Uniqueness of the Cheeger set of a convex body
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Abstract

We prove that if C C RY is of class C? and uniformly convex, then the Cheeger set
of C is unique. The Cheeger set of C' is the set which minimizes, inside C, the ratio
perimeter over volume.

1 Introduction

Given an nonempty open bounded subset Q of R, we call Cheeger constant of € the
quantity

(1)

where |K| denotes de N-dimensional volume of K and P(K) denotes the perimeter of K.
The minimum in (1) is taken over all nonempty sets of finite perimeter contained in Q. It
is well-known that the minimum in (1) is attained at a subset G of Q such that G touches
09 (otherwise we would diminish the quotient P(G)/|G| by dilating G). A Cheeger set of
2 is any set G C Q which minimizes (1). We say that  is Cheeger in itself if  minimizes
(1).
For any set of finite perimeter K in RY | let us denote
._ P(K)
Ak : K

Notice that for any Cheeger set G of 2, A\¢ = hg. Observe also that G is a Cheeger set of
Q if and only if G minimizes
min P(K) — Ag|K]|. (2)

We say that a set Q@ C RY is calibrable if  minimizes the problem

min P(K) — Aq|K]. (3)
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In particular, if G is a Cheeger set of €2, then G is calibrable. Thus, €2 is a Cheeger set of
itself if and only if is calibrable.

Finding the Cheeger sets of a given (2 is a difficult task. This task is simplified if €2 is a
convex set and N = 2. In that case, the Cheeger set in  is unique and is identified with
the set Qf @ B(0, R) where QF := {z € Q : dist(z,09) > R} is such that |Qf| = 7R?
and A®B:={a+b:ac A bec B}, A,B C R? [1, 17]. In this case, we see that the
Cheeger set of Q is convex. Moreover, a convex set {2 C R? is Cheeger in itself if and only
if maxzcan ka(z) < Aq where ko (z) denotes the curvature of 90 at the the point z. This
has been proved in [13, 8, 17] (see also [1]) though it was stated in terms of calibrability in
[8, 1]. The proof in [13] had also a complement result: if © is Cheeger in itself then € is
strictly calibrable, that is, for any set K C €2, K # €, then

0=P() — Al < P(K) — Aa|K],

and this implies that the capillary problem in absence of gravity (with vertical contact angle
at the boundary)

D
v —= | =xq inQ
V14 |Du|?

—$-I/Q:1 in 092

NEarTE
has a solution. Indeed, both problems are equivalent [13].

Our purpose in this paper is to extend the above result to RY, that is, to prove the
uniqueness and convexity of the Cheeger set contained in a set Q@ C RY which is uniformly
convex and of class C2. The characterization of a convex set  C RN of class Cb! which
is Cheeger in itself (also called calibrable) in terms of the mean curvature of its boundary
was proved in [2]. The precise result states that such a set €2 is Cheeger in itself if and only
if ka(z) < Aq for any = € 092 where kq(z) denotes the sum of the principal curvatures
(or total curvature) of the boundary of 2. Moreover, in |2|, the authors also proved that
for any convex set 8 C RY there exists a maximal Cheeger set contained in € which is
convex. These results were extended to convex sets {2 satisfying a regularity condition and
anisotropic norms in RY (including the crystalline case) in [11].

In particular, we obtain that Q C RY is the unique Cheeger set of itself, whenever Q
is a C?, uniformly convex calibrable set. We point out that, by Theorems 1.1 and 4.2 in
[13], this uniqueness result is equivalent to the existence of a solution u € VVI%)’COO(Q) of the
capillary problem (4).

Let us explain the plan of the paper. In Section 2 we collect some definitions and recall
some results about the mean curvature operator in (4) and the subdifferential of the total
variation. In Section 3 we state and prove the uniqueness result.



2 Preliminaries

2.1 BV functions

Let © be an open subset of RY. A function u € L'(Q2) whose gradient Du in the sense of
distributions is a (vector valued) Radon measure with finite total variation in 2 is called a
function of bounded variation. The class of such functions will be denoted by BV (). The
total variation of Du on 2 turns out to be

sup {/ udivz de: 2z € CP(Q;RY), 2]l o= () = esssup |z(x)] < 1} , (5)
Q €N
(where for a vector v = (v,...,vy) € RN we set [v]?> := Y, v?) and will be denoted by

|Du|(R) or by [, |Du|. The map u — |Du|(R) is Li (€2)-lower semicontinuous. BV (1) is a

Banach space when endowed with the norm [, |u| dz + |Du|(€2). We recall that BV (RY) C
LN/(N_I)(]RN).

A measurable set £ C RY is said to be of finite perimeter in RV if (5) is finite when
u is substituted with the characteristic function Xg of E and © = RV. The perimeter of
E is defined as P(E) := |Dxg|(RY). For results and informations on functions of bounded
variation we refer to [4].

Finally, let us denote by H¥~! the (N — 1)-dimensional Hausdorff measure. We recall
that when F is a finite-perimeter set with regular boundary (for instance, Lipschitz), its
perimeter P(E) also coincides with the more standard definition H¥~1(0FE).

2.2 A generalized Green’s formula
Let © be an open subset of RY . Following [6], let
X5(Q) :={z € L®(QRY) : div z € L?(Q)}.

If z € X2(Q) and w € L?(Q) N BV () we define the functional (z - Dw) : C§°(Q) — R by
the formula

< (z-Dw),p >::—/w<pdiv zdac—/wz-thdac.
Q Q

Then (z - Dw) is a Radon measure in Q,
/(z - Dw) = / z-Vwdz Yw € L2(Q) nwh(Q).
Q Q
Recall that the outer unit normal to a point € 9§ is denoted by v*}(z). We recall the

following result proved in [6].

Theorem 1. Let Q@ C RY be a bounded open set with Lipschitz boundary. Let z €
L®(Q;RY) with div z € L?(Q). Then there exists a function [z - VY] € L®(09Q) satisfy-
ing ||[z - v Lo (a0) < |21 oo (rNY, and such that for any u € BV ()N L?(Q) we have

/ u div z dm—l—/(z-Du) =/ [z vu dHN 1.
Q Q N
Moreover, if ¢ € CH(Q) then [(¢z) - v = ¢[z - V1.



This result is complemented with the following result proved by Anzellotti in [7].

Theorem 2. Let Q C RN be a bounded open set with a boundary of class C'. Let z €
C(;RY) with div z € L?(Q). Then

[z - v9Y(z) = 2(z) - v(x) HN~! a.e. on 0.

2.3 Some auxiliary results

Let © be an open bounded subset of RY with Lipschitz boundary, and let ¢ € L'(9). For
all € > 0, we let ¢, : L*(2) — (—o0,+00] be the functional defined by

/ €2 + | Du| —I—/ lu—| if weL*Q)NBV(Q)
— Q 0N

\Ilfp(u) =

(6)
+00 if uweL?(Q)\BV(Q).

As it is proved in [14], if f € W1%°(Q), then the minimum u € BV (Q) of the functional

W)+ [ fule) = f(o) da (7
belongs to u € C?T%(Q), for every a < 1. The mimimum u of (7) is a solution of
1 Du
w—tdiv——"% = fz) mQ
A \/e2+ |Dul? ) (8)
U = @ on 01}

where the boundary condition is taken in a generalized sense 18], i.e.,

Du

Ve% + |Dul? .

Observe that (8) can be written as

I/Q] € sign(p — u) HN=! a.e. on 0.

1

u—l—)\

oV (u) > f. (9)

We are particularly interested in the case where ¢ = 0. As we shall show below (see also

[2]) in the case of interest to us we have u > 0 on 99 and, thus, [i . UQ] = -1

e+ Dul?
HN=! ae. on 00. Tt follows that u is a solution of the first equation in (8) with vertical

contact angle at the boundary.
As € — 0T, the solution u of (8) converges to the solution of

1 .
u+ X(‘)\If(p(u) = f(z) nQ (10)
U = @ on 0.



where ¥ : L2(Q) — (—o0, +00] is given by

/ | Dul —I—/ lu — o if uweL?(Q)NBV(Q)
R¥ o0

Uy (u) := (11)

+00 if ueLQ)\BV(Q).

In this case 0¥, represents the operator —div (Du/|Du|) with the boundary condition u = ¢
in 09, and this connection is precisely given by the following Lemma (see [5]).

Lemma 2.1. The following assertions are equivalent:
(a) v € OV, (u);
(b) uwe L2(Q)NBV(Q), v € L2(Q), and there ezists z € X2(Q) with ||z]lco < 1, such that
v=—divz in D'(Q),

(2 - Du) = | Dul,

and
[z - %] € sign(yp — u) HN=! ae. on 0.

Notice that the solution u € L?(£2) of (10) minimizes the problem

. N-1 A 2
min /Q|Du| + /aQ |lu(z) — @(x)| dH (x) + §/Q|u(m) — f(2)|* dx, (12)

ueBV(Q)

and the two problems are equivalent.

3 The uniqueness theorem

We now state our main result.

Theorem 3. Let C be a convex body in RN . Assume that C is uniformly convez, with
boundary of class C?. Then the Cheeger set of C is conver and unique.

We do not believe that the C? assumption is essential for this result, although we could
not remove it. Removing the assumption of uniform convexity is probably more tricky. Let
us recall the following result proved in [2] (Theorems 6 and 8 and Proposition 4).

Theorem 4. Let C be a convez body in RN with boundary of class C1''. For any A, e > 0,
there is a unique solution u. of the equation:

1 D
Us — —div$ =1 nC

A /€2 + |Du.|? (13)
ue = 0 on 0C,



such that 0 < u. < 1. Moreover, there exist Ay and €y, depending only on OC, such that if
A > X and € < gg, then u. is a concave function such that ue > a > 0 on 9C for some
a > 0. Hence, u. satisfies

Du¢
V€ + |Duf|?

As e — 0, the functions us converge to the concave function u which minimizes the problem

I/c] =sign(0 —u®) = -1 on 9C. (14)

. N-1 A 2
min /C|Du| +/ )| dHY (@) + §/C|u(:1:)—l\ dx (15)

u€BV(C) aC

or, equivalently, if u is extended with zero out of C, u minimizes

A
/ |Du| + 5/ lu — xc|? de.
RN RN

The function u satisfies 0 < u < 1. Moreover, the level set {u > t}, t € (0,1], is contained
in C' and minimizes the problem
in P(F) — A(1—1t)|F|. 16
min P(F) = A(1 - t)|F| (16)

It was proved in [2]| (see also [11]) that the set C* = {u = maxcu} is the maximal
Cheeger set contained in C, that is, the maximal set that solves (1). Moreover, one has
UZl—hc/A>0in C* and hg = A¢+.

If we want to consider what happens inside C* and, in particular, if there are other
Cheeger sets, we have to analize the level sets of u, before passing to the limit as e — 0.
In order to do this, let us introduce the following rescaling of u,:

ve = LT Me o,
€

where m. = max¢ue — 1 —hg /X as € — 0. The function v, is a generalized solution of the

equation:
1 D,
ey — —div——ee-—- = 1-m, inC
© N 1+ [DuP? © (17)
Ve = —m/e on OC.

We let ze = Duc/+/€? + |Duc|?> = Dv./+/1+ |Dv:|?. Notice that z. is a vector field in
L>(C), with uniformly bounded divergence, such that |z.| < 1 a.e. in C and, by (14),
[z - v¢] = —1 on OC.

Let us study the limit of v, and z. as € — 0. Let us observe that, for each £ > 0 small
enough and each s € (0,|C|), there is a (convex) superlevel set C of v, such that |C| = s
for s € (0,|C|). First we observe that {v. = 0} is a null set. Otherwise, since v is concave,
it would be a convex set of positive measure, and it would have a nonempty interior. We
would have that v, = divz. = 0, hence 1 — m, = 0 in the interior of {v. = 0}. This is a
contradiction with Theorem 4 for ¢ > 0 small enough. Hence we may take C§ := {v. = 0}.



Now, the concavity of v® guarantees the existence of the foliation C§ made of superlevel sets
of v¢ such that |C¢| = s for s € (0, |C|).

We observe that a sequence of uniformly bounded convex sets is compact both for the
L' and Hausdorff topologies. Hence, up to a subsequence, we may assume that C¢ converge
to convex sets Cjs, each of volume s, first for any s € QN (0,|C|) and then by continuity
for any s. Possibly extracting a further subsequence, we may assume that there exists
sx« € [0,]|C|] such that v, goes to a concave function v in Cs for any s < sy, and to —oo
outside C, := Cs,. We may also assume that z. — z weakly* in L*°(C), for some vector
field z, satisfying |z| <1 a.e. in C. From (13) we have in the limit

—divz = A(1—wu) in D'(C). (18)

Moreover, by the results recalled in Section 2, it holds —div z € 0¥g(u). We see from (18)
that
—divz = he in C*, (19)

while —divz > h¢ a.e. on C'\ C*. We let s* := |C*|, so that C* = Cs+. By Theorem 4, for
s > s*, the set Cy is a minimizer of P(F) — us|E| among all E C C, for some ps > he which
is equal to the constant value of —div z on dCs; N C, and is bounded by P(C)/(|C|—s). For
s > s*, we have ug > heo and the set C; is the unique minimizer of the variational problem.
As a consequence (see |2, 11]) for any s > s* the set Cj is also the unique minimizer of P(F)
among all £ C C of volume s.

Lemma 3.1. We have s, > 0 and the sets Cs are Cheeger sets in C for any s € [s, s*].
Proof. Let s, < s <|C|. If z € 9C¢\ 0C, then
0—ve(z) < Dvg(x)- (T — )

where v.(Z.) = maxc v.. Hence, lim,_,g infyce\ac |Dv,.| = +o0. Since [z - v¢] = —1 on 0C
and P(C¢) — P(Cy), we deduce

_ / (2 () - v (2)] MY~ (2)
ace

D
_ / Doel@)l g1 4 5N¥1(805 0 0C) — P(Cy)
acs\oc /1 + [Duve(z)[2

as € — 07. Hence,

/ [2-v%] dHNT! = / divz = lim [ divz
acs : e—0 C.E
== i . e N-1 - — .
= ;1_13(1) e [2 - vee] dH P(Cs)
Since |z| < 1 a.e. in C, we deduce that [z . I/Cs] = —1 on 0C; for any s > s, (in particular,
we have |z| =1 a.e. in C'\ C,). Using this and (19), for all s, < s < s* we have
P(Cs)
= hc. 20
TeA c (20)



This has two consequences. First, from the isoperimetric inequality, we obtain

ho = P(Cs) > PSVBil)

1 bl

|CS| B |B1|T

L
N

if s € (s4,s*], so that s, > 0. Moreover, C; is a Cheeger set for any s € (s, s*], and by
continuity C is also a Cheeger set. O

We point out that, since the sets Cy are convex minimizers of P(E) — us|E| among all
E C O, for s > s,, their boundary is of class C1! [9, 19], with curvature less than or equal
to ws, and equal to ps in the interior of C (note that ps = he for s € [sy, s¥]).

Remark 3.2. Observe that we have either s, = s* and therefore C, = C*, or s, < s*, and
we have C* = ye(s, 5
equal to heo. Indeed, if it were not the case, by considering C’ C int(C*), with curvature

“) Cs. In this case, the supremum of the total curvature of 0C* is

strictly below h¢, and the smallest set Cs, with s > s,, which contains C’, we would have
ke (z) > ke, (z) = he at all z € 9C' N OCs, a contradiction. In particular, if the supremum
of the total curvature of 0C is strictly less than P(C)/|C| (which implies C = C* by [2])
then C' = C,.

From the strong convergence of Dv, to Dv (in L?(C;) for any s < s,), we deduce that

2= —L% _in C,. It follows that v satisfies the equation
V/1T+DoP 4
v

D
—div————— = h¢ inC,. (21)

1+ |Dv]?

Integrating both terms of (21) in C,, we deduce that

Dv
V14 |Dvl|?

Lemma 3.3. The set C, is the minimal Cheeger set of C, i.e., any other Cheeger set of C

I/C*] = -1 on 0C,.

must contain C,.

Proof. Let K C C* be a Cheeger set in C. We have

holK| = —/Kdivz == [ M@t = Px)

K] = —1 a.e. on OK. Let v¢ and v be the vector fields of unit normals to the

so that [z - v
sets C¢ and Cs, s € [0,|C|], respectively. Observe that, by the Hausdorff convergence of C¢
to Cs as e — 0T for any s € [0,|C|], we have that v — v a.e. in C. On the other hand,
|ze + v¢| = 0 locally uniformly in C'\ C, because of the definition of 2¢ and the fact that
|Dve| — oo outside Cy. Both things imply that z = —v a.e. on C \ C,. By modifying z
in a set of null measure, we may assume that z = —v on C \ C,. We recall that the sets
Cs, s > s, are minimizers of variational problems of the form mingcc P(K) — p|K|, for
some values of y (with g = h¢ as long as s < s* and g > he continuously increasing with
s > s*). Since these sets are convex, with boundary (locally) uniformly of class C1!, and



the map s — Cj is continuous in the Hausdorff topology, we obtain that the normal v(z) is
a continuous function in C'\ int(C,).

Since |z| < 1 inside Cy and [z -v%] = —1 a.e. on 0K, by [6, Theorem 1]) we have that
the boundary of K must be outside the interior of C,, hence either K O Cy, or KN C, = ()
(modulo a null set). Let us prove that the last situation is impossible. Indeed, assume
that K N C, = § (modulo a null set). Since dK is of class C! out of a closed set of zero
HN~l-measure (see [15]) and z is continuous in C'\ int(C,), by Theorem 2 we have

2(z) - vE(z) = -1 HN~1_ae. on OK. (22)

Now, since KNC\ = () (modulo a null set), then there is some s > s, and some z € dC;NIK
such that v (z) + v(z) = 0. Fix 0 < € < 2. By a slight perturbation, if necessary, we may
assume that x € 0Cs N 0K with s > s,, (22) holds at = and

W (z) +v(z)| < e (23)
Since by (22) we have v(z) = —z(z) = v¥(x) we obtain a contradiction with (23). We
deduce that K O C.. O

Therefore, in order to prove uniqueness of the Cheeger sets of C, it is enough to show
that
C. =C". (24)

Recall that the boundary of both C, and C* is of class C1!, and the sum of its principal
curvatures is less than or equal h¢, and constantly equal to he in the interior of C. We now
show that if C, # C* and under additional assumptions, the sum of the principal curvatures
of the boundary of C* (or of any Cs for s € (s, s*]) must be h¢ out of Ci.

Lemma 3.4. Assume that C has C? boundary. Let s € (s.,s*] and z € dCs \ C.. If the
sum of the principal curvatures of 0Cs at x is strictly below he, then the Gaussian curvature
of 8C at x is 0.

Proof. Let z € 0C; \ C, and assume the sum of the principal curvatures of 0C; at z is
strictly below h¢ (assuming z is a Lebesgue point for the curvature on 9C;). Necessarily,
this implies that x € dC. Assume then that the Gauss curvature of 9C at x is positive:
by continuity, in a neigborhood of z, C is uniformly convex and the sum of the principal
curvatures is less than hc. We may assume that near x, 0C is the graph of a non-negative,
C? and convex function f : B — R where B is an (N — 1)-dimensional ball centered at
x, while 9C is the graph of f, : B — R, which is C*! [9, 19], and also nonnegative and
convex. In B, we have fs > f > 0, and

D
D2 f > al and div—2l — —

V1+[Df[?
with h € C°(B), h < he, a > 0, while

. Dfs
div ——=—= = hXqs=r.} + hoxys.



(where x{s—y,} has positive density at z).
We let g = f; — f > 0. Introducing now the Lagrangian ¥ : R¥~1 — [0, +00) given by
U(p) = /1 + |p|?, we have that for a.e. y € B

(ho = h(y))xig>0(y) = div (DU(Dfs(y)) — DY(Df(y)))

= a ([ D201+ 401.0) - D) ) Dyto))

so that, letting A(y) := fol D2¥(Df(y) +tDg(y)) dt (which is a positive definite matrix and
Lipschitz continuous inside B), we see that g is the minimizer of

/B A(y)Dg(y) - Dg(y) + (he — h(y))g(y) dy

under the constraint g > 0 and with boundary condition g = f; — f on dB. Adapting the
results in [10] we get that {f = fs} = {g = 0} is the closure of a nonempty open set with
boundary of zero H™~'-measure, unless the problem is unconstrained, which would yield
h = h¢ a.e., but we have assumed this is not the case.

We therefore have found an open subset D C 9C N 9C, disjoint from 0C,, on which C
is uniformly convex, with curvature less than ho. Letting now ¢ is a smooth, nonnegative
function with compact support in D, one easily shows that if £ > 0 is small enough, dC; —
epvY is a boundary of a set C! which is still convex, with P(C!)/|C!| > P(Cs)/|Cs| = he
(just differentiate the map e — P(C!)/|C!|), and the sum of its principal curvatures is less
than h¢. This implies that for € > 0 small enough, the set C' := C, is calibrable [2], which
in turn implies that ming ¢ P(K)/|K| = P(C")/|C’|. But this contradicts C, C C’, which
is true if € was chosen small enough. O

Proof of Theorem 3. Assume that C is C? and uniformly convex. Let us prove that its
Cheeger set is unique. Assume by contradiction that C* # C,. From Lemma 3.4 we have
that the sum of the principal curvatures of dC* is h¢ outside of Ci.

Let now z € 9C* N 9C, be such that 0C* N B,(z) # 0C, N By(z) for all p > 0
(0C* N OC, # () since otherwise both C* and C, would be balls, which is impossible).
Letting T' be the tangent hyperplane to dC* at Z, we can write 0C* and JC; as the graph
of two positive convex functions v* and v,, respectively, over T' N B,(Z) for p > 0 small
enough. Identifying T N B,(z) with B, C RN~ we have that v, v* : B, — R both solve

the equation
D
Cdiv—22 = 7, (25)
1+ |Dvl?

for some function f € L*°(B,), moreover it holds v, > v*, v,(0) = v*(0) and v.(y) > v*(y)
for some y € B,. Notice that f = A¢ in the (open) set where v, > v*, in particular both
functions are smooth in this set. Let D be an open ball such that D C B,, vy > v* on D and
v.(y) = v*(y) for some y € OD. Notice that, since both v* and v, belong to C*°(D)NC (D),
the fact that v, (y) = v*(y) also implies that Dv,(y) = Dv*(y). In D, both functions solve

10



(25) with f = A¢. Letting now w = v, — v*, we have that w(y) = 0 and Dw(y) = 0, while
w > 0 inside D. Recalling the function ¥(p) = y/1 + |p|?, we have that for any z € D

0 = div (DU (Dvs(z)) — DU (Dv*(z)))
— div (( /0 102111(17@*(35) + t(Dv.(z) — Dv*(2))) dt) Dw(ac))

so that w solves a linear, uniformly elliptic equation with smooth coefficients. Then Hopf’s
lemma [12] implies that Dw(y) - vp(y) < 0, a contradiction. Hence C, = C*. O

Remark 3.5. Notice that, as a consequence of Theorem 3 and the results of Giusti [13],
we get that if C is of class C? and uniformly convex, equation (21) has a solution on the
whole of C, if and only if C' is a Cheeger set of itself, i.e. if and only if the the sum of the
principal curvatures of 9C is less than or equal to P(C)/|C]|.

Remark 3.6. The results of this paper can be easily extended to the anisotropic setting
(see [11]) provided the anisotropy is smooth and uniformly elliptic.
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