Uniqueness of the Cheeger set of a convex body

V. Caselles*, A. Chambolle †, M. Novaga ‡

Abstract

We prove that if $C \subset \mathbb{R}^N$ is of class C^2 and uniformly convex, then the Cheeger set of C is unique. The Cheeger set of C is the set which minimizes, inside C, the ratio perimeter over volume.

1 Introduction

Given an nonempty open bounded subset Ω of \mathbb{R}^N , we call Cheeger constant of Ω the quantity

$$h_{\Omega} = \min_{K \subseteq \Omega} \frac{P(K)}{|K|} \tag{1}$$

where |K| denotes de N-dimensional volume of K and P(K) denotes the perimeter of K. The minimum in (1) is taken over all nonempty sets of finite perimeter contained in Ω . It is well-known that the minimum in (1) is attained at a subset G of Ω such that ∂G touches $\partial \Omega$ (otherwise we would diminish the quotient P(G)/|G| by dilating G). A Cheeger set of Ω is any set $G \subseteq \Omega$ which minimizes (1). We say that Ω is Cheeger in itself if Ω minimizes (1).

For any set of finite perimeter K in \mathbb{R}^N , let us denote

$$\lambda_K := \frac{P(K)}{|K|}.$$

Notice that for any Cheeger set G of Ω , $\lambda_G = h_G$. Observe also that G is a Cheeger set of Ω if and only if G minimizes

$$\min_{K \subseteq \Omega} P(K) - \lambda_G |K|. \tag{2}$$

We say that a set $\Omega \subset \mathbb{R}^N$ is calibrable if Ω minimizes the problem

$$\min_{K \subseteq \Omega} P(K) - \lambda_{\Omega} |K|. \tag{3}$$

^{*}Departament de Tecnologia, Universitat Pompeu-Fabra, Barcelona, Spain, e-mail: vicent.caselles@tecn.upf.es

[†]CMAP, CNRS UMR 7641, Ecole Polytechnique, 91128 Palaiseau Cedex, France, e-mail: antonin.chambolle@polytechnique.fr

[‡]Dipartimento di Matematica, Università di Pisa, Largo B. Pontecorvo 5, 56127 Pisa, Italy, e-mail: novaga@dm.unipi.it

In particular, if G is a Cheeger set of Ω , then G is calibrable. Thus, Ω is a Cheeger set of itself if and only if is calibrable.

Finding the Cheeger sets of a given Ω is a difficult task. This task is simplified if Ω is a convex set and N=2. In that case, the Cheeger set in Ω is unique and is identified with the set $\Omega^R \oplus B(0,R)$ where $\Omega^R:=\{x\in\Omega: \operatorname{dist}(x,\partial\Omega)>R\}$ is such that $|\Omega^R|=\pi R^2$ and $A\oplus B:=\{a+b:a\in A,b\in B\},\ A,B\subset\mathbb{R}^2$ [1, 17]. In this case, we see that the Cheeger set of Ω is convex. Moreover, a convex set $\Omega\subseteq\mathbb{R}^2$ is Cheeger in itself if and only if $\max_{x\in\partial\Omega}\kappa_\Omega(x)\leq\lambda_\Omega$ where $\kappa_\Omega(x)$ denotes the curvature of $\partial\Omega$ at the the point x. This has been proved in [13, 8, 17] (see also [1]) though it was stated in terms of calibrability in [8, 1]. The proof in [13] had also a complement result: if Ω is Cheeger in itself then Ω is strictly calibrable, that is, for any set $K\subset\Omega$, $K\neq\Omega$, then

$$0 = P(\Omega) - \lambda_{\Omega} |\Omega| < P(K) - \lambda_{\Omega} |K|,$$

and this implies that the capillary problem in absence of gravity (with vertical contact angle at the boundary)

$$-\operatorname{div}\left(\frac{Du}{\sqrt{1+|Du|^2}}\right) = \lambda_{\Omega} \quad \text{in } \Omega$$

$$-\frac{Du}{\sqrt{1+|Du|^2}} \cdot \nu^{\Omega} = 1 \qquad \text{in } \partial\Omega$$
(4)

has a solution. Indeed, both problems are equivalent [13].

Our purpose in this paper is to extend the above result to \mathbb{R}^N , that is, to prove the uniqueness and convexity of the Cheeger set contained in a set $\Omega \subset \mathbb{R}^N$ which is uniformly convex and of class C^2 . The characterization of a convex set $\Omega \subset \mathbb{R}^N$ of class $C^{1,1}$ which is Cheeger in itself (also called calibrable) in terms of the mean curvature of its boundary was proved in [2]. The precise result states that such a set Ω is Cheeger in itself if and only if $\kappa_{\Omega}(x) \leq \lambda_{\Omega}$ for any $x \in \partial \Omega$ where $\kappa_{\Omega}(x)$ denotes the sum of the principal curvatures (or total curvature) of the boundary of Ω . Moreover, in [2], the authors also proved that for any convex set $\Omega \subset \mathbb{R}^N$ there exists a maximal Cheeger set contained in Ω which is convex. These results were extended to convex sets Ω satisfying a regularity condition and anisotropic norms in \mathbb{R}^N (including the crystalline case) in [11].

In particular, we obtain that $\Omega \subset \mathbb{R}^N$ is the unique Cheeger set of itself, whenever Ω is a C^2 , uniformly convex calibrable set. We point out that, by Theorems 1.1 and 4.2 in [13], this uniqueness result is equivalent to the existence of a solution $u \in W^{1,\infty}_{loc}(\Omega)$ of the capillary problem (4).

Let us explain the plan of the paper. In Section 2 we collect some definitions and recall some results about the mean curvature operator in (4) and the subdifferential of the total variation. In Section 3 we state and prove the uniqueness result.

2 Preliminaries

2.1 BV functions

Let Ω be an open subset of \mathbb{R}^N . A function $u \in L^1(\Omega)$ whose gradient Du in the sense of distributions is a (vector valued) Radon measure with finite total variation in Ω is called a function of bounded variation. The class of such functions will be denoted by $BV(\Omega)$. The total variation of Du on Ω turns out to be

$$\sup \left\{ \int_{\Omega} u \operatorname{div} z \, dx : z \in C_0^{\infty}(\Omega; \mathbb{R}^N), \|z\|_{L^{\infty}(\Omega)} := \operatorname{ess\,sup}_{x \in \Omega} |z(x)| \le 1 \right\}, \tag{5}$$

(where for a vector $v = (v_1, \ldots, v_N) \in \mathbb{R}^N$ we set $|v|^2 := \sum_{i=1}^N v_i^2$) and will be denoted by $|Du|(\Omega)$ or by $\int_{\Omega} |Du|$. The map $u \to |Du|(\Omega)$ is $L^1_{loc}(\Omega)$ -lower semicontinuous. $BV(\Omega)$ is a Banach space when endowed with the norm $\int_{\Omega} |u| \ dx + |Du|(\Omega)$. We recall that $BV(\mathbb{R}^N) \subseteq L^{N/(N-1)}(\mathbb{R}^N)$.

A measurable set $E \subseteq \mathbb{R}^N$ is said to be of finite perimeter in \mathbb{R}^N if (5) is finite when u is substituted with the characteristic function χ_E of E and $\Omega = \mathbb{R}^N$. The perimeter of E is defined as $P(E) := |D\chi_E|(\mathbb{R}^N)$. For results and informations on functions of bounded variation we refer to [4].

Finally, let us denote by \mathcal{H}^{N-1} the (N-1)-dimensional Hausdorff measure. We recall that when E is a finite-perimeter set with regular boundary (for instance, Lipschitz), its perimeter P(E) also coincides with the more standard definition $\mathcal{H}^{N-1}(\partial E)$.

2.2 A generalized Green's formula

Let Ω be an open subset of \mathbb{R}^N . Following [6], let

$$X_2(\Omega) := \{ z \in L^{\infty}(\Omega; \mathbb{R}^N) : \text{div } z \in L^2(\Omega) \}.$$

If $z \in X_2(\Omega)$ and $w \in L^2(\Omega) \cap BV(\Omega)$ we define the functional $(z \cdot Dw) : C_0^{\infty}(\Omega) \to \mathbb{R}$ by the formula

$$<(z\cdot Dw), \varphi>:=-\int_{\Omega} w\,\varphi\,\mathrm{div}\,\,z\,dx-\int_{\Omega} w\,z\cdot\nabla\varphi\,dx.$$

Then $(z \cdot Dw)$ is a Radon measure in Ω ,

$$\int_{\Omega} (z \cdot Dw) = \int_{\Omega} z \cdot \nabla w \, dx \qquad \forall w \in L^2(\Omega) \cap W^{1,1}(\Omega).$$

Recall that the outer unit normal to a point $x \in \partial\Omega$ is denoted by $\nu^{\Omega}(x)$. We recall the following result proved in [6].

Theorem 1. Let $\Omega \subset \mathbb{R}^N$ be a bounded open set with Lipschitz boundary. Let $z \in L^{\infty}(\Omega; \mathbb{R}^N)$ with div $z \in L^2(\Omega)$. Then there exists a function $[z \cdot \nu^{\Omega}] \in L^{\infty}(\partial \Omega)$ satisfying $\|[z \cdot \nu^{\Omega}]\|_{L^{\infty}(\partial \Omega)} \leq \|z\|_{L^{\infty}(\Omega; \mathbb{R}^N)}$, and such that for any $u \in BV(\Omega) \cap L^2(\Omega)$ we have

$$\int_{\Omega} u \operatorname{div} z \ dx + \int_{\Omega} (z \cdot Du) = \int_{\partial \Omega} [z \cdot \nu^{\Omega}] u \ d\mathcal{H}^{N-1}.$$

Moreover, if $\varphi \in C^1(\overline{\Omega})$ then $[(\varphi z) \cdot \nu^{\Omega}] = \varphi[z \cdot \nu^{\Omega}]$.

This result is complemented with the following result proved by Anzellotti in [7].

Theorem 2. Let $\Omega \subset \mathbb{R}^N$ be a bounded open set with a boundary of class C^1 . Let $z \in C(\overline{\Omega}; \mathbb{R}^N)$ with div $z \in L^2(\Omega)$. Then

$$[z \cdot \nu^{\Omega}](x) = z(x) \cdot \nu^{\Omega}(x)$$
 \mathcal{H}^{N-1} a.e. on $\partial \Omega$.

2.3 Some auxiliary results

Let Ω be an open bounded subset of \mathbb{R}^N with Lipschitz boundary, and let $\varphi \in L^1(\Omega)$. For all $\epsilon > 0$, we let $\Psi^{\varepsilon}_{\varphi} : L^2(\Omega) \to (-\infty, +\infty]$ be the functional defined by

$$\Psi_{\varphi}^{\epsilon}(u) := \begin{cases}
\int_{\Omega} \sqrt{\epsilon^{2} + |Du|} + \int_{\partial\Omega} |u - \varphi| & \text{if } u \in L^{2}(\Omega) \cap BV(\Omega) \\
+\infty & \text{if } u \in L^{2}(\Omega) \setminus BV(\Omega).
\end{cases} (6)$$

As it is proved in [14], if $f \in W^{1,\infty}(\Omega)$, then the minimum $u \in BV(\Omega)$ of the functional

$$\Psi_{\varphi}^{\epsilon}(u) + \int_{\Omega} |u(x) - f(x)|^2 dx \tag{7}$$

belongs to $u \in C^{2+\alpha}(\Omega)$, for every $\alpha < 1$. The minimum u of (7) is a solution of

$$\begin{cases} u - \frac{1}{\lambda} \operatorname{div} \frac{Du}{\sqrt{\varepsilon^2 + |Du|^2}} = f(x) & \text{in } \Omega \\ u = \varphi & \text{on } \partial\Omega \end{cases}$$
(8)

where the boundary condition is taken in a generalized sense [18], i.e.,

$$\left[\frac{Du}{\sqrt{\varepsilon^2 + |Du|^2}} \cdot \nu^{\Omega}\right] \in \operatorname{sign}(\varphi - u) \qquad \mathcal{H}^{N-1} \text{ a.e. on } \partial\Omega.$$

Observe that (8) can be written as

$$u + \frac{1}{\lambda} \partial \Psi_{\varphi}^{\epsilon}(u) \ni f. \tag{9}$$

We are particularly interested in the case where $\varphi=0$. As we shall show below (see also [2]) in the case of interest to us we have u>0 on $\partial\Omega$ and, thus, $\left[\frac{Du}{\sqrt{\varepsilon^2+|Du|^2}}\cdot\nu^\Omega\right]=-1$ \mathcal{H}^{N-1} a.e. on $\partial\Omega$. It follows that u is a solution of the first equation in (8) with vertical contact angle at the boundary.

As $\epsilon \to 0^+$, the solution u_{ϵ} of (8) converges to the solution of

$$\begin{cases} u + \frac{1}{\lambda} \partial \Psi_{\varphi}(u) = f(x) & \text{in } \Omega \\ u = \varphi & \text{on } \partial \Omega. \end{cases}$$
 (10)

where $\Psi: L^2(\Omega) \to (-\infty, +\infty]$ is given by

$$\Psi_{\varphi}(u) := \begin{cases}
\int_{\mathbb{R}^N} |Du| + \int_{\partial\Omega} |u - \varphi| & \text{if } u \in L^2(\Omega) \cap BV(\Omega) \\
+\infty & \text{if } u \in L^2(\Omega) \setminus BV(\Omega).
\end{cases} \tag{11}$$

In this case $\partial \Psi_{\varphi}$ represents the operator -div(Du/|Du|) with the boundary condition $u = \varphi$ in $\partial \Omega$, and this connection is precisely given by the following Lemma (see [5]).

Lemma 2.1. The following assertions are equivalent:

(a) $v \in \partial \Psi_{\varphi}(u)$;

(b) $u \in L^2(\Omega) \cap BV(\Omega)$, $v \in L^2(\Omega)$, and there exists $z \in X_2(\Omega)$ with $||z||_{\infty} \leq 1$, such that

$$v = -\operatorname{div} z$$
 in $\mathcal{D}'(\Omega)$,

$$(z \cdot Du) = |Du|,$$

and

$$[z \cdot \nu^{\Omega}] \in \text{sign}(\varphi - u)$$
 \mathcal{H}^{N-1} a.e. on $\partial \Omega$.

Notice that the solution $u \in L^2(\Omega)$ of (10) minimizes the problem

$$\min_{u \in BV(\Omega)} \int_{\Omega} |Du| + \int_{\partial \Omega} |u(x) - \varphi(x)| d\mathcal{H}^{N-1}(x) + \frac{\lambda}{2} \int_{\Omega} |u(x) - f(x)|^2 dx, \qquad (12)$$

and the two problems are equivalent.

3 The uniqueness theorem

We now state our main result.

Theorem 3. Let C be a convex body in \mathbb{R}^N . Assume that C is uniformly convex, with boundary of class C^2 . Then the Cheeger set of C is convex and unique.

We do not believe that the C^2 assumption is essential for this result, although we could not remove it. Removing the assumption of uniform convexity is probably more tricky. Let us recall the following result proved in [2] (Theorems 6 and 8 and Proposition 4).

Theorem 4. Let C be a convex body in \mathbb{R}^N with boundary of class $C^{1,1}$. For any $\lambda, \varepsilon > 0$, there is a unique solution u_{ε} of the equation:

$$\begin{cases} u_{\varepsilon} - \frac{1}{\lambda} \operatorname{div} \frac{Du_{\varepsilon}}{\sqrt{\varepsilon^{2} + |Du_{\varepsilon}|^{2}}} = 1 & \text{in } C \\ u_{\varepsilon} = 0 & \text{on } \partial C, \end{cases}$$
(13)

such that $0 \le u_{\varepsilon} \le 1$. Moreover, there exist λ_0 and ε_0 , depending only on ∂C , such that if $\lambda \ge \lambda_0$ and $\varepsilon \le \varepsilon_0$, then u_{ε} is a concave function such that $u_{\varepsilon} \ge \alpha > 0$ on ∂C for some $\alpha > 0$. Hence, u_{ε} satisfies

$$\left[\frac{Du^{\epsilon}}{\sqrt{\epsilon^2 + |Du^{\epsilon}|^2}} \cdot \nu^C\right] = \operatorname{sign}(0 - u^{\epsilon}) = -1 \quad on \ \partial C.$$
 (14)

As $\varepsilon \to 0$, the functions u_{ε} converge to the concave function u which minimizes the problem

$$\min_{u \in BV(C)} \int_{C} |Du| + \int_{\partial C} |u(x)| d\mathcal{H}^{N-1}(x) + \frac{\lambda}{2} \int_{C} |u(x) - 1|^{2} dx$$
 (15)

or, equivalently, if u is extended with zero out of C, u minimizes

$$\int_{\mathbb{R}^N} |Du| + \frac{\lambda}{2} \int_{\mathbb{R}^N} |u - \chi_C|^2 dx.$$

The function u satisfies $0 \le u < 1$. Moreover, the level set $\{u \ge t\}$, $t \in (0,1]$, is contained in C and minimizes the problem

$$\min_{F \subset C} P(F) - \lambda (1 - t)|F|. \tag{16}$$

It was proved in [2] (see also [11]) that the set $C^* = \{u = \max_C u\}$ is the maximal Cheeger set contained in C, that is, the maximal set that solves (1). Moreover, one has $u = 1 - h_C/\lambda > 0$ in C^* and $h_C = \lambda_{C^*}$.

If we want to consider what happens inside C^* and, in particular, if there are other Cheeger sets, we have to analyze the level sets of u_{ε} before passing to the limit as $\epsilon \to 0^+$. In order to do this, let us introduce the following rescaling of u_{ε} :

$$v_{\varepsilon} = \frac{u_{\varepsilon} - m_{\varepsilon}}{\varepsilon} \le 0,$$

where $m_{\varepsilon} = \max_{C} u_{\varepsilon} \to 1 - h_{C}/\lambda$ as $\varepsilon \to 0$. The function v_{ε} is a generalized solution of the equation:

$$\begin{cases} \varepsilon v_{\varepsilon} - \frac{1}{\lambda} \operatorname{div} \frac{D v_{\varepsilon}}{\sqrt{1 + |D v_{\varepsilon}|^{2}}} = 1 - m_{\varepsilon} & \text{in } C \\ v_{\varepsilon} = -m_{\varepsilon}/\varepsilon & \text{on } \partial C. \end{cases}$$
(17)

We let $z_{\varepsilon} = Du_{\varepsilon}/\sqrt{\varepsilon^2 + |Du_{\varepsilon}|^2} = Dv_{\varepsilon}/\sqrt{1 + |Dv_{\varepsilon}|^2}$. Notice that z_{ε} is a vector field in $L^{\infty}(C)$, with uniformly bounded divergence, such that $|z_{\varepsilon}| \leq 1$ a.e. in C and, by (14), $|z_{\varepsilon}| \cdot \nu_C = -1$ on ∂C .

Let us study the limit of v_{ε} and z_{ε} as $\varepsilon \to 0$. Let us observe that, for each $\varepsilon > 0$ small enough and each $s \in (0, |C|)$, there is a (convex) superlevel set C_s^{ε} of v_{ε} such that $|C_s^{\varepsilon}| = s$ for $s \in (0, |C|)$. First we observe that $\{v_{\varepsilon} = 0\}$ is a null set. Otherwise, since v_{ε} is concave, it would be a convex set of positive measure, and it would have a nonempty interior. We would have that $v_{\varepsilon} = \text{div } z_{\varepsilon} = 0$, hence $1 - m_{\varepsilon} = 0$ in the interior of $\{v_{\varepsilon} = 0\}$. This is a contradiction with Theorem 4 for $\varepsilon > 0$ small enough. Hence we may take $C_0^{\varepsilon} := \{v_{\varepsilon} = 0\}$.

Now, the concavity of v^{ε} guarantees the existence of the foliation C_s^{ε} made of superlevel sets of v^{ε} such that $|C_s^{\varepsilon}| = s$ for $s \in (0, |C|)$.

We observe that a sequence of uniformly bounded convex sets is compact both for the L^1 and Hausdorff topologies. Hence, up to a subsequence, we may assume that C_s^{ε} converge to convex sets C_s , each of volume s, first for any $s \in \mathbb{Q} \cap (0, |C|)$ and then by continuity for any s. Possibly extracting a further subsequence, we may assume that there exists $s_* \in [0, |C|]$ such that v_{ε} goes to a concave function v in C_s for any $s < s_*$, and to $-\infty$ outside $C_* := C_{s_*}$. We may also assume that $z_{\varepsilon} \rightharpoonup z$ weakly* in $L^{\infty}(C)$, for some vector field z, satisfying $|z| \leq 1$ a.e. in C. From (13) we have in the limit

$$-\operatorname{div} z = \lambda(1-u) \quad \text{in } \mathcal{D}'(C). \tag{18}$$

Moreover, by the results recalled in Section 2, it holds $-\text{div }z \in \partial \Psi_0(u)$. We see from (18) that

$$-\operatorname{div} z = h_C \qquad \text{in } C^*, \tag{19}$$

while $-\operatorname{div} z > h_C$ a.e. on $C \setminus C^*$. We let $s^* := |C^*|$, so that $C^* = C_{s^*}$. By Theorem 4, for $s \geq s^*$, the set C_s is a minimizer of $P(E) - \mu_s |E|$ among all $E \subseteq C$, for some $\mu_s \geq h_C$ which is equal to the constant value of $-\operatorname{div} z$ on $\partial C_s \cap C$, and is bounded by P(C)/(|C| - s). For $s > s^*$, we have $\mu_s > h_C$ and the set C_s is the unique minimizer of the variational problem. As a consequence (see [2, 11]) for any $s > s^*$ the set C_s is also the unique minimizer of P(E) among all $E \subseteq C$ of volume s.

Lemma 3.1. We have $s_* > 0$ and the sets C_s are Cheeger sets in C for any $s \in [s_*, s^*]$.

Proof. Let $s_* < s \le |C|$. If $x \in \partial C_s^{\epsilon} \setminus \partial C$, then

$$0 - v_{\varepsilon}(x) < Dv_{\varepsilon}(x) \cdot (\bar{x}_{\varepsilon} - x)$$

where $v_{\varepsilon}(\bar{x}_{\varepsilon}) = \max_{C} v_{\varepsilon}$. Hence, $\lim_{\varepsilon \to 0} \inf_{\partial C_s^{\varepsilon} \setminus \partial C} |Dv_{\varepsilon}| = +\infty$. Since $[z_{\varepsilon} \cdot \nu^{C}] = -1$ on ∂C and $P(C_s^{\varepsilon}) \to P(C_s)$, we deduce

$$-\int_{\partial C_s^{\varepsilon}} [z_{\varepsilon}(x) \cdot \nu^{C_s^{\varepsilon}}(x)] d\mathcal{H}^{N-1}(x)$$

$$= \int_{\partial C_s^{\varepsilon} \setminus \partial C} \frac{|Dv_{\varepsilon}(x)|}{\sqrt{1 + |Dv_{\varepsilon}(x)|^2}} d\mathcal{H}^{N-1}(x) + \mathcal{H}^{N-1}(\partial C_s^{\varepsilon} \cap \partial C) \to P(C_s)$$

as $\varepsilon \to 0^+$. Hence,

$$\int_{\partial C_s} \left[z \cdot \nu^{C_s} \right] d\mathcal{H}^{N-1} = \int_{C_s} \operatorname{div} z = \lim_{\varepsilon \to 0} \int_{C_s^{\varepsilon}} \operatorname{div} z_{\varepsilon}
= \lim_{\varepsilon \to 0} \int_{\partial C_s^{\varepsilon}} \left[z_{\varepsilon} \cdot \nu_{C_s^{\varepsilon}} \right] d\mathcal{H}^{N-1} = -P(C_s).$$

Since $|z| \leq 1$ a.e. in C, we deduce that $[z \cdot \nu^{C_s}] = -1$ on ∂C_s for any $s > s_*$ (in particular, we have |z| = 1 a.e. in $C \setminus C_*$). Using this and (19), for all $s_* < s \leq s^*$ we have

$$\frac{P(C_s)}{|C_s|} = h_C. \tag{20}$$

This has two consequences. First, from the isoperimetric inequality, we obtain

$$h_C = \frac{P(C_s)}{|C_s|} \ge \frac{P(B_1)}{|B_1|^{\frac{N-1}{N}} s^{\frac{1}{N}}},$$

if $s \in (s_*, s^*]$, so that $s_* > 0$. Moreover, C_s is a Cheeger set for any $s \in (s_*, s^*]$, and by continuity C_* is also a Cheeger set.

We point out that, since the sets C_s are convex minimizers of $P(E) - \mu_s |E|$ among all $E \subseteq C$, for $s \ge s_*$, their boundary is of class $C^{1,1}$ [9, 19], with curvature less than or equal to μ_s , and equal to μ_s in the interior of C (note that $\mu_s = h_C$ for $s \in [s_*, s^*]$).

Remark 3.2. Observe that we have either $s_* = s^*$ and therefore $C_* = C^*$, or $s_* < s^*$, and we have $C^* = \bigcup_{s \in (s_*, s^*)} C_s$. In this case, the supremum of the total curvature of ∂C^* is equal to h_C . Indeed, if it were not the case, by considering $C' \subset \operatorname{int}(C^*)$, with curvature strictly below h_C , and the smallest set C_s , with $s > s_*$, which contains C', we would have $\kappa_{C'}(x) \ge \kappa_{C_s}(x) = h_C$ at all $x \in \partial C' \cap \partial C_s$, a contradiction. In particular, if the supremum of the total curvature of ∂C is strictly less than P(C)/|C| (which implies $C = C^*$ by [2]) then $C = C_*$.

From the strong convergence of Dv_{ε} to Dv (in $L^{2}(C_{s})$ for any $s < s_{*}$), we deduce that $z = \frac{Dv}{\sqrt{1+|Dv|^{2}}}$ in C_{*} . It follows that v satisfies the equation

$$-\operatorname{div}\frac{Dv}{\sqrt{1+|Dv|^2}} = h_C \quad \text{in } C_*. \tag{21}$$

Integrating both terms of (21) in C_* , we deduce that

$$\left[\frac{Dv}{\sqrt{1+|Dv|^2}} \cdot \nu^{C_*}\right] = -1 \quad \text{on } \partial C_*.$$

Lemma 3.3. The set C_* is the minimal Cheeger set of C, i.e., any other Cheeger set of C must contain C_* .

Proof. Let $K \subseteq C^*$ be a Cheeger set in C. We have

$$h_C|K| = -\int_K \operatorname{div} z = -\int_{\partial K} [z \cdot \nu^K] d\mathcal{H}^{N-1} = P(K)$$

so that $[z \cdot \nu^K] = -1$ a.e. on ∂K . Let ν^{ϵ} and ν be the vector fields of unit normals to the sets C_s^{ϵ} and C_s , $s \in [0, |C|]$, respectively. Observe that, by the Hausdorff convergence of C_s^{ϵ} to C_s as $\epsilon \to 0^+$ for any $s \in [0, |C|]$, we have that $\nu^{\epsilon} \to \nu$ a.e. in C. On the other hand, $|z_{\epsilon} + \nu^{\epsilon}| \to 0$ locally uniformly in $C \setminus \overline{C_s}$ because of the definition of z^{ϵ} and the fact that $|Dv_{\epsilon}| \to \infty$ outside C_s . Both things imply that $z = -\nu$ a.e. on $C \setminus C_s$. By modifying z in a set of null measure, we may assume that $z = -\nu$ on $C \setminus C_s$. We recall that the sets C_s , $s \geq s_*$ are minimizers of variational problems of the form $\min_{K \subseteq C} P(K) - \mu |K|$, for some values of μ (with $\mu = h_C$ as long as $s \leq s^*$ and $\mu > h_C$ continuously increasing with $s \geq s^*$). Since these sets are convex, with boundary (locally) uniformly of class $C^{1,1}$, and

the map $s \to C_s$ is continuous in the Hausdorff topology, we obtain that the normal $\nu(x)$ is a continuous function in $C \setminus \operatorname{int}(C_*)$.

Since |z| < 1 inside C_* and $[z \cdot \nu^K] = -1$ a.e. on ∂K , by [6, Theorem 1]) we have that the boundary of K must be outside the interior of C_* , hence either $K \supseteq C_*$ or $K \cap C_* = \emptyset$ (modulo a null set). Let us prove that the last situation is impossible. Indeed, assume that $K \cap C_* = \emptyset$ (modulo a null set). Since ∂K is of class C^1 out of a closed set of zero \mathcal{H}^{N-1} -measure (see [15]) and z is continuous in $C \setminus \operatorname{int}(C_*)$, by Theorem 2 we have

$$z(x) \cdot \nu^K(x) = -1$$
 \mathcal{H}^{N-1} -a.e. on ∂K . (22)

Now, since $K \cap C_* = \emptyset$ (modulo a null set), then there is some $s \geq s_*$ and some $x \in \partial C_s \cap \partial K$ such that $\nu^K(x) + \nu(x) = 0$. Fix $0 < \epsilon < 2$. By a slight perturbation, if necessary, we may assume that $x \in \partial C_s \cap \partial K$ with $s > s_*$, (22) holds at x and

$$|\nu^K(x) + \nu(x)| < \epsilon. \tag{23}$$

Since by (22) we have $\nu(x) = -z(x) = \nu^K(x)$ we obtain a contradiction with (23). We deduce that $K \supseteq C_*$.

Therefore, in order to prove uniqueness of the Cheeger sets of C, it is enough to show that

$$C_* = C^*. (24)$$

Recall that the boundary of both C_* and C^* is of class $C^{1,1}$, and the sum of its principal curvatures is less than or equal h_C , and constantly equal to h_C in the interior of C. We now show that if $C_* \neq C^*$ and under additional assumptions, the sum of the principal curvatures of the boundary of C^* (or of any C_s for $s \in (s_*, s^*]$) must be h_C out of C_* .

Lemma 3.4. Assume that C has C^2 boundary. Let $s \in (s_*, s^*]$ and $x \in \partial C_s \setminus \partial C_*$. If the sum of the principal curvatures of ∂C_s at x is strictly below h_C , then the Gaussian curvature of ∂C at x is θ .

Proof. Let $x \in \partial C_s \setminus \partial C_*$ and assume the sum of the principal curvatures of ∂C_s at x is strictly below h_C (assuming x is a Lebesgue point for the curvature on ∂C_s). Necessarily, this implies that $x \in \partial C$. Assume then that the Gauss curvature of ∂C at x is positive: by continuity, in a neighborhood of x, C is uniformly convex and the sum of the principal curvatures is less than h_C . We may assume that near x, ∂C is the graph of a non-negative, C^2 and convex function $f: B \to \mathbb{R}$ where B is an (N-1)-dimensional ball centered at x, while ∂C_s is the graph of $f_s: B \to \mathbb{R}$, which is $C^{1,1}$ [9, 19], and also nonnegative and convex. In B, we have $f_s \geq f \geq 0$, and

$$D^2 f \ge \alpha I$$
 and div $\frac{Df}{\sqrt{1+|Df|^2}} = h$

with $h \in C^0(\overline{B})$, $h < h_C$, $\alpha > 0$, while

$$\operatorname{div} \frac{Df_s}{\sqrt{1 + |Df_s|^2}} = h\chi_{\{f = f_s\}} + h_C\chi_{\{f_s > f\}}$$

(where $\chi_{\{f=f_s\}}$ has positive density at x).

We let $g = f_s - f \ge 0$. Introducing now the Lagrangian $\Psi : \mathbb{R}^{N-1} \to [0, +\infty)$ given by $\Psi(p) = \sqrt{1 + |p|^2}$, we have that for a.e. $y \in B$

$$(h_C - h(y))\chi_{\{g>0\}}(y) = \operatorname{div} (D\Psi(Df_s(y)) - D\Psi(Df(y)))$$

= $\operatorname{div} \left(\left(\int_0^1 D^2 \Psi(Df(y) + t(Df_s(y) - Df(y))) dt \right) Dg(y) \right)$

so that, letting $A(y) := \int_0^1 D^2 \Psi(Df(y) + tDg(y)) dt$ (which is a positive definite matrix and Lipschitz continuous inside B), we see that g is the minimizer of

$$\int_{B} A(y)Dg(y) \cdot Dg(y) + (h_C - h(y))g(y) dy$$

under the constraint $g \geq 0$ and with boundary condition $g = f_s - f$ on ∂B . Adapting the results in [10] we get that $\{f = f_s\} = \{g = 0\}$ is the closure of a nonempty open set with boundary of zero \mathcal{H}^{N-1} -measure, unless the problem is unconstrained, which would yield $h = h_C$ a.e., but we have assumed this is not the case.

We therefore have found an open subset $D \subset \partial C \cap \partial C_s$, disjoint from ∂C_* , on which C is uniformly convex, with curvature less than h_C . Letting now φ is a smooth, nonnegative function with compact support in D, one easily shows that if $\varepsilon > 0$ is small enough, $\partial C_s - \varepsilon \varphi \nu^{C_s}$ is a boundary of a set C'_ϵ which is still convex, with $P(C'_\epsilon)/|C'_\epsilon| > P(C_s)/|C_s| = h_C$ (just differentiate the map $\epsilon \to P(C'_\epsilon)/|C'_\epsilon|$), and the sum of its principal curvatures is less than h_C . This implies that for $\epsilon > 0$ small enough, the set $C' := C_\epsilon$ is calibrable [2], which in turn implies that $\min_{K \subset C'} P(K)/|K| = P(C')/|C'|$. But this contradicts $C_* \subset C'$, which is true if ε was chosen small enough.

Proof of Theorem 3. Assume that C is C^2 and uniformly convex. Let us prove that its Cheeger set is unique. Assume by contradiction that $C^* \neq C_*$. From Lemma 3.4 we have that the sum of the principal curvatures of ∂C^* is h_C outside of C_* .

Let now $\bar{x} \in \partial C^* \cap \partial C_*$ be such that $\partial C^* \cap B_{\rho}(\bar{x}) \neq \partial C_* \cap B_{\rho}(\bar{x})$ for all $\rho > 0$ $(\partial C^* \cap \partial C_* \neq \emptyset$ since otherwise both C^* and C_* would be balls, which is impossible). Letting T be the tangent hyperplane to ∂C^* at \bar{x} , we can write ∂C^* and ∂C_* as the graph of two positive convex functions v^* and v_* , respectively, over $T \cap B_{\rho}(\bar{x})$ for $\rho > 0$ small enough. Identifying $T \cap B_{\rho}(\bar{x})$ with $B_{\rho} \subset \mathbb{R}^{N-1}$, we have that $v_*, v^* : B_{\rho} \to \mathbb{R}$ both solve the equation

$$-\operatorname{div}\frac{Dv}{\sqrt{1+|Dv|^2}} = f, \tag{25}$$

for some function $f \in L^{\infty}(B_{\rho})$, moreover it holds $v_* \geq v^*$, $v_*(0) = v^*(0)$ and $v_*(y) > v^*(y)$ for some $y \in B_{\rho}$. Notice that $f = \lambda_C$ in the (open) set where $v_* > v^*$, in particular both functions are smooth in this set. Let D be an open ball such that $\overline{D} \subset B_{\rho}$, $v_* > v^*$ on D and $v_*(y) = v^*(y)$ for some $y \in \partial D$. Notice that, since both v^* and v_* belong to $C^{\infty}(D) \cap C^1(\overline{D})$, the fact that $v_*(y) = v^*(y)$ also implies that $Dv_*(y) = Dv^*(y)$. In D, both functions solve

(25) with $f = \lambda_C$. Letting now $w = v_* - v^*$, we have that w(y) = 0 and Dw(y) = 0, while w > 0 inside D. Recalling the function $\Psi(p) = \sqrt{1 + |p|^2}$, we have that for any $x \in D$

$$0 = \operatorname{div} (D\Psi(Dv_{*}(x)) - D\Psi(Dv^{*}(x)))$$
$$= \operatorname{div} \left(\left(\int_{0}^{1} D^{2}\Psi(Dv^{*}(x) + t(Dv_{*}(x) - Dv^{*}(x))) dt \right) Dw(x) \right)$$

so that w solves a linear, uniformly elliptic equation with smooth coefficients. Then Hopf's lemma [12] implies that $Dw(y) \cdot \nu_D(y) < 0$, a contradiction. Hence $C_* = C^*$.

Remark 3.5. Notice that, as a consequence of Theorem 3 and the results of Giusti [13], we get that if C is of class C^2 and uniformly convex, equation (21) has a solution on the whole of C, if and only if C is a Cheeger set of itself, i.e. if and only if the the sum of the principal curvatures of ∂C is less than or equal to P(C)/|C|.

Remark 3.6. The results of this paper can be easily extended to the anisotropic setting (see [11]) provided the anisotropy is smooth and uniformly elliptic.

Acknowledgement. The first author acknowledges partial support by the Departament d'Universitats, Recerca i Societat de la Informació de la Generalitat de Catalunya and by PNPGC project, reference BFM2003-02125.

References

- [1] F. Alter, V. Caselles, A. Chambolle, Evolution of Convex Sets in the Plane by the Minimizing Total Variation Flow. Interfaces and Free Boundaries 7, 29-53 (2005).
- [2] F. Alter, V. Caselles, A. Chambolle, A characterization of convex calibrable sets in \mathbb{R}^N . Math. Ann. **332**, 329-366 (2005).
- [3] L. Ambrosio, Corso introduttivo alla teoria geometrica della misura ed alle superfici minime. Scuola Normale Superiore, Pisa, 1997.
- [4] L. Ambrosio, N. Fusco, D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems. Oxford Mathematical Monographs, 2000.
- [5] F. Andreu, C. Ballester, V. Caselles, J.M. Mazón, The Dirichlet Problem for the Total Variation Flow. J. Funct. Anal. **180** (2001), 347-403.
- [6] G. Anzellotti, Pairings between measures and bounded functions and compensated compactness. Ann. Mat. Pura Appl. 135 (1983), 293-318.
- [7] G. Anzellotti, Traces of bounded vector fields and the divergence theorem. Unpublished preprint (1983).
- [8] G. Bellettini, V. Caselles, M. Novaga, The Total Variation Flow in \mathbb{R}^N . J. Differential Equations **184**, 475-525 (2002).

- [9] H. Brézis and D. Kinderlehrer, The smoothness of solutions to nonlinear variational inequalities. Indiana Univ. Math. J. 23, 831–844 (1973/74).
- [10] L.A. Caffarelli and N.M. Riviere, On the rectifiability of domains with finite perimeter. Ann. Scuola Normale Superiore di Pisa 3, 177-186 (1976).
- [11] V. Caselles, A. Chambolle, S. Moll and M. Novaga, A characterization of convex calibrable sets in \mathbb{R}^N with respect to anisotropic norms. Preprint 2005.
- [12] D. Gilbarg and N.S. Trudinger, Elliptic partial Differential Equations of Second Order, Springer Verlag, 1998.
- [13] E. Giusti, On the equation of surfaces of prescribed mean curvature. Existence and uniqueness without boundary conditions. Invent. Math. 46, 111-137 (1978).
- [14] E. Giusti, Boundary Value Problems for Non-Parametric Surfaces of Prescribed Mean Curvature. Ann. Sc. Norm. Sup. Pisa (4) 3, 501-548 (1976).
- [15] E. Gonzalez, U. Massari, and I. Tamanini, On the regularity of sets minimizing perimeter with a volume constraint. Indiana Univ. Math. Journal, **32**, 25-37 (1983).
- [16] B. Kawohl, V. Fridman, Isoperimetric estimates for the first eigenvalue of the p-Laplace operator and the Cheeger constant. Comment. Math. Univ. Carolinae 44, 659-667 (2003).
- [17] B. Kawohl, T. Lachand-Robert, Characterization of Cheeger sets for convex subsets of the plane. Pacific J. Math., to appear.
- [18] A. Lichnewski, R. Temam, Pseudosolutions of the Time Dependent Minimal Surface Problem. J. Differential Equations 30 (1978), 340-364.
- [19] E. Stredulinsky, W.P. Ziemer, Area Minimizing Sets Subject to a Volume Constraint in a Convex Set. J. Geom. Anal. 7, 653-677 (1997).