, but if not,

then the Proposition is proved)

− f
′(s)

f(s)2
+

1

ct3
1

s
≤ ct1/3s5/3ω(ρs)2

f(s)2
≤ ct1/3s5/3ω(aρ)2

f(t)2
(20)

where we have used the fact that t ≤ s ≤ a and f, ω are nondecreasing. Integrating (20)

from t to a, after multiplication by t3 we obtain

t3

f(a)
− t3

f(t)
+

log(a/t)

c
≤ 3c

8
t10/3(a8/3 − t8/3)

ω(aρ)2

f(t)2
.

Hence we get
t3

f(t)
+ ca8/3t−8/3ω(aρ)2 t6

f(t)2
≥ M. (21)

11



Eventually, we observe that

f(t) =

∫
Dtt

(
1− z(ρy) · ν

F (ν)

)
dy =

1

ρd

∫
Dρtρt

(
1− z(x) · ν

F (ν)

)
dx ,

so that (21) can be rewritten∫Dρtρt
(

1− z(x)·ν
F (ν)

)
dx

(ρt)3

−1

≥ −1 +
√

1 + 4Mca8/3t−8/3ω(aρ)2

2ca8/3t−8/3ω(aρ)2
(22)

The value of t being fixed, we can choose the value of ρ small enough in order to have

4Mca8/3t−8/3ω(aρ)2 < 1, and (using
√

1 +X ≥ 1 +X/2−X2/8 if X ∈ (0, 1)), (22) yields∫Dρtρt
(

1− z(x)·ν
F (ν)

)
dx

(ρt)3

−1

≥ M −M2ca8/3t−8/3ω(aρ)2 ≥ 3

4
M . (23)

It follows that

lim sup
ε→0

∫
Dεε

(
1− z(x)·ν

F (ν)

)
dx

ε3
≤ 4

3
M−1 (24)

and since M is arbitrary, 0 is indeed a Lebesgue point of z, with value z̄ = ∇F (ν) (recall

that 1− z(x)·ν
F (ν) ≥ (C/F (ν))|z(x)− z̄|2).

Step 2. When F depends also on the x variable, the proof follows along the same lines

as in Step 1, taking into account the errors terms in (14) and (16). Keeping the same

notations as in Step 1 and setting z̄ := ∇pF (0, ν̄) we find that since F ◦(0, z̄) ≤ 1, there holds

z̄ · νEρ ≤ F (0, νEρ) and thus∫
∂Eρ∩Dts

z̄ · νEρ − F (ρx, νEρ)dH d−1 ≤
∫
∂Eρ∩Dts

|F (0, νEρ)− F (ρx, νEρ)|dH d−1 ≤ Cρsd−1

where the last inequality follows from t ≤ s and the minimality of Eρ inside Dt
s. Now since

(F ◦)
2

(0, zρ)− (F ◦)
2

(ρx, zρ) ≥ (F ◦)
2

(0, zρ)− 1 ≥ 2
ν̄

F (0, ν̄)
· (zρ − z) + δ2|zρ − z|2

we find that (15) transforms into,

(ξ · zρ)2 ≤ C
[
(F (0, ν̄)− ν̄ · zρ) + ((F ◦)

2
(0, zρ)− (F ◦)

2
(ρx, zρ))

]
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for every |ξ| ≤ 1 and ξ · z̄ = 0, from which we get∫
∂Ds+(−t,t)z̄

(
(2χEρ − 1)t− ν · y

F (ν)

)
(zρ · ξ) dH d−1

≤ 2CF (0, ν)t
√
t

(∫
∂Ds+(−t,t)z̄

(
1− zρ · ν

F (0, ν)

)
dH d−1

) 1
2 √

H d−2(∂Ds)

+ 2Ct

∫
∂Ds+(−t,t)z̄

∣∣∣(F ◦)2
(0, zρ)− (F ◦)

2
(ρx, zρ)

∣∣∣1/2 dH d−1

≤ CF (0, ν)t
√
t

(∫
∂Ds+(−t,t)z̄

(
1− zρ · ν

F (0, ν)

)
dH d−1

) 1
2 √

H d−2(∂Ds) + Ctρ1/2sd−1t .

Using these estimates, we finally get that, setting as before f(s) :=
∫
Dts

(
1− zρ·ν

F (0,ν)

)
dy, there

holds

f(s)2 ≤ c
(
sd−2t3f ′(s) + t4−2/ds2d−4+2/dω(ρs)2 + ρtsd−1 + ρ1/2t2sd−1

)
.

From this inequality, the proof can be concluded exactly as in Step 1.

Eventually, we can also give a locally uniform convergence result.

Proposition 3.9. For all x ∈ Ω we let

zρ(x) :=
1

|Bρ(0)|

∫
Bρ(x)∩Ω

z(y) dy .

Then, F ◦(x, zρ(x))→ 1 locally uniformly on S.

Proof. Given K ⊂ Ω a compact set, we can check that for any t > 0, there exists ρ0 > 0

such that for any x ∈ K ∩ S, if Ex is the level set of u through x, then for any ρ ≤ ρ0, the

boundary of (Ex − x)/ρ ∩ B1(0) lies in a strip of width 2t, that is, there is νx ∈ Sd−1 with

∂((Ex − x)/ρ) ∩B1(0) ⊂ {|y · νx| ≤ t}).
Indeed, if this is not the case, one can find t > 0, ρk → 0, xk ∈ K ∩ S, such that ∂((Exk −
xk)/ρk)∩B1(0) is not contained in any strip of width 2t. Up to a subsequence we may assume

that xk → x ∈ K ∩ S, and from the bound on the perimeter, that (Exk − xk)/ρk ∩ B1(0)

converges to a local minimizer of
∫
∂E

F (0, νE)dH d−1 and is thus a halfspace.2 Moreover,

∂((Exk − xk)/ρk)∩B1(0) converges in the Hausdorff sense (thanks to the density estimates)

to a hyperplane. We easily obtain a contradiction.

The thesis follows when we observe that the proof of Proposition 3.8 can be reproduced by

replacingthe direction νE
x

(x) (which exists only if x lies in the reduced boundary of Ex)

with the direction νx given above.

2If d = 2, this Bernstein result readily follows from the strict convexity of F , see [11, Prop 3.6] whereas

for d = 3, see [18]. In the case of the area i.e when F (x,Du) = |Du| and d ≤ 7, see also [12, Rem 3.2].
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3.3 A counterexample.

We provide an example where g ∈ Ld−ε(Ω), with ε > 0 arbitrarily small, and Theorem 3.8

does not hold.

Let Ω = B1(0) be the unit ball of Rd and let E = Ω ∩ {xd ≤ 0}. We shall construct a vector

field z : Ω→ Rd such that z = νE on ∂E ∩ Ω, |z| ≤ 1 everywhere in Ω, divz ∈ Ld−ε(Ω), but

0 is not a Lebesgue point of z. Notice that E minimizes the functional (3) with g = divz.

Letting rn → 0 be a decreasing sequence to be determined later, and let Bn = Brn(xn) with

xn = 2rned. Without loss of generality, we may assume rn+1 < rn/4 so that the balls Bn

are all disjoint. We define the vector field z as follows: z(x) = ed if x ∈ Ω \ ∪nBn, and

z(x) = |x− xn|ed if x ∈ Bn. It follows that divz = 0 in Ω \ ∪nBn and |divz| ≤ 1/rn in Bn,

so that ∫
Ω

|divz|d−ε dx =
∑
n

∫
Bn

|divz|d−ε dx ≤ ωd
∑
n

rεn < +∞

if we choose rn converging to zero sufficiently fast, so that g = −div z ∈ Ld−ε(Ω).

However, since z · ed ≤ 1/2 in Brn/2(xn), we also have∫
B3rn (0)

z · ed dx ≤ |B3rn(0)| − 1

2

∣∣Brn/2(xn)
∣∣

so that
1

|B3rn(0)|

∫
B3rn (0)

z · ed dx ≤ 1− 1

6d
< 1 .

On the other hand, for δ ∈ (0, 1/6d) we have

1

|Brn(0)|

∫
Brn (0)

z · ed dx ≥
1

|Brn(0)|

(
|Brn(0)| −

∞∑
i=n+1

|Bri(xi)|

)
≥ 1− δ ,

if we take the sequence rn converging to 0 sufficiently fast. It follows that 0 is not a Lebesgue

point of z.
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