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Abstract

The aim of this paper is to study the isoperimetric problem with fixed volume inside

convex sets and other related geometric variational problems in the Gauss space, in both

the finite and infinite dimensional case. We first study the finite dimensional case, proving

the existence of a maximal Cheeger set which is convex inside any bounded convex set.

We also prove the uniqueness and convexity of solutions of the isoperimetric problem with

fixed volume inside any convex set. Then we extend these results in the context of the

abstract Wiener space, and for that we study the total variation denoising problem in

this context.
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1 Introduction

The study of Cheeger sets has recently attracted some attention due to its relevance in de-
scribing explicit solutions of the total variation denoising problem for initial data which are
characteristic functions of convex sets (or other more general cases).

Given a nonempty open bounded subset Ω of R
n, we call Cheeger constant of Ω the quantity

λΩ := min
F⊆Ω

P (F )

|F | . (1)

Here |F | denotes the n-dimensional volume of F and P (F ) the perimeter of F . The minimum
in (1) can be taken over all nonempty sets of finite perimeter contained in Ω. A Cheeger set
of Ω is any set G ⊆ Ω which minimizes (1).

Existence of Cheeger sets follows easily from the isoperimetric inequality (that guarantees
that the volume of sets in minimizing sequences does not converge to 0) and the lower semi-
continuity of the perimeter. The uniqueness of Cheeger sets is not true in general (a simple
counterexample is given in [26] when Ω is not convex), although it is true modulo a small
perturbation of Ω [17]. When Ω is convex, uniqueness is true, and when n = 2 an explicit
construction can be given [3, 26]. The uniqueness and convexity of the Cheeger set inside
bounded convex subsets of R

n was proved in [16] under the assumption that the set is uni-
formly convex and of class C2, and extended in [1] to the general case. If the ambient set
is convex, the C1,1-regularity of Cheeger sets is a consequence of the results in [23, 24, 30].
Moreover, a Cheeger set can be characterized in terms of the mean curvature of its boundary;
the sum of the principal curvatures being bounded by the Cheeger constant (see [22, 10, 26, 3]
for n = 2 and [2, 1] for the general case).

The study of Cheeger sets is facilitated by the study of the family of geometric variational
problems

min{P (F ) − µ|F | : F ⊆ Ω}. (2)

Indeed, the solutions of (2) can be related to the level sets of the solution of the total variation
denoising problem with Dirichlet boundary conditions

min

∫

Ω

|Du| +
∫

∂Ω

|u| dHn−1 +
λ

2

∫

Ω

(u − 1)2 dx. (3)

If u is the solution of (3), then for any t ∈ [0, 1], {u > t} is a solution of (2) µ = λ(1 − t)
and varying λ and t we can cover the whole range µ ∈ [0,∞). Then, when Ω is convex, the
convexity properties and uniqueness of solutions of (2) when µ is larger than the Cheeger
constant can be deduced from the properties of u. Moreover the maximal Cheeger set inside
Ω can be found as {u = max u} and it solves (2) with µ = λΩ.

Related to Cheeger sets is the notion of calibrability (see Definition 5). We show that a
set Ω ⊆ R

n is calibrable if and only if Ω minimizes the problem

min
F⊆Ω

P (F ) − λΩ|F |, (4)

or, equivalently, if Ω is a Cheeger in itself. Notice that, if G is a Cheeger set of Ω, then G
is calibrable. In the convex case, calibrable sets can be characterized in terms of a bound for
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the mean curvature of its boundary (the sum of the principal curvatures is bounded by the
Cheeger constant).

Our purpose in this paper is to extend the existence, uniqueness and convexity of Cheeger
sets and to study the analog of problems (2) and (3) when E is a convex set in the Gauss
space, both in the finite and the infinite dimensional (the abstract Wiener space) cases. In
this context, if E is a subset of the Gauss space we consider the problem

(Pµ) : min{Pγ(F ) − µγ(F ) : F ⊆ E}, (5)

where γ denote the Gaussian measure in R
n or in the abstract Wiener space, and Pγ denotes

the associated notion of perimeter. Again the study of the analog of problem (3) plays an
important technical role.

In the context of the Gauss space, we say that a set K ⊆ E with positive measure is a
γ-Cheeger set of E if K is a minimum of the problem

min
F⊆E

Pγ(F )

γ(F )
. (6)

The value of (20) is the γ-Cheeger constant of E. Our purpose is to prove the existence of
Cheeger sets inside any subset E of the Gauss space with nonempty interior. If E is convex,
we also prove the existence of a maximal γ-Cheeger set of E which is convex. Moreover, it
can be computed as the region where the solution u of the total γ-variation denoising problem
attains its maximum.

Let us finally mention that γ-Cheeger sets in the finite dimensional Gauss space can be
considered as a particular case of anisotropic Cheeger sets and we refer to [14, 19] for such
approach.

Let us describe the plan of the paper. In Section 2 we define the notation to be used
throughout the paper. Sections 3 to 5 are devoted to the study of calibrable and Cheeger sets
in the finite dimensional Gauss space. In Section 3 we define the notion of calibrable sets and
we give some characterizations in terms of the solution of the variational problem (PλE

). In
Section 4 we characterize convex calibrable sets in terms of the Gaussian mean curvature of its
boundary. In Section 5 we prove the existence of a maximal γ-Cheeger set inside any convex
set in R

n with the Gauss measure. In Section 2.1 we recall the definition of abstract Wiener
space and the notions of gradient and divergence in this context. In Section 6 we prove the
existence of solutions of the denoising problem in the abstract Wiener space. This problem is
crucial in order to study the geometric variational problems (Pµ). In Section 7 we characterize
the subdifferential of the total variation in the abstract Wiener space so that we can write the
Euler-Lagrange equation satisfied by solutions of the denoising problem. In Section 8 we prove
the existence of solutions of problem (Pµ). In particular, we prove the existence of γ-Cheeger
sets inside any subset E of the Wiener space with nonempty interior. In Section 9, assuming
that E is convex and has nonempty interior, we prove uniqueness and convexity of solutions
of (Pµ) for any µ larger than the γ-Cheeger constant of E. We also prove the existence of a
maximal γ-Cheeger set which is convex.
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2 Notation

We start with some definitions. Let us consider the Gauss space, that is, R
n with the Gaussian

measure

dγ(x) = γ(x)dx =
1

(2π)n/2
e−

|x|2

2 dx.

The divergence of a vector field ψ ∈ Lp
loc(R

n,Rn), p ∈ [1,∞], is defined to be the adjoint
operator of (minus) the gradient, divγ = −∇∗, that is,

∫

Rn

udivγψdγ = −
∫

Rn

〈∇u, ψ〉dγ,

for any u ∈ C1
c (Rn). Then

divγψ(x) = divψ(x) − 〈ψ(x), x〉 x ∈ R
n.

We denote by Lp(Rn, γ) the space of all measurable functions u such that

∫

Rn

|u|pdγ < +∞.

The total variation of u is then defined as

|Dγu|(Rn) := sup

{
∫

Rn

u divγψ dγ : ψ ∈ C1
c (Rn,Rn), |ψ(x)| ≤ 1

}

.

We say that u ∈ L1(Rn, γ) has bounded total γ-variation (or simply, if clear from the context,
bounded total variation) if |Dγu|(Rn) < +∞ and we write u ∈ BV (Rn, γ). Given a measurable
set E ⊆ R

n, we let

χE(x) :=







1 if x ∈ E

−1 if x ∈ Ec.

and

1E(x) :=







1 if x ∈ E

0 if x ∈ Ec.

We say that E has finite γ-perimeter if Pγ(E) := |Dγ1E |(Rn) < +∞. For a set E with finite
γ-perimeter we define the constant

λE =
Pγ(E)

γ(E)
.

Notice that, for a regular function u and for a smooth set E, we have the following represen-
tation formulae

|Dγu|(Rn) =

∫

Rn

|∇u(x)|γ(x)dx, Pγ(E) =

∫

∂E

γ(x)dHn−1(x).

Since the Gaussian density is bounded and locally bounded away from zero, we getBVloc(R
n) =

BVloc(R
n, γ) with local equivalence of the norms, and then we can use all the fine properties of
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the (Euclidean) functions with bounded variation and sets with finite perimeter. In particular,
for u ∈ BV (Rn, γ) and E with finite perimeter we have

dDγu(x) = γ(x)dDu(x), dDγ1E(x) = −γ(x)νE(x)dHn−1 ∂∗E(x),

where ∂∗E is the reduced boundary of E and νE is the outer unit normal to the boundary of
E. If E ⊆ R

n is a set of finite perimeter with boundary of class C1,1, we define the Gaussian
mean curvature by

Hγ
E(x) = HE(x) − 1

n− 1
〈νE(x), x〉

with HE the Euclidean mean curvature.
For a function u ∈ BV (Rn, γ), the following integration by parts formula holds

∫

Rn

u(x)divγψ(x)dγ(x) = −
∫

Rn

〈ψ(x), dDγu(x)〉, ∀ψ ∈ C1
c (Rn,Rn)

and equivalently for any set E of finite γ–perimeter
∫

E

divγψ(x)dγ(x) =

∫

∂∗E

〈ψ(x), νE(x)〉γ(x)dHn−1(x).

Thanks to a result due to Anzellotti [8], for any ξ ∈ L∞(E,Rn), with divγξ ∈ L2(E, γ),
it is defined the normal trace of ξ on ∂∗E, which we denoted by [ξ · νE ], with the property
[ξ · νE ] ∈ L∞(∂∗E,Hn−1). Given ξ as above and u ∈ BV (Rn, γ) ∩ L2(Rn), we also define the
measure (ξ ·Dγu) as

∫

Rn

(ξ ·Dγu)ϕ := −
∫

Rn

uϕdivγ(ξ) dγ −
∫

Rn

u ξ · ∇ϕdγ,

for any ϕ ∈ C1
c (Rn,Rn). Notice that

(ξ ·Dγu) = ξ · ∇u for any u ∈W 1,1(Rn).

2.1 Notation in the infinite dimensional case

An abstract Wiener space is defined as a triple (X, γ,H), where X is a Banach space, endowed
with the norm ‖ · ‖X , γ is a centered Gaussian measure, and H is the Cameron–Martin space
associated to the measure γ, that is, it is a separable Hilbert space densely embedded in X ,
endowed with the scalar product [·, ·]H and with the norm | · |H . The requirement that γ is
a centered Gaussian measure means that for any x∗ ∈ X∗, the measure x∗#γ is a centered

Gaussian measure in R. The space H = L2(X, γ) is called reproducing kernel and can be
embedded in X by the map R : H → X defined as

Rh :=

∫

X

h(x)xdγ(x).

The spaceH = RH, with the scalar product induced by H via R, is the Cameron-Martin space,
and it is a subspace of X . A result by Fernique [13, Theorem 2.8.5] implies the existence of a
positive number β > 0 such that

∫

X

eβ‖x‖dγ(x) < +∞.
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As a consequence, the maps x 7→ 〈x, x∗〉 belong to Lp(X, γ) for any x∗ ∈ X∗ and p ≥ 1. In
particular, any element x∗ ∈ X∗ can be seen as a map x∗ ∈ L2(X, γ). In this way, we obtain
that R∗ : X∗ → H

R∗x∗(x) := 〈x, x∗〉
is the adjoint operator of R. It is possible to prove that R is a γ–Radonyfing operator (Hilbert–
Schmidt in case X is Hilbert); this in particular implies that the embedding of H in X is
continuous, that is there exists c > 0 such that

‖h‖X ≤ c|h|H , ∀h ∈ H.

The covariance operator of the measure γ turns out to be Q = RR∗ ∈ L(X∗, X), that is, the
Fourier transform γ̂ of γ is given by

γ̂(x∗) =

∫

X

〈x, x∗〉〈x, x∗〉dγ(x) = exp

(

−〈Qx∗, x∗〉
2

)

, ∀x∗ ∈ X∗.

By considering the injective part of R, we can select (x∗j ) in X∗ in such a way that ĥj :=

R∗x∗j , or, equivalently, hj := Rĥj = Qx∗j form an orthonormal basis of H ; we then define

λj = ‖x∗j‖−1.

Given n ∈ N, we also let Hn := 〈h1, . . . , hn〉 ⊆ H , X⊥
n := H⊥

n

X
, and Πn : X → Hn be the

closure of the orthogonal projection from H to Xn

Πn(x) :=

n
∑

j=1

〈x, x∗j 〉hj x ∈ X.

As above, γ(E) will be the Gaussian measure of a Borel set E ⊆ X . We denote by C1
b (X) the

set of continuous and bounded functions f : X → R which admit directional derivatives ∂hf
which are continuous on X , for all h ∈ H . Given f ∈ C1

b (X) and φ ∈ C1(X,H), we set

∇γf(x) :=
∑

j∈N

∂jf(x)hj ,

divγφ(x) := −
∑

j≥1

∂∗j [φ(x), Qx∗j ],

where ∂j := ∂hj
and ∂∗j := ∂j − ĥj is the adjoint operator of ∂j . With this notation, there

holds the integration by parts formula:
∫

X

f divγφdγ = −
∫

X

[∇γf, φ]H dγ. (7)

In particular, thanks to (7), the operator ∇γ is closable in Lp(X, γ), and we denote by
W 1,p(X, γ) the domain of its closure [13, 6].

We then define the total variation of a function u ∈ L1(X, γ) as

|Dγu|(X) := sup

{
∫

X

u(x)divγφ(x)dγ(x) : φ ∈ C1
b (X,H) : |φ(x)|H ≤ 1

}

.
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We say that u has finite γ–total variation, u ∈ BV (X, γ), if |Dγu|(X) < +∞; in addition, a
subset E ⊆ X is said to have γ–finite perimeter if Pγ(E) := |Dγ1E|(X) < +∞. As above, we
let

λE :=
Pγ(E)

γ(E)
.

Given a vector field z ∈ Lp(X, γ), p ∈ [1,∞], we define divγ z using test functions f in
W 1,q(X, γ), 1

p + 1
q = 1, by the formula

∫

X

divγ z f dγ := −
∫

X

[z,∇γf ]H dγ, (8)

Since the smooth functions (i.e. functions in C1
b (X)) are dense inW 1,q(X, γ), divγ z is uniquely

determined by its action on smooth functions. We say that divγ z ∈ Lm(X, γ) if the previous

linear functional can be extended to all test functions in Lm′

(X, γ) with 1
m + 1

m′ = 1.
Given an open set Ω ⊆ X , we consider the space of vector fields

X2(Ω, H) :=
{

z ∈ L∞(Ω, γ) : divγ z ∈ L2(Ω, γ), |z|H ≤ 1 γ-a.e. in Ω
}

.

For each z ∈ X2(X,H) and u ∈ BV (X, γ) ∩ L2(X, γ) we may define
∫

X

(z ·Dγu)ϕ := −
∫

X

uϕdivγ(z) dγ −
∫

X

u [z,∇γϕ]H dγ,

for any ϕ ∈ C1
b (X). Notice that

(z ·Dγu) = [z,∇γu]H for any u ∈ W 1,1(X, γ).

Finally, we let U : R → R be the isoperimetric function defined as U(t) = Φ′ ◦ Φ−1(t), t ∈ R,
where

Φ(t) :=
1√
2π

∫ t

−∞

e−
s2

2 ds.

The isoperimetric function has the following asymptotic behaviour

lim
s→0

U(s)

s| ln s|1/2
= 1.

We recall the isoperimetric inequality in the Gauss space (for a proof, see for instance [28] or
also [20, Proposition 3.2]).

Proposition 1. For all Borel subset E ⊆ X, there holds

Pγ(E) ≥ U (γ(E)) . (9)

We also recall the coarea formula in the space BV (X, γ) [6, Theorem 3.5].

Proposition 2. Let u ∈ BV (X, γ). Then almost all the level sets {u > t} have finite perimeter
and the following inequality holds:

|Dγu|(X) =

∫

R

Pγ ({u > t}) dt. (10)
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As consequence of the isoperimetric inequality and the coarea formula, we have that for
all u ∈ BV (X, γ) there holds

|Dγu|(X) ≥
∫

R

U (γ({u > s})) ds. (11)

The following result is also a consequence of the coarea formula.

Lemma 3. There exists a sequence rj → 0 such that Pγ(Brj
) → 0.

Proof. Let us consider the function

u(x) := min{‖x‖X , r}.

Since u 1-Lipschitz on X , we have

|u(x+ h) − u(x)| ≤ ‖h‖X ≤ c|h|H ,

so that |Dγu|(X) ≤ cγ(Br). By the coarea formula (10), we then obtain

cγ(Br) ≥ |Dγu|(X) =

∫ r

0

Pγ(Bt)dt.

It follows that there exists r′ ∈ (0, r) such that

Pγ(Br′) ≤ c
γ(Br′)

r′
.

The thesis now follows by observing that

lim
r→0

γ(Br)

r
= 0,

which can be easily checked by estimating γ(Br) with the volume of a cylinder of radius r,
with finite dimensional section.

Let f : X → R ∪ {+∞} be a convex function, and let

F (t) = γ({f ≤ t}), t ∈ R.

We recall the following result of [13, Corollary 4.4.2].

Theorem 4 (Bogachev). The function F is continuous on R \ {t0}, where

t0 = inf{t : F (t) > 0}.

As a consequence, γ({f = t}) = 0 for all t 6= t0.

Additional properties of functions with bounded variation and sets with finite perimeter
can be found in [6, 25].
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3 Calibrability and equivalent notions

In this section we recall the notion of calibrable set and give equivalent characterizations of
calibrability.

Definition 5. We say that a set E ⊆ R
n of finite γ–perimeter is calibrable if there exists

ξ ∈ L∞(E,Rn) such that ‖ξ‖∞ ≤ 1, divγξ = −λE on E and [ξ · νE ] = −1 on ∂∗E.

We want to characterize the calibrability of a set in terms of minimality of some variational
problems. In particular, we shall consider the following two problems:

(Pµ) : min{Pγ(F ) − µγ(F ) : F ⊆ E},

min

{
∫

E

(divγξ)
2dγ : ξ ∈ L∞(E,Rn) ‖ξ‖∞ ≤ 1, [ξ · νE ] = −1 on ∂∗E

}

. (12)

Notice that, by convexity of the last integral, a minimum always exists and two possibly
different minimizers have the same divergence. We shall denote by ξmin a minimizer of (12).

Remark 6. Reasoning as in [9, Lemma 5.4], one can show that, if ξmin is a minimum of (12),
then ξmin also minimizes ‖divγξ‖Lp(E,γ) for all p ∈ (2,+∞].

Proposition 7. Let E ⊆ R
n be a finite perimeter set. Then E is calibrable if and only if

divγξmin is constant.

Proof. Assume by contradiction that E calibrable, but divγξmin is not constant in E, and let
E′ = {divγξmin < −λE} 6= E. By the results in [11, 12], E′ is a set of finite γ-perimeter and
Pγ(E′) = −

∫

E′ divγξmindγ. Then, we have

Pγ(E) − λEγ(E) =

∫

E

(−divγξmin − λE)dγ

=

∫

E′

(−divγξmin − λE)dγ +

∫

E\E′

(−divγξmin − λE)dγ

>

∫

E′

(−divγξmin − λE)dγ = Pγ(E′) − λEγ(E
′).

However, recalling that E is calibrable and using the vector field ξ in Definition 5, we also
have

Pγ(E) − λEγ(E) =

∫

E

(−divγξ − λE)dγ =

∫

E′

(−divγξ − λE)dγ ≤ Pγ(E′) − λEγ(E
′),

which gives a contradiction.

Now, we assume that divγξmin is constant in E, divγξmin = c; we have only to prove that
c = −λE . Since

cγ(E) =

∫

E

divγξmindγ =

∫

∂∗E

[ξmin · νE ]γdHn−1 = −Pγ(E),

we have c = −λE .
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Lemma 8. Let Eα, Eβ be the solutions of (Pµ) to the values α, β with α > β; then Eβ ⊆ Eα.
As a consequence, for almost any α > 0 the solution of (Pα) is unique.

The proof of this Lemma follows the usual proof in the Euclidean case can be found in [2];
it is based on the following result.

Lemma 9. If E,F are two sets of finite perimeter in X, then

Pγ(E ∪ F ) + Pγ(E ∩ F ) ≤ Pγ(E) + Pγ(F ). (13)

The proof is exactly the same as in [21] for the Euclidean case, and we omit the details.
In the sequel, it will be of particular relevance the study of the following problem:

(Qλ) : min

{

|Dγu|(Rn) +
λ

2

∫

Rn

(u− χE)2dγ : u ∈ BV (Rn, γ) ∩ L2(Rn, γ)

}

, (14)

where E ⊆ R
n and λ > 0.

We collect in the next Proposition the main properties of (Qλ).

Proposition 10. We have the following facts:

(i) (Qλ) admits a unique minimizer uλ ∈ BV (Rn, γ) ∩ L2(Rn, γ), for all λ > 0;

(ii) there exists a vector field ξλ ∈ L∞(Rn,Rn) with ‖ξλ‖∞ ≤ 1 such that

uλ − 1

λ
divγξλ = χE in R

n (15)

and (ξλ ·Dγuλ) = |Dγuλ|.
(iii) uλ satisfies −1 ≤ uλ ≤ 1;

(iv) if E is calibrable then

uλ|E =
(

1 − λE

λ

)

(16)

for all λ ≥ λE . If (16) holds for some λ > λE, then E is calibrable;

(v) if E1 ⊆ E2, and then uλ,1, uλ,2 denote the corresponding solutions of (Qλ), then uλ,1 ≤
uλ,2.

Proof. Point (i) follows by the convexity of the total variation and the strict convexity of the
second integral. Point (ii) is proved in [19] in a more general context (see also [15]). Point
(iii) follows from a standard truncation argument. Point (iv) follows from the definition of
calibrability and the Euler equation of (Qλ). The comparison principle (v) is contained in
Appendix C of [15], properly modified.

Remark 11. If uλ is the minimum of (Qλ) and η is a general admissible vector field, that

is η ∈ L∞ with divγη ∈ L∞, ‖η‖∞ ≤ 1, [η · νE ] = −1 on ∂E, then χE +
‖divγη‖∞

λ (resp.

χE − ‖divγη‖∞

λ ) is a supersolution (resp. subsolution), of (15). By the comparison principle
[15, 19] we then have

χE +
‖divγη‖∞

λ
≥ uλ ≥ χE − ‖divγη‖∞

λ
. (17)
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Lemma 12. If ∂E is bounded and C1,1, then for any ε > 0 there exists λ > 0 such that
uλ ∈ [1 − ε, 1] in E and uλ ∈ [−1,−1 + ε] in R

n \ E. Hence [ξλ · νE ] = −1 Hn−1-a.e. in ∂E.

Proof. The proof is a consequence of Remark 11. In fact, by taking η any admissible extension
of −νE which is zero out of a tubular neighborhood of ∂E, equation (17) gives the proof of the
first assertion with λ large enough. To prove the second assertion, observe that ∂E belongs
to the jump set of uλ. Then [ξλ · νE ] = −1 Hn−1-a.e. in ∂E follows from the identity
(ξλ ·Dγuλ) = |Dγuλ|.

Proposition 13. Let λ > 0. For any t ∈ [−1, 1], the sets Eλ
t := {uλ > t}, Gλ

t = {uλ ≥ t} are
respectively the minimal and maximal solutions of (Pλ(1−t)).

Proof. Since (ξλ · Dγuλ) = |Dγuλ|, we have that P (Eλ
t ) =

∫

Rn(ξλ · DχEλ
t
) for almost any t.

For any such t and any F ⊆ E we have

Pγ(Eλ
t ) − λEγ(E

λ
t ) =

∫

Eλ
t

(−divγ ξλ − λE) dγ ≤
∫

F∩Eλ
t

(−divγ ξλ − λE) dγ

=

∫

F∩Eλ
t

(−divγ ξλ − λE) dγ +

∫

F\Eλ
t

(−divγ ξλ − λE) dγ

=

∫

F

(−divγ ξλ − λE) dγ ≤ Pγ(F ) − λEγ(F ).

That is Eλ
t is a minimizer of (Pλ(1−t)). If t is any value in [−1, 1], the result follows by

approximating t by tn such that Eλ
tn

is a minimizer of (Pλ(1−tn)). Using Lemma 8 we deduce

that Eλ
t and Gλ

t are respectively the minimal and the maximal solutions of (Pλ(1−t)).

Proposition 14. Let E be a set with a C1,1 boundary. Then E minimizes (PλE
) if and only

if E is calibrable.

Proof. Assume that E is calibrable. Let us prove that E minimizes (PλE
). In fact, if we

consider a calibration ξ of E, we get

λEγ(F ) = −
∫

F

divγξdγ = −
∫

∂∗F

[ξ · νF ]γdHn−1 ≤ Pγ(F ),

whence Pγ(E) − λEγ(E) = 0 ≤ Pγ(F ) − λEγ(F ) for any F ⊆ E.
On the contrary, if E minimizes (PλE

), we can consider λ > 0 be large enough so that
Lemma 12 holds and divγ ξλ, hence uλ, is not constant in E. In fact, take λ > 0 such that if
λE = λ(1 − t̄), then t̄ ∈ [1 − ε, 1]. Since [ξλ · νE ] = −1 Hn−1-a.e. in ∂E, we have

1

γ(E)

∫

E

divγ ξλ dγ = −λE .

Then {x ∈ E : divγ ξλ > −λE} 6= E. Observe that {x ∈ E : divγ ξλ > −λE} = {x ∈ R
n :

uλ(x) > t̄} =: Eλ
t̄ where λ(1 − t̄) = λE . Then

Pγ(Eλ
t̄ ) − λEγ(E

λ
t̄ ) =

∫

Eλ
t̄

(−divγ ξλ − λE) dγ < 0.

11



On the other hand, by Proposition 13, Eλ
t̄ is a minimizer of (PλE

). Then

Pγ(Eλ
t̄ ) − λEγ(E

λ
t̄ ) = Pγ(E) − λEγ(E) = 0.

This contradiction proves that divγ ξλ is constant. Integrating by parts we deduce that
divγ ξλ = −λE . Thus E is calibrable.

4 Characterization of convex calibrable sets in the Gauss

space

The following theorem, contained in [27, Section 3], extends the concavity result [27, Theorem
1.2] to the x-dependent case.

Theorem 15 (Korevaar). Let Ω be a C1 convex and bounded domain in R
n, and let b :

Ω × R × R
n → R be such that

∂b

∂u
> 0, b jointly concave in (x, u).

Assume that u ∈ C(Ω̄) ∩ C2(Ω) satisfies

div

(

Du(x)
√

1 + |Du(x)|2

)

= b(x, u(x), Du(x)),

coupled with the boundary conditions of vertical contact angle

Du
√

1 + |Du|2
· νΩ = −1.

Then u is a concave function.

Theorem 16. Let E be a bounded, convex domain in R
n of class C1,1. If λ is large enough,

then the solution uλ of (Qλ) is concave in E, with vertical contact angle at ∂E. In particular
the set Eλ

s = {uλ ≥ s} ∩ E is convex for any s ∈ [0, 1] and it is the unique minimum of (Pµ)
with µ = λ(1 − s).

Proof. The proof follows exactly as in [2, Theorem 5], using the result of Korevaar stated in
Theorem 15.

Remark 17. If the C1,1 assumption is removed, the same result holds on E∩{uλ > 0}, where
uλ minimizes (14) with Dirichlet boundary conditions on ∂E, that is

min

{

|Dγu|(Rn) +
λ

2

∫

Rn

(u− 1E)2dγ : u ∈ BV (Rn, γ) ∩ L2(Rn, γ), u ≡ 0 on R
n \ E

}

,

(18)
Notice that the minimum problem (18) is equivalent to

min

{

|Dγu|(E) +

∫

∂E

|u| γ dHn−1 +
λ

2

∫

E

(u− 1)2dγ : u ∈ BV (Rn, γ) ∩ L2(Rn, γ)

}

.

12



Lemma 18. Let E ⊆ R
n be a bounded convex set of class C1,1, let λj → λ, and let Ej be

convex minimizers of (Pλj
). If Ej converge to E, then λ ≤ (n− 1)‖Hγ

E‖∞.

Proof. Since E is of class C1,1, the outer unit normal vector field to ∂E admits a Lipschitz
extension N to a neighborhood U = {x ∈ R

n : dist(x, ∂E) < δ} of ∂E, δ > 0, and we have
that (n − 1)Hγ

E = divγ N on ∂E. If ‖divγ N |U‖∞ < λ, then for j large enough we have that
∂Ej ⊆ U and ‖divγ N |U‖∞ < λj . Then

λjγ(E \ Ej) >

∫

E\Ej

divγ N dγ =

∫

∂E\∂Ej

[N · νE ] γ dHn−1 −
∫

∂Ej\∂E

[N · νEj
] γ dHn−1

≥
∫

∂E\∂Ej

γ dHn−1 −
∫

∂Ej\∂E

γ dHn−1 = Pγ(E) − Pγ(Ej).

Hence
Pγ(E) − λjγ(E) < Pγ(Ej) − λjγ(Ej).

This contradiction proves that λ ≤ ‖divγ N |U‖∞. Letting δ → 0+ we deduce that λ ≤
(n− 1)‖Hγ

E‖∞.

Proposition 19. Let E be a bounded convex subset of R
n. Then E minimizes (Pλ) with

λ ≥ λE if and only if E is of class C1,1 and

(n− 1)Hγ
E ≤ λ. (19)

In particular, thanks to Proposition 14, E is calibrable if and only if E satisfies (19) with
λ = λE .

Proof. Let E be a bounded convex set of class C1,1 satisfying (19). Reasoning as in [2, Theorem
9], from Theorem 16 and Lemma 18 it follows that E minimizes (Pλ), for all λ ≥ λE .

In order to prove the reverse implication, we first assume that E is of class C1,1. Then,
since E minimizes (Pλ), by a classical first variation argument [30] we get (19). In the general
case, we first assume λ > λE and we approximate E with a sequence of C1,1 convex sets Ej

so that
E =

⋂

j

Ej .

We note that, since λEj
→ λE , we have λEj

< λ for j large enough. Then we consider the
problems

min
F⊆Ej

{Pγ(F ) − λγ(F )} .

By Theorem 16, there exist unique convex minima Ej,λ and Ej,λ → E as j → +∞. Moreover,
by [30, Theorem 3.6], Ej,λ is of class C1,1 and therefore

(n− 1)Hγ
Ej,λ

≤ λ.

Since Ej,λ are convex sets converging to E, we have that E satisfies (19). By letting λ→ λE ,
we obtain the same result for λ = λE , thus concluding the proof.
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Remark 20. As a consequence of Proposition 19, we have that every ball BR, centered at
the origin, is calibrable. Indeed, we have

(n− 1)Hγ
BR

=
1 −R2

R
<

e−
R2

2 Rn−1

∫ R

0 e−
r2

2 rn−1 dr
=
Pγ(BR)

γ(BR)
.

Similarly, every hyperplane H = {x · ν ≤ R}, ν and R fixed, is also calibrable, since

(n− 1)Hγ
H = −R <

e−
R2

2

∫ R

−∞ e−
r2

2 dr
=
Pγ(H)

γ(H)
.

To our knowledge, in the Gauss space it is an open question whether the level sets {uλ ≥ s}
are convex for all s ∈ [0, 1], if E is a convex set.

Conjecture 21. Let Ω0 ⊃ Ω1 two open, bounded and convex sets and let u be a solution of
the problem







∆u = 〈x,∇u〉 on Ω0 \ Ω̄1

u = 0 on ∂Ω0

u = 1 on ∂Ω1.

Then {u ≥ t} is convex for any t ∈ R.

Conjecture 22. Let uλ be minimizer of

|Dγu| +
λ

2

∫

Rn

|u− v|2dγ,

with v level–set convex, i.e. {v > t} is convex for a.e. t ∈ R, then uλ is level–set convex.

5 An isoperimetric problem inside convex sets in the

Gauss space

We relate in this section the minima of (Pλ) with the minima of the constrained isoperimetric
problem:

(IV ) : min{Pγ(F ) : F ⊆ E, γ(F ) = V },
with V ∈ [0, γ(E)].

Given E ⊆ R
n, we say that K ⊆ E with positive measure is a γ-Cheeger set of E if K is a

minimum of the problem

min
F⊆E

Pγ(F )

γ(F )
. (20)

We call the value of (20) the γ-Cheeger constant of E, and we will denote it by λE . Notice
that if K is of positive measure, K is a Cheeger set of E if and only if it is a minimizer of
(PλK

).

From the results of Section 4, reasoning as in [2, Section 4], we obtain the following
Theorem.
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Theorem 23. Let E ⊆ R
n be a bounded and convex set. Then, there is a convex calibrable

set K ⊆ E which is a maximal minimizer of (PλK
). Thus K is the maximal γ-Cheeger

set of E. Moreover, for any λ > λK there exists a unique minimizer Eλ of (Pλ), which is
convex, and the map λ 7→ Eλ is increasing and continuous on [λK ,+∞). In addition, for any
V ∈ [γ(K), γ(E)], there is a unique solution of problem (IV ), which is convex.

We point out that, when V ∈ (0, γ(K)), the uniqueness (up to translations) of the solutions
of (IV ) is an open problem, even in the Euclidean case.

Remark 24. Let E be a bounded convex set and let K be its maximal γ-Cheeger set given
by Theorem 23. It follows by the previous discussion that there exists a vector field ξ ∈
L∞(E,Rn), with |ξ| ≤ 1 and [ξ · νE ] = −1 on ∂E, such that divγξ ∈ L1(E, γ), divγξ ≡ −λK

on K, and divγξ < −λK on E \K.
Notice that, conversely, the existence of such vector field implies that K is a γ-Cheeger set

of E.

6 The variational problem in infinite dimensions

In the next sections we work in the setting of the abstract Wiener space.

Proposition 25. Let f ∈ L2(X, γ) and λ > 0. Then there exists a unique minimum uλ of
the problem

min |Dγu|(X) +
1

2λ

∫

X

|u− f |2dγ. (21)

If f, g ∈ L2(X, γ) and u, v ∈ L2(X, γ) are the corresponding solutions, then

‖u− v‖2 ≤ ‖f − g‖2. (22)

Moreover uλ → f in L2(X, γ) as λ→ 0+.

Proof. The existence follows since the total variation is lower semicontinuous with respect to
weak convergence in L2(X, γ), and the uniqueness follows from the strict convexity of the
functional (21).

Estimate (22) follows since the subdifferential of the total variation is a monotone operator
in L2(X, γ).

To prove the last assertion we first assume that f ∈ BV (X, γ). Then, taking f as a test
function, we have

|Dγuλ|(X) +
1

2λ

∫

X

|uλ − f |2dγ ≤ |Dγf |(X).

Then clearly uλ → f in L2(X, γ).
If f ∈ L2(X, γ), we approximate it in L2(X, γ) by functions fj ∈ BV (X, γ). We can

take, for instance, the conditional expectations fj = Ejf . Letting uλ,j be the solutions of the
corresponding problem, using (22) we have

‖uλ − f‖2 ≤ ‖uλ − uλ,j‖2 + ‖uλ,j − fj‖2 + ‖fj − f‖2

≤ 2‖fj − f‖2 + ‖uλ,j − fj‖2.
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It then follows
lim sup
λ→0+

‖uλ − f‖2 ≤ 2‖fj − f‖2.

7 The characterization of the subdifferential of total va-

riation

Let E be a normed space, and let E∗ be its dual space. Let Ψ : E → [0,∞] be any function.
Let us define Ψ̃ : E∗ → [0,∞] by

Ψ̃(x∗) := sup

{ 〈x∗, y〉
Ψ(y)

: y ∈ E

}

(23)

with the convention that 0
0 = 0, 0

∞ = 0. Note that Ψ̃(x∗) ≥ 0, for any x∗ ∈ E∗. Note also
that the supremum is attained on the set of y ∈ E∗ such that 〈x∗, y〉 ≥ 0.

Let us consider the functional Φ : L2(X, γ) → (−∞,+∞] defined as

Φ(u) := |Dγu|(X) if u ∈ BV (X, γ),

and = +∞ if u ∈ L2(X, γ) \BV (X, γ).

Proposition 26. For any ϕ ∈ C1
b (X), one has

∣

∣

∣

∣

∫

X

ϕ (z ·Dγu)

∣

∣

∣

∣

≤ sup ‖ϕ‖∞ ‖z‖∞ |Dγu|(X). (24)

Proof. Take a sequence un ∈ C1
b (X) converging to u in L1(X, γ) and |Dγun|(X) → |Dγu|(X).

Let ϕ ∈ C1
b (X). Then
∣

∣

∣

∣

∫

X

(z ·Dγun)ϕ

∣

∣

∣

∣

≤ sup ‖ϕ‖∞ ‖z‖L∞(X,γ) |Dγun|(X) for all n ∈ N.

Now, taking the limit as n→ ∞, we get the thesis.

The next result follows immediately from the definition of
∫

X
(z ·Dγu).

Lemma 27. Let z ∈ X2(X,H) and u ∈ BV (X, γ) ∩ L2(X, γ). Let un ∈ C1
b (X) converging

weakly to u in L2(X, γ). Then we have
∫

X

[z,∇γun]H dγ →
∫

X

(z ·Dγu).

Lemma 28. Let z ∈ X2(X,H), u ∈ BV (X, γ) be such that
∫

X
(z · Dγu) = |Dγu|(X). Then

for almost any t ∈ R we have
∫

X

(z ·Dγ1{u>t}) = Pγ({u > t}). (25)

Moreover, Pγ({u > t}) <∞ for all t ∈ R and (25) holds for any t ∈ R.
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Proof. Assume that u ≥ 0. Let ϕ ∈ C1
b (X).

∫

X

(z ·Dγu)ϕ = −
∫

X

uϕdivγz dγ −
∫

X

u [z,∇γϕ]H dγ

= −
∫ ∞

0

dt

∫

X

1{u>t} (ϕdivγz + [z,∇γϕ]H) dγ

=

∫ ∞

0

dt

∫

X

(z ·Dγ1{u>t})ϕ.

Then

|Dγu|(X) =

∫

X

(z ·Dγu) =

∫ ∞

0

dt

∫

X

(z ·Dγ1{u>t})

≤
∫ ∞

0

|Dγ1{u>t}|(X) dt = |Dγu|(X)

and (25) follows.
Let t ∈ R be such that (25) holds. Then

Pγ({u > t}) =

∫

X

(z ·Dγ1{u>t}) = −
∫

{u>t}

divγz dγ ≤ ‖divγz‖2.

That is the perimeter of all level sets is equibounded. Then given t ∈ R we may approximate
it by tn ∈ R for which (25) holds. By the lower semicontinuity of the perimeter we have that

Pγ({u > t}) ≤ ‖divγ z‖2.

The last assertion follows now by approximation of 1{u>t} by 1{u>tn}.

Theorem 29. Let z ∈ X2(X,H) and u ∈ BV (X, γ) ∩ L2(X, γ), then we have

∫

X

u divγz dγ +

∫

X

(z ·Dγu) = 0. (26)

Proof. Take a sequence of functions un ∈ C1
b (X) converging weakly to u in L2(X, γ). Then,

by Lemma 27 and (8), we have

∫

x

u divγz dγ +

∫

X

(z ·Dγu) = lim
n→∞

(
∫

X

un divγz dγ +

∫

X

[z,∇γun]H dγ

)

= 0.

For v ∈ L2(X, γ), we define

Ψ(v) := inf {‖z‖∞ : z ∈ X2(X,H), v = −divγz } . (27)

Since H is separable, then L1(X, γ)∗ = L∞(X, γ) and by weak∗ compactness of the unit ball
in L∞(X, γ), we know that if Ψ(v) < ∞, then the infimum in (27) is attained, i.e., there is
some z ∈ X2(X,H) such that v = −divγz, and Ψ(v) = ‖z‖∞.
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Proposition 30. Ψ = Φ̃.

Proof. Let v ∈ L2(X, γ). If Ψ(v) = +∞, then we have Φ̃(v) ≤ Ψ(v). Thus, we may assume
that Ψ(v) <∞. Let z ∈ X2(X,H) such that v = −divγz with test functions in C1

b (X). Then
∫

X

vu dγ =

∫

X

(z ·Dγu) ≤ ‖z‖∞Φ(u) for all u ∈ BV (X, γ) ∩ L2(X, γ).

Taking the supremum in u we obtain Φ̃(v) ≤ ‖z‖∞, and taking the infimum in z we obtain
Φ̃(v) ≤ Ψ(v).

In order to prove the opposite inequality, let us denote

D :=
{

divγz : z ∈ C1
b (X,H)

}

.

Then

sup
v∈L2

∫

X

uv dγ

Ψ(v)
≥ sup

v∈D,Ψ(v)<∞

∫

X

uv dγ

Ψ(v)

≥ sup
z∈C1

b
(X,H)

−
∫

X

udivγz dγ

‖z‖∞
≥ Φ(u).

Thus, Φ ≤ Ψ̃. This implies that ˜̃Ψ ≤ Φ̃, moreover, since ˜̃Ψ = Ψ [7, Proposition 1.6], we obtain
that Ψ ≤ Φ̃.

We recall the following result which is proved in [7].

Theorem 31. Assume that Φ is convex, lower semi-continuous and positive homogeneous of
degree 1. Then v∗ ∈ ∂Φ(u) if and only if Φ̃(v∗) ≤ 1 and 〈v∗, u〉 = Φ(u) (hence, Φ̃(v∗) = 1 if
Φ(u) > 0).

Proposition 32. Let u, v ∈ L2(X, γ), u ∈ BV (X, γ). The following assertions are equivalent:

(a) v ∈ ∂Φ(u);

(b)
∫

X

vu dγ = Φ(u), (28)

∃z ∈ X2(X,H) such that v = −divγz; (29)

(c) (29) holds and
∫

X

(z ·Dγu) = |Dγu|(X). (30)

Proof. By Theorem 31, we have that v ∈ ∂Φ(u) if and only if Φ̃(v) ≤ 1 and
∫

Ω
vu dx = Φ(u).

Since Φ̃ = Ψ, the equivalence of (a) and (b) follows from the definition of Ψ. If (b) holds,
integrating by parts in (28) we obtain (30). The converse implication follows in the same
way.

In a subsequent work, we shall use the results of this Section to show that all the balls of
X have finite perimeter, when X is a separable Hilbert space.
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8 Existence of minimizers of (Pµ)

Proposition 33. Let f ∈ L∞(X, γ), and let u be the (unique) minimizer of (21). Then
u ∈ L∞(X, γ) and {u = ‖u‖∞} is of positive measure.

Proof. The proof that u ∈ L∞(X, γ) follows by a standard truncation argument which gives
the estimate ‖u‖∞ ≤ ‖f‖∞.

By Proposition 32, we know that there exists z ∈ X2(X,H) with
∫

X(z ·Dγu) = |Dγu|(X)
and such that

u− divγ z = f.

Multiplying the last equation by 1{u>t}, and integrating by parts, we obtain

Pγ({u > t}) =

∫

X

(z · 1{u>t}) dγ =

∫

X

(f − u)1{u>t} dγ ≤ ‖f − u‖∞γ({u > t}).

Dividing both sides by U(γ({u > t})), and using the isoperimetric inequality in Proposition 1
and the fact that U′(0) = +∞, we get a uniform lower bound on γ({u > t}).

As in the finite dimensional case, given E ⊆ X we say that K ⊆ E with positive measure
is a γ-Cheeger set of E if K is a minimum of the problem

min
F⊆E

Pγ(F )

γ(F )
. (31)

We call the value of (31) the γ-Cheeger constant of E, and we will denote it by λE . Notice
that K is a γ-Cheeger set of E if and only if it is a minimizer of the problem

(Pµ) : min
F⊆E

{Pγ(F ) − µγ(F )} , (32)

with µ = λK = λE . If cµ denotes the minimum of (32), we observe that cµ1
≤ cµ2

if
µ1 ≥ µ2 ≥ 0. In particular, if int(E) 6= ∅, by comparison with small balls and recalling
Lemma 3 we get cµ ≤ 0 for all µ ≥ 0. In particular, since cλE

= 0, it follows cµ = 0 for all

µ ≤ λE , that is, F = ∅ is a solution of (Pµ) when µ ≤ λE .

Proposition 34. Let E ⊆ X with int(E) 6= ∅. Then, there exists a solution Eµ of (32).
Moreover, we can choose Eµ 6= ∅ if µ ≥ λE, where λE is the γ-Cheeger constant of E. In
particular, there always exists a γ-Cheeger set of E.

Proof. We can assume µ ≥ λE . Let Ej be a minimizing sequence of (32), and let uµ ∈
BV (X, γ) be the (weak) limit of χEj

. Then

cµ ≥ |Dγuµ|(X) =

∫ 1

0

Pγ({uµ > t})dt. (33)

If uµ 6= 0, by the coarea formula {uµ > t} is a solution of (32) for almost all t ∈ (0, 1) and
the equality holds in (33). Moreover, there exists t ∈ (0, 1) such that {uµ > t} is nonempty.

Let now µ = λE . In this case, we can choose the sequence Ej as a minimizing sequence
of (31). Recalling that int(E) 6= ∅, by the isoperimetric inequality, we then have a uniform
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lower bound on the volume of Ej , which in turn implies uλE
6= 0. In particular, there exists a

nonempty γ-Cheeger set K of E.
It remains to prove that uµ 6= 0, for all µ > λE . By contradiction, if uµ = 0, we would

have cµ = 0, but this is impossible since Pγ(K) − µγ(K) < 0.

Remark 35. Let us mention that the result analogous to Lemma 8 holds also in the infinite
dimensional case with the same proof as in [2].

9 Uniqueness and convexity of minimizers of (Pµ)

Let C be a bounded convex subset of X and assume that C has finite perimeter. Let us
consider the following problem:

min

{

|Dγu|(X) +
λ

2

∫

X

(u − 1C)2dγ : u ∈ BV (X, γ) ∩ L2(X, γ), u ≡ 0 outside C

}

. (34)

Proposition 36. Let C be a bounded convex subset of X with nonempty interior. Assume
that C has finite perimeter. Then problem (34) has a unique solution uλ for all λ > 0, and
we have 0 ≤ uλ ≤ 1. Moreover for any λ > λC , uλ 6= 0 is a concave function restricted to the
set {uλ > 0}.

Proof. As in Propositions 25 and 33, there is a unique solution uλ of problem (34) and it
satisfies 0 ≤ uλ ≤ 1.

The concavity of uλ in {uλ > 0} follows by an approximation argument. Let Cn :=
Πn(C) ×X⊥

n . Then, Cn is a cylindrical approximation of C such that Cn+1 ⊆ Cn. Since C is
closed we have C = ∩nCn, and Pγ(C) ≤ lim infn Pγ(Cn), by the lower semicontinuity of Pγ .

Let λ > 0, and let uλ,n = vλ,n ◦Πn, where vλ,n minimizes (34) with C replaced by Πn(C);
we point out that by Theorem 15 and Remark 17, uλ,n are concave on {uλ,n > 0}. Then it
follows that uλ,n minimizes (34) with C replaced by Cn. By Theorem 23, there exists a convex
maximal γ-Cheeger set Kn ⊆ Πn(C) for all n ∈ N and, thanks to the characterization given
in Remark 24, the set Kn := Kn × R

n⊥ is the maximal γ-Cheeger set of Cn. Finally, uλ,n

attains its maximum on Kn. By integrating the Euler-Lagrange equation (15) on Kn, we get

λKn
=
Pγ(Kn)

γ(Kn)
= λ

(

1 − max
Cn

uλ,n

)

,

which implies

1 > uλ,n(x) = 1 − λKn

λ
≥ 1 − λC

λ
x ∈ Kn .

Moreover, recalling the isoperimetric inequality (9), we also get

U(γ(Kn))

γ(Kn)
≤ Pγ(Kn)

γ(Kn)
≤ λC ,

which implies, since U(t) ∼ t
√

2 log 1/t as t→ 0,

γ(Kn) ≥ c > 0,
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for some constant c independent of n. It then follows
∫

Cn

uλ,n dγ ≥
(

1 − λC

λ

)

γ(Kn) ≥
(

1 − λC

λ

)

c. (35)

We now let uλ := limn uλ,n = infn uλ,n, which is a minimizer of (34). Indeed, if v ∈ BV (X, γ)∩
L2(X, γ) is such that v = 0 out of C, then its canonical cylindrical approximation vn is also
in BV (Rn, γ)∩L2(Rn, γ), vn = 0 out of Cn, vn → v in L2(X, γ) and |Dγvn|(X) → |Dγv|(X).
Then

|Dγuλ|(X) +
λ

2

∫

X

(uλ − 1C)2dγ ≤ lim inf
n

|Dγuλ,n|(X) +
λ

2

∫

X

(uλ,n − 1C,n)2dγ

≤ lim
n

|Dγvn|(X) +
λ

2

∫

X

(vn − 1Cn
)2dγ

= |Dγv|(X) +
λ

2

∫

X

(v − 1C)2dγ.

Passing to the limit in (35) we obtain
∫

C

uλ dγ ≥
(

1 − λC

λ

)

c.

In particular, uλ is not identically zero on C, and it is concave on {uλ > 0}.

Proposition 37. For any t ∈ [0, 1], the set Eλ
t = {uλ > t} is a solution of

(Pλ(1−t)) : min
E⊆C

{Pγ(E) − λ(1 − t)γ(E)} .

The same result holds for the set {uλ ≥ t}. If λ > λC and t < maxuλ, the solution of (Pλ(1−t))
is unique (modulo γ-null sets) and convex. Moreover, there exists a maximal convex γ-Cheeger
set K ⊆ C, which is equal to {uλ = ‖uλ‖∞} for all λ > λC = λK = λ(1 − ‖uλ‖∞), and there
exists a unique convex minimizer Cµ of (32) for all µ > λC.

Proof. We observe that, as in Proposition 34, there is a solution of (Pλ(1−t)) for any t ∈ [0, 1].
Let us denote it by Ft. By Lemma 8 and Remark 35, we have that Ft ⊆ Ft′ if t > t′. Let

w(x) := sup{t ∈ [0, 1] : x ∈ Ft}.
Then {w > t} = Ft for a.e. t ∈ (inf w, supw), 0 ≤ w ≤ 1, and w ≡ 0 out of C. Since

∫ 1

0

Pγ(Ft) dt ≤ λ

∫ 1

0

(1 − t)γ(Ft) dt =
λ

2

∫

X

(w − 1C)2 − λ

2
γ(C),

it follows that w ∈ BV (X, γ). Moreover,

|Dγw|(X) +
λ

2

∫

X

(w − 1C)2 dx =

∫ 1

0

Pγ(Ft) dt− λ

∫ 1

0

(1 − t)γ(Ft) dt+
λ

2
γ(C)

≤
∫ 1

0

Pγ(Eλ
t ) dt− λ

∫ 1

0

(1 − t)γ(Eλ
t ) dt+

λ

2
γ(C)

= |Dγuλ|(X) +
λ

2

∫

X

(uλ − 1C)2 dx.
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Since the solution of (34) is unique, we have w = uλ. Then {w > t} = Eλ
t for a.e. in t ∈ [0, 1],

that is, there exists a subset I ⊆ [0, 1], with |I| = 1, such that Eλ
t is a solution of (Pλ(1−t)) for

any t ∈ I. If t ∈ [0, 1], we may approximate it by a sequence tn ∈ I so that Eλ
tn

is a solution of
(Pλ(1−tn)). Passing to the limit as n→ +∞, we then obtain that Eλ

t is a solution of (Pλ(1−t)).

If λ > λC and t < maxuλ, the convexity of Eλ
t follows from the concavity of uλ restricted

to the set {uλ > 0}.
Let now E′

t be another solution of (Pλ(1−t)). By Lemma 8, if t1 < t < t2 we haveEλ
t2 ⊆ E′

t ⊆
Eλ

t1 , hence {uλ > t} ⊆ E′
t ⊆ {uλ ≥ t}. By Theorem 4 we then have E′

t = {uλ > t} = {uλ ≥ t}
modulo a γ-null set.

The last statements follow exactly as in [2, Section 4].

We point out that in the previous proof we did not use Proposition 34.

As in the finite dimensional case, Proposition 37 implies the following result.

Theorem 38. Let C be a bounded convex subset of X with nonempty interior. Assume that
C has finite perimeter. For any V ∈ [γ(K), γ(C)], there exists a unique convex solution of the
constrained isoperimetric problem

min{Pγ(F ) : F ⊆ C, γ(F ) = V }. (36)
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