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Abstract

We study the approximation of driven motion by crystalline curvature in two dimen-
sions with a reaction-diffusion type differential inclusion. A quasi-optimal O(g?|loge|?)
and an optimal O(g?) error bound between the original flow and the zero level set of
the approximate solution are proved, for the regular and the double obstacle potential
respectively. This result is valid before the onset of singularities, and applies when
the driving force g does not depend on the space variable z. A comparison principle
between crystalline flows and a notion of weak solution for crystalline evolutions, for
suitable g(z,t), are also obtained.

1 Introduction

The interest in anisotropic fronts evolutions is motivated by many physical examples where
an interface propagation with preferred directions is evident [13], [14], [12], [10]. Anisotropic
motion by mean curvature is also strictly related to the geometry of convex bodies [45], [41]
and with the theory of Minkowskian and Finsler spaces [3], [33], [31], [8], [47].
When the anisotropy is described by a smooth norm ¢ on IRY, a possible way to describe the
geometric evolution problem is to consider the asymptotic limit, as € — 07, of the zero-level
set of the solutions to the reaction-diffusion type equation

— div(¢°(Vu)sg(Vu) ) + %xy (w)~ g =0 inR¥x 0, 7] (1)
Here ¢° is the dual norm of ¢, ¢¢ := V¢?, the function ¥ is a double well potential, ¢y > 0
is a suitable constant and g is a given forcing term. Unless ¢ is Riemannian, the operator

div (q&o()qﬁg()) is nonlinear. It is known [8], [20], [19] that the zero level set of the solution to
(1) provides an approximation for the motion of an interface evolving with the law “velocity

— (k¢ + g)” along the anisotropic normal direction ny (the Cahn-Hoffmann vector), where
K¢ is the ¢-mean curvature in the sense of [9]. In [5] is analyzed the case of an unequal



double well potential U. We refer to [1], [16], [18], [15], [21], for results concerning the
asymptotic behaviour of the solutions to the classical Allen-Cahn equation (i.e. equation (1)
for 6(€) = [¢]).

It is important to remark that equation (1) has a variational meaning, since it is the gradient
flow of a functional which approximates the perimeter of the front, computed with respect
to the distance induced by ¢ (see [9]).

As pointed out by Taylor [43], [44], [45], [46], the convex non smooth case plays a central role
among all anisotropies. In terms of unit balls, this means that the Wulff shape W,, := {¢ < 1}
is a convex body whose boundary may have nondifferentiability points and flat portions.
The crystalline case corresponds to the situation in which Wy is completely faceted, i.e. is a
convex polytope. This particular case presents interesting mathematical questions, especially
in N > 3 dimensions. Recently, results on crystalline motion by curvature in two dimensions
have been obtained, among others, in [39], [40], [29], [28], [42], [30], [38], [2], [23], [26], [24],
[22], [25]; concerning the three dimensional case we refer to [27].

The aim of this paper is to define a reaction-diffusion approximation to the crystalline motion
of fronts, and to rigorously prove an optimal interface error estimate, valid before the onset
of singularities, for driven crystalline evolutions in two dimensions. Our optimal result is
valid provided no new facets develop or disappear during the evolution, and if the forcing
term g does not depend on space. We also discuss some aspects of the (considerably more
difficult) space-dependent case ¢ = g(z,t). In particular, we prove a comparison result
for two dimensional driven crystalline flows, which slightly extends a result of Giga and
Gurtin [26]. Using this result, we define a weak solution for the driven crystalline motion by
curvature by using the barriers method of De Giorgi [17], [6]. Uniqueness and comparison
principle for this weak evolution are a direct consequence of its definition.

We remark that we consider, in the class of smooth crystalline flows, not only polygonal
domains, but also domains with piecewise C? curvilinear boundaries. This turns out to be
useful especially when g depends on space, when a flat portion of the front does not remain
flat during the evolution.

In the non smooth case, the map T°(§) := 1V(¢°(£)?) is a maximal monotone possibly

=3
multivalued operator, and we propose to modify (1) into the differential inclusion

wp — div ¢+ 2%2‘1;'(%) ~Dg=0, (1) € T(Vula,)) 2)
We prove that, if N = 2 and g = ¢(t), the zero level set of the solutions to (2) approximates,
with a quasi-optimal error estimate of order £?|loge|?, the original evolution. The parallel
result in the case of the double obstacle potential is given in Section 6.
The basic steps of the error estimate proof are the validity of a comparison lemma for (2)
(holding in any space dimension and for g = g(z,t)) and the construction of suitable sub- and
supersolutions to (2). This construction is not a straightforward extension of the one used
in the smooth anisotropic case, and is based on a careful extension of the Cahn-Hoffmann
vector field ny out of the front.
The outline of the paper is as follows. In Section 2 we give some notation and the definitions
of ¢-regular set (Definition 2.1) and ¢-curvature (Definition 2.2) in the crystalline case. We
make several remarks to motivate and clarify these two concepts. In Section 3 we define
what is a ¢-regular flow, and we prove short time existence of such a flow (see Theorem 3.1):



uniqueness of the flow (particularly for g = g(z,t)) is not a direct consequence of the proof
of Theorem 3.1, but follows a posteriori by Theorems 5.1 and 5.2. In Section 4 we introduce
the reaction-diffusion inclusion (2) and we prove (Lemma 4.1) the comparison result for sub-
and supersolutions to (2). Theorem 4.1 concerns existence and uniqueness of solutions to
(2). In Section 4 no restriction on the dimension is required. Also, g is allowed to depend
on space and the assumption that ¢ is crystalline is irrelevant. In Section 5 we prove the
quasi-optimal error estimate for the smooth potential and for g = g(¢) (see Theorem 5.1).
As a consequence, a comparison result between crystalline flows is proven (see Theorem 5.2).
Since Theorem 5.1 does not cover the space dependent case, the proof of the comparison
for suitable g(z,t) is sketched in the Appendix, under the no-fracture condition (15). Based
on Theorem 5.2, in Definition 5.2 we introduce the weak driven crystalline evolutions. The
double obstacle formulation is discussed in Section 6.

The extension of the error estimate to the more difficult cases in which g depends on z and
N > 3 will be object of further investigation.

Acknowledgments. We thank Maurizio Paolini for many useful suggestions; we also thank
Giuseppe Savare and Marco De Giovanni for helpful comments.

2 Setting

In what follows Q C IR? is a bounded convex open set with smooth boundary. We denote
by - the euclidean scalar product in IR?, by H' the 1-dimensional Hausdorff measure, and
by dy the euclidean Hausdorff distance between subsets of IR2.

We indicate by ¢ : IR> — [0, +00[ a convex function satisfying the properties

¢(af) = ap(§), €€’ a0, (3)
AEN< o(6) < Algl, e (4)

for two suitable positive constants 0 < A < A < +00. We do not assume that ¢ is even.
The dual function ¢° : IR”> — [0, +o0[ of ¢ is defined [37] by

¢°(&") =sup{&- ¢ : 4(¢) <1}, ER

Notice that ¢° is convex, satisfies properties (3) and (4), and ¢ = ¢.
We set

For={& eR:4°(€) <1}, Wy={6€R*: 6(§) <1}
F4 is usually called the Frank diagram and W, the Wulff shape; they are two convex sets
whose interior parts contain the origin.
We say that ¢ is crystalline if W, is a (convex) polygon. If ¢ is crystalline then also F; is a
(convex) polygon. In this case the edges of W, and Fy will be called facets; F, is the convex
hull of the normal vectors to the facets of W, (normalized to have ¢° = 1), see [41, Lemma
2.4.5).
Unless otherwise specified, from now on we assume that ¢ is crystalline. Given E C IR?, we
set

disty(z, E) := ;Ielgqﬁ(x —y), disty(E, x) := ;25 oy — x), r € R?,



and we let df be the oriented ¢-distance function from OF negative inside F, i.e.
dj (z) := disty(z, E) — disty(R* \ E, ).
Reasoning as in [9] one can prove that
¢°(Vdg) =1 (5)

at each point where df is differentiable. We let also vg : OE — IR? be the usual outward
euclidean unit normal to OF (when it exists); we have

Vb (z) = %, v € OE.

If t € [a,b] — E(t) C IR? is a parametrized family of subsets of IR?, we let

dy " () := disty(w, E(t)) — dists(R? \ E(t), z).

From now on, the symbols E and E(t) will denote always closed sets with compact boundary,
such that OF, 0FE(t) C €.
Let 7° : IR?> — P(IR?) be the map defined by

o) = S0E), € R,

where P(IR?) is the class of all subsets of IR? and 0 denotes the subdifferential. 7 is usually
called the duality mapping (see [4]); it is a maximal monotone multivalued operator, hence

&G —8&)-(m—m) >0, &,& R, meT’(E), mel (&) (6)
moreover
T°(af*) = aT°(¢*), € €R? a>0. (7)
Notice that
T°(Fp) = We.

One can show that
£-E=¢°() =0(8)° & eR’, eI, (8)
and
&-E2 NP & eR?, EeTE).

When F, and W, are symmetric and smooth, we can define the so-called Cahn-Hoffmann
vector ny as follows. Let E be of class C*; then ny := T°(Vd}) on OF (see [§]). In the
crystalline case the pointwise definition of ny is more delicate. It turns out to be convenient
also to redefine what we mean by a smooth boundary with respect to ¢. In Definition 2.1
we give the notion of ¢-regular set: a ¢ regular set can have a polygonal boundary (with
edges suitably oriented) but also a boundary with a finite number of arcs of class C%: this
enlargement of the class of “admissible” domains is necessary if the driving force g depends
on space, when a flat portion of the boundary does not remain flat during the evolution.



Definition 2.1. A ¢-regular set is a pair (E,ng) which satisfies the following properties:

(i) OE C 2 is a simple continuous closed curve, which is union of a finite number
Fi,... ,F, of C? closed arcs;

(it) the vector field n, : OF — IR? is continuous, N, is of class C' for anyi=1,...,m,
and

o(nsx) =1, « € OF; (9)

(11i) there holds
ng(z) € T° (Vdi(z)), =€ Uint(m), (10)

where int(F;) stands for the relative interior of F;;

(iv) there exists § > 0 such that |vg(z) —ve(y)| > 60 for z € int(F;), y € int(F}), j=i£1,
i=1,...,m (we set F,y1 := Fy and Fy .= F,;,);

(v) leti € {1,...,m}; if there exists x € int(F;) such that Vd} (z) is a vertez of Fy, then
vi(+) is constant on F; (i.e. F; is flat).

If a set E satisfies (i), (iv), (v) and there exists a vector field ny such that (E,ng) verifies
(i), (iii), we shortly say that E is ¢-reqular. The arcs of OF which are straight segments
will be called edges, and the endpoints of Fi, ..., F,, will be called vertices of OF.

Conditions (ii)-(iii) are crucial requirements on the vector field n,. Conditions (iv)-(v) are
technical requirements on JF, which probably could be weakened: they are however needed
to prove the desired O(g?|loge|?) interface error estimate of Theorem 5.1.

In general the same set E may admit more than one vector field ng so that it becomes
¢-regular. However, as we shall see at the end of this section, there will be a natural choice
of a special vector field.

The first example of ¢-regular set is given by W, coupled with the vector field z/¢(z).
Notice that, if (E,ny) is ¢-regular, then by (10), (9) and (8)

Vdy(z) - ng(z) =1, x € Uint(Fi).

i=1

Definition 2.2. Let (E,ny) be a ¢-reqular set and let Fy, ..., F,, be the arcs of OE. We
define the ¢-curvature ky of OF at each point z € JI—, int(F;) as

Kg(z) = div, ne(z),

where div, denotes the tangential divergence.



In the case (Wy,z/¢(z)), it turns out that xs(x) = 1. Note that the ¢-curvature of OF
depens on the choice of ny. Observe also that if F' is an edge of OF parallel to some facets
W of W, and with the same exterior euclidean normal vector, and if z € int(F), then
T°(Vdy(x)) = W and is independent of z € int(F).

The following remark shows that the class of ¢-regular sets contains suitable polygonal
domains.

Remark 2.1. Let OF be a closed simple polygonal curve and let Fi, ... , F,, be the edges of
OFE. Assume that Vd¢| () is a vertex of Fy (this condition implies that F; is parallel to

some facet of W¢,) and that Vd¢\ nt(F) and Vd¢ fint(Fi,
any i =1,...,m. Then E is ¢- Tegular

) are consecutive vertices of Fg, for

The following remark shows that, at any vertex v of a ¢-regular set E, there is a uniquely
determined vector, which is the natural choice of the Cahn-Hoffmann vector at v.

Remark 2.2. Let (E,ny) be a ¢-reqular set and let v be a vertex of OE. Let us consider
the set

= N1°(VdE (). (11)

where the intersection is taken over all arcs of OE meeting at v, and where x; belongs to
interior of such arcs. Then n, is a singleton and ¢(n,) = 1.

Let E be a ¢-regular set. The arcs of OF can be divided into two groups Gi,G,: the group
g1 consists of the edges which are parallel to some facet of W, and having the same exterior
euclidean normal vector (in this case we say that the edge corresponds to some facet of W;);
Gs consists of the remaining arcs (some of which can be flat). From Definition 2.1 it follows
that for any facet W of W, there exists an edge of OF corresponding to W. Moreover, for an
arc F' of OF in Gy, from Definition 2.1 it follows that there is only one possible choice of the
Cahn-Hoffman vector n, in F', given by T°(vg)/¢°(vg) (which is constant on F'), hence F
has zero ¢-curvature. For an edge F; of G, there exists a special choice of ny on F; such that
F; has constant ¢-curvature. If P; and @); are the endpoints of F}, this choice corresponds to
take the convex combination of n4(P;) and n4(Q;) (which are uniquely defined, recall (11)),
ie.

—(z — P), z € Fj, (12)

where L; is the length of F}, [; is the length of the facet of W, corresponding to F;, and the
quantity ¢; € {0,£1} is defined as follows: 6; = 1 (resp. §; = —1) if the tern of consecutive
arcs (F;_1, F}, Fi41) is a convex (resp. concave) tern, 6; = 0 otherwise. With this choice of n
the curvature 4 is constant on any edge of OE, more precisely x4 = (6;/;)/L; on F;. Notice
that if F; is an arc of Gy, we can consistently define §; = 0.

In the following we shall always consider ¢-regular sets E equipped with the uniquely deter-
mined choice of the Cahn-Hoffman vector ny4 described above. The notation 6;, I;, L; will be
systematically used in the paper.



3 Geometric evolution law

Throughout the paper, we will specify time by time if the function g depends on space or
not. In the general case, we assume that g is continuous on Q x [0, +00[. A severe restriction
on g, assumed in Sections 5, 6 and in the Appendix, is condition (15) below.

We now define the notion of ¢-regular flow as a ¢-regular evolution of a boundary moving
with velocity, in the ng-direction, equal to — (kg + g).

Definition 3.1. Let T > 0; a ¢-regular flow on [0,T] is a family of pairs (E(t),ne(-,t)),
t € [0,T], which satisfies the following properties:

(1) (E(t),n4(-,1)) is a ¢-regular set for any t € [0,T];

(2) neither a new arc of OE(t) can develop nor an arc can disappear during the evolution,
hence OE(t) consists of the same number m of arcs for any t € [0,T];

(3) for any x € U0 OF (1) the function df(t) (x) is differentiable in t for any t € [0,T]
and the following equation holds:

B()
ad,
ot

where Fy(t),..., Fy(t) are the arcs of OE(t).

In the following, we sometimes denote by F(t) a ¢-regular flow.

Condition (2) could be weakened (or even dropped); however, using (2), we are able to prove
the O(e?|loge|?) interface error estimate of Theorem 5.1. In Theorem 7.2 we shall see that,
under condition (15) below, the flow E(t) does not depend on the choice of n4(-,t), but only
on E(0).

Now, we want to derive some necessary conditions on ¢ in order to guarantee the existence
of a ¢-regular flow.

Let (E(t),ng(-,t)) be a ¢-regular flow on [0,7]. From equation (13) and condition (2) of
Definition 3.1, it follows that div,ne(z,t) + g(x,t) must be constant on any edge of 0E(?)
corresponding to some facet of W,. Let Fj(t) be such an edge and let P;(t), Q;(t) be its
endpoints. Set g,(t) := fFi(t) g(z,t) dH'(2)/L;(t). For any x € int(F;(t)), we have

li
Li(t)

(x) = div, ng(z,t) + g(z,t),  t€[0,T], z €| Jint(Fi(t)), (13)

i=1

l€¢($, t) = 5z

+9;(t) — g(z, 1),
(14)

x

no(, 1) = ng(Pi(t)) + (1) / ol 1) dH(2),

P;(t)

where 7;(t) := %(gi(t), i) Ifi ® stands for the integration on the segment with endpoints

P;(t) and z, and &;, l;, L;(t) are introduced after formula (12). Using (14), the condition
that ny belongs to the convex hull of n4(P;(t)) and ny(Q;(t)) reads as follows:

B L N VO 1 e 1 RN
el R O R e -

g(z,t) =7g,(t) Vz € Fi(t) if 9, = 0.



Recall that conditions (15) are assumed on the edges belonging to G;. Notice that, if F;(t) €
G1, at one of its endpoints, say P;(t), we deduce from (15) that

—li/Li(t) < 6;g;(t) — dig(Pi(t))- (16)

The following result shows that, under suitable conditions on ¢(z,t), there exists a ¢-regular
flow.

Theorem 3.1. Let (E,ngy) be a ¢-regular set. Assume that the function g(z,t) satisfies
conditions (15) at t = 0 (on each edge of OF corresponding to some facet of Wy) with <
replaced by <. Then there exist T > 0 and a ¢-regular flow (E(t),n(-,t)) on [0,T], such
that (E(0),n4(-,0)) = (E,n4("))-

Proof. Let Fi, ..., F,, be the arcs of OE. We first consider arcs of G,; let F; be such an arc.
We define g, as the Cb! curve whose trace is composed by F; and the two half straight lines
tangent to F; at its endpoints. Let us now flow 7 under equation (13). It admits a unique
local in time solution 7yg,(t) defined on [0,7}] (see [32]), for some T; > 0. We can assume
that 77 is independent of F; varying among the arcs of F in G;. Let ~(t) be the vector
composed of such g, (1).

Let now Fi,...,F; be the edges of OF corresponding to facets of W, (having lengths
li,...,lx) and let o(t) := (01(t),...,0k(t)), t € [0,T], be the solution to the following
system:

d l; _
d_tai(t) = H(o(t),(t)) = —(5im + gi(t))i )
a(0) =0,

where Fj(t) are segments such that
inf {$(z—y): z€R(t), y €y} =0it), ifoilt) >0,

inf {¢(y —2): z €p(t), y €V} = —0i(t), if o3(t) <0

and L;(t) is the length of Fj(t).

Observe that E(t), the set enclosed by all vy, (¢) and Fi(t), is uniquely determined by o(¢)
and y(t).

Notice also that, since the function H is Lipschitz continuous in ¢ in a neighbourhood of
o(0) = 0, equation (17) admits a solution for a suitable T' € |0, T}].

We have to show that E(t) is ¢-regular. Possibly reducing 7" we can assume that conditions
(15) and conditions (iv) and (v) of Definition 2.1 hold on 0F(t) for any ¢ € [0,7T]. Then, if
we define ny(z,t) as in (14), it is easy to check that (E(t), n4(-,t)) is a ¢-regular flow starting
from (E,ng4(-)). 0

Summing up, if E(?) is a ¢-regular flow, the velocity of an edge F;(t) of 0E(t), with Fi(t) € G,
is —(k4(t) + g;(t))ng(x, 1), where w}(t) := &1;/Li(t) and g,(t) := fFi(t)g(z,t) dH'(2)/L;(t),
while the velocity of a point x belonging to an arc F'(t) € Go, is simply —g(z,t)ng(z,t).



Remark 3.1. In principle, the evolution constructed in the proof of Theorem 3.1 may depend
on the extension yg,. Actually, the evolution is unique, see Theorem 7.2.

Remark 3.2. [t is not difficult to check that conditions (15) are equivalent to requiring that
no new arcs create during the evolution (no-fracture condition).

4 Relaxed evolution law

The results of this section are valid in any space dimension N > 2. The extension of the
required definitions of Section 2 to the N-dimensional case are obvious. The function g is
here assumed to belong to H'(0,T; L?(2)); also the restriction on ¢ to be crystalline can be
dropped, thus assuming on ¢ only convexity and conditions (3) and (4) in IR".

The double well potential ¥ : IR — [0, +00[ is, as usual, an even function of class C? having
only two zeroes at {—1,1}, say ¥(s) = (1 — s?)% We set ¢ := ¥'/2, and

a=¢(£l),  B:=9"(1) =—¢"(-1).

We also define the functional &4 as
£,(v) i= / (6°(V0))? + U(v) dz, e H'(Q).
Q

We denote by v the unique minimizer of the functional v — [ [v'|* + ¥(v)dz, over all
v € HL_(IR) such that v(£oo) = £1 and v(0) = 0; v is a smooth strictly increasing function

loc
exponentially asymptotic, at =00, to the two stable zeroes £1 of ¢, and

=" +¢(7) =0. (18)

We denote by £ : HZ (IR) — L2 (IR) the selfadjoint operator obtained by linearization of

loc
(18) around v, i.e.
L ="+ ()¢
We set

Co := /]R(V')2 dy.

We recall the definitions of the shape functions 7, x € H2.(IR) and w € H?(IR), which have

been introduced and studied in [7]. They solve the problems

1

5#}"(7)772, Lw=—yy.

C
£n=—7’+5°, Lx=—n —

Since the right hand side (say f) satisfy the orthogonality condition [ f+'dy = 0, any

such solution (say v) exists and is unique if we further require v(0) = 0 and a polynomial

growth at infinity [7]. Moreover 71 is even, x,w are odd, lirin n(y) = c/(2a) = N,
y—+o0

. _ 2 3\ .
yggloox(y) = FcB/(8a°) = X0,

7= ool 1] < CA+ DYy Ix = Xools [X]s 0], [w] £ CA+ Y)Y, yeR,  (19)



where C is an absolute positive constant.

Let us now introduce the relaxed evolution problems. Let be given ¢ > 0, 7" > 0, and wuy
such that &;(ug) < +o00. Let us consider the problem

1
(1 — div(T*(Vu) + o) > g nQ,
€ 2e
ul(+,0) = up(:) in €, (20)
ou i
a0 = 0 in 0O x 10,77,

where vq is the outward unit normal to Q2 and @ := Qx ]0,7[. The notion of variational
sub- and supersolution of (20) reads as follows.

Definition 4.1. A couple (u,() is a subsolution of (20) if, for any T > 0, the following
properties hold:

(i) v e L>®(0,T; H'(Q)) N H*(0,T; L*(Q)) and ¢ € (LA(Q))Y;
(i) for any ¢ € H'(Q;]0,+00[) and a.e. t € |0, T there holds

1 Co .
/Q (Utsﬁ +C-Vep+ E—Q@b(u)éo - 2—89S0> dx < 0; (21)

(11i) for a.e. x € Q there holds u(x,0) < ug(x);
(iv) for a.e. (x,t) € Q there holds

((x,t) € T°(Vu(z,t)). (22)

The couple (u, () is a supersolution of (20) if (i) and (iv) hold, and conditions (ii) and (iii)
hold with > in place of <. The couple (u,() is a solution of (20) if it is both a subsolution
and a supersolution.

Notice that by (i), (22) and (4), we have ¢ € L*®(0,T; (L*(2))").
The following elementary comparison lemma is crucial for proving the main results.

Lemma 4.1. Let (u1,(;) and (uq, (o) be respectively a subsolution and a supersolution of
(20). Then
Uy < Ug a.e. in Q.

Proof. Define e := u; — up and e* := max(e,0) € L*(0,T; H'(Q;[0,+o0[)). Denote for
simplicity by (-, -) the scalar product in L?(2). Fix 7 € |0, T[ such that (21) holds for u; and
with > for uy, and et (-,7) € H'(). Choosing ¢(-) = e™ (-, 7), subtracting the two resulting



inequalities and recalling that ¢ = v, + 1, where v, is monotone and ; is Lipschitz
continuous with Lipschitz constant L, we have

(e1 ) +(Gh = G V) 5 (W) = hlaa), ) + S5 () = () )
=I+IT+1IT+1V <0.

For a.e. t € 0,77, let us integrate with respect to 7 € ]0,¢[, and let us analyze separately
each resulting term. We have

¢ 1 (td
/IdT:—/—/(6+)2d$dT
0 2 Jo d7t Jq
1 2 2 1 2
= (14Dl = 1 (- Oln) = 2lle* (DM

as et (-,0) = 0. Concerning I, as T° is a monotone operator, by (22) and (6) we have

t ¢
/ II dr = / / (1 — ) - (Vuy — Vug) dx dr > 0,
0 0 J{et>0}

and, as 1; is monotone,

t t
[}dezg;ﬂ[;wquuo—wmngm—ugdeo

Therefore

t

1 2
§||e+(.,t)||L2(Q) —i—/o IV dr <0,

which, combined with the fact that v, is L-Lipschitz, gives

t 9 [t
||€+('at)||i2(9) < 2/0 V] dr < 5_2/0 /Q|¢z(u1) — Yy(ug)|et dx dr

2L [* 2L [* 2
<25 [ [ e dodr =23 et nleydr
0 JQ 0

Applying Gronwall’s Lemma, we have ||e+(-,t)||L2(Q) =0, and thus et = 0 a.e. in Q. 0

Notice that to prove Lemma 4.1 no relations between (; and (5 are required.
The existence of a solution to (20) can be proved by using the methods of [11], [48]. Unique-
ness of the solution is a consequence of Lemma 4.1. We thus have the following result.

Theorem 4.1. Problem (20) admits a solution (u, (). Moreover, if (u1,(;) and (us, () are
two solutions of (20), then u; = uy a.e. in Q.

One can prove [48] that, if there exists {; € T°(Vug) such that div(, € L?(2), then the
solution (u, () to (20) is such that u € WH*(0,T; L*(R2)) and Ey(u) € WH(0,T). If u is
bounded on ) then one gets also div¢ € L*®(0,T; L*(2)).

Remark 4.1. Assume that N = 2 and that ¢ is crystalline. We do not know whether the
solution u belongs to C°(Q). This regularity result is however irrelevant in the proof of
Theorem 5.1.



5 Main results

All results of this section are valid in N = 2 dimensions and for a crystalline ¢. The proof
of the following theorem is not a straightforward modification of the proof for motion by
curvature with a smooth homogeneous anisotropy (see [5]).

Theorem 5.1. Assume that (E(t),ne(-,t)) is a ¢—regular flow on [0,T], with g = g(t). For
any € > 0 let u. be the solution to problem (20) with initial datum as in (32) below. Let
Y (t) = {z € Q : uz,t) = 0}. Then there erist g € |0,1] and a constant C depending
on 0E(0), g, T, and independent of ¢ € 10,¢¢], such that for all € € |0,&0] the following
quasi-optimal interface error estimate holds:

sup dg(X.(t),0E(t)) < Ce?|logel®. (23)
te[0,T]

A comment is in order about the above definition of X.(¢). Since we do not know if u, is
continuous, Y. (¢) must be intended as follows. The set {x € Q : u.(z,t) = 0} is defined as
the complement in Q of {z : u.(z,t) > 0}* U {x : u.(z,t) < 0}*, where, for any set C C Q,
we define C* := {zx € Q:3p > 0:|B,(z) \ C| = 0}, and B,(x) denotes the euclidean ball of
radius p centered at x.

Proof. For any t € [0,T] denote by v(),... ,v,(t) the vertices of OE(t), set vy(t) := vy (),
Um+1(t) := vi(t), and let F;(t) be the arc of 0F(t) having endpoints v;_y(t),v;(t) for i =
1,...,m. Let g (t) be the Cb' curve whose trace contains F;(t) and the two half straight
lines tangent to F;(t) at v;_1(t) and v;(t). Denote by d; the oriented ¢-distance function
from g, (t) negative in the half plane which, in a neighbourhood of F;(t), contains E(t); we

set dy(z,t) := df(t) (x), and

de(x,t
y=vy(x,t) = ¢(€ ), Ye = Ye(z, 1) = y(z, 1) — 0(t)e| loge|?,
(24)
i i di(,t i i i
Yt = y'(z,t) == ( ), yl =y (z,t) = y'(z,t) — O(t)e|loge|?,

where
0(t) := cexp (1 +1 max, 1651 o 0B (7)) ) te[0,77,

and ¢ > 0 is a constant large enough to be defined later on independently of ¢ (see Step 6).
Let 6 > 3 be a fixed natural number such that, if for any ¢ € |0, 1] we let z. := J|loge|, then
Y(£2.) = 1+ O(e%?), ¥ (+2.) = O(%), and

n(£2) — N, |7 (£20)| = |loge|O (%),
Jw(£2e) |, [w'(Z2e)]s [x(£22) — Xool» X (£2e)| = loge|*O(?).

Arguing as in [7], we can construct four functions

Yer Ney We, Xe € CPHIR) N C® (R \ {£2., £22.}), (25)



which coincide, respectively, with 7,7, w,x on [—z., z:] and are constant (and assume the
corresponding asymptotic values £1, 7, 0, =X ) outside the interval | — 2z.,2z.[. We can
also assume that these functions satisfy (19), and that -, is strictly increasing on | — 2z, 22|
(provided ¢ is small enough).

For any ¢ € [0, T, we set

Te(t) :={z € Q: |ye(z, 1) <2z}, T = Uepm Te(8) x {t},

T @) ={z € Qiy(z,t) < =2z}, TF(t) ={z € Q:ycz,t) > 2z},
and, for any i € {1,... ,m},

Sit) ={z € Q:lyilz,t)| <2z},  Qt) :=S() NS (),

1i(0) = S n @ 0 (AU 20).

Notice that, since H!(F;(t)) > 0 for any 4 and for any ¢ € [0,7], for i # j one can find
£ > 0 small enough such that Q'(t) N QI(t) =0, t € [0,T], € € ]0,g]. Observe also that the
neighbourhood 7;(t) of OF(t) is the disjoint union of the m boxes Q¢ (¢) around the vertices,
and of the m portions of strips T7(t).

In the sequel we shall assume that € € ]0,2] is small enough such that the closure of
Utepo,r 7= (t) is contained in €.

Following the suggestion of a formal inner asymptotic expansion, we want to define on
Q) x [0,7T] a subsolution (v_,(-) and a supersolution (v}, () to (20), and we want vF to be
continuous. To get the optimal error estimate, we need to carefully match the level lines of
v around the vertices of OE(t).

For any i € {1,...,m} we denote by () the ¢-curvature of Fy(t). We divide the proof
into six steps.

Step 1. Definition of v .
For any i € {1,...,m} and = € S(t) set

T, t) = 7 (yl) + ene(yD) g () +7 [(K4 (1)) "we (yl) + g° () x-(y2)] — Oe®|loge>  (26)

where © > 0 is a constant which will be determined later on independently of ¢ (see Steps
5,6). Let I C{1,...,m} besuch that i € I if and only if E'(¢) is convex in a neighbourhood
of v;(t) (observe that I does not depend on t). We define v_ : Q x [0,7] — IR as follows:

(e {l,...,m}, x € T(t) = v (z,t) := [(x, 1),
i€l, z € Qi(t) = v (z,t) :== max ('(z, t), [ (z,1)),
s ite{l,...,m}\I, z € Q(t) = v, (z,t) := min (['(, 1), [ (z,1)), (27)

z €T (t) = v (z,t) := —1 + ennog(t) + e2x00g?(t) — O3 loge|?,

[ 2 €TH(t) = vZ (2,1) 1= 1+ enoog(t) + £°Xaog”(t) — O|logel|*.



Notice that v € L>®(0,7; H' ()N H'(0,T; L*()) for any & > 0. Moreover, taking ¢ small
enough, one can check that v_ is continuous on © x [0,7]; this follows from the fact that
the function I'’, if considered as a function of ¢!, is strictly increasing on | — 2z,, 2z.[. Recall
that, in general, s, (t) # nf;l(t) (hence k4(t) is discontinuous along OFE(t)): this is the main
reason of the above definition of v on Q%(t). The effect is to perturb the level lines of v
in Q' (t): the perturbation can however be controlled in terms of ¢, see Step 3 below. In a
similar fashion we can define v by changing the sign in front of 6(¢) in (24) and in front of

© in (26) and (27).

Step 2. Definition of nj. We now define a suitable extension ng, on the whole of 7, of
the Cahn-Hoffmann vector field ng(-,t) : 0E(t) — IR?. Let ¢t € [0,7], € T-(t) and let
i(z) € {1,...,m} be such that v (z,t) = rie) (x,t); if i(x) is not uniquely determined
we just choose one of the two possible indices. Let F.(x,t) be the closure of the set {z €
T-(t) : v7 (2,t) = v7 (z,1),i(z) = i(z)}, and let P.(z,1), Q.(z,t) be the endpoints of F,(z,t)
corresponding to the endpoints Pj)(t) and Qi) (t) of Fi(4)(t). It is enough to consider the
case when Fj;)(t) corresponds to some facet of W,; in the other cases, as the Cahn-Hoffmann
vector field is constant, the extension is trivial. Recalling that ng(Pi)(t)) and ne(Qi) (t))
are uniquely determined, we set

ng(Pe(,1)) 7= ng(Pia) (1)), 1g(Qe(x,1)) = 14(Qi(x) (1)), (28)

and finally we define ng, on F_(z,t) as the linear combination of ng(P.(z,t)) and ng(Q.(z,1)).
In this way nf : 7; — IR?) and ng(-,t) = ng(-,t) on OE(), t € [0,T].
It is immediate to check that

ng(z,t) € T°(Vdiw (z,1)), a.e. (z,t) € 7. (29)

Notice that, with this choice of nj, the level line {z € T.(t) : v_ (2,1) = v_(z,t)} is the
boundary of a ¢-regular set for € small enough.
Set for simplicity

i(z 2
ho(w,t) = (g7 (1) bla,1) = (he(w,8), 6°(1), P = (wer Xo):
The next step is crucial in order to get the desired O(g?|loge|?) error estimate.

Step 3. The extension ng defined in Step 2 satisties

div,n§ (@, 1) = K57 (t) = digwy (@, t)hs(@, 8) + O(*| loge[?),  ae. (z,t) €T (30)

Let t € [0,T], x € T:(t), and i(x) be as in the proof of Step 2. Let Ly)(t) := |Pyq)(t) —
Qz’(z) (t)| denote the length of Fz’(w) (1), Ti(z) (t) := (Qi(w) (t) — Pz'(w) (t))/Li(w) (1), let li(z) be the
length of the facet of W corresponding to Fj)(t) (if there are no facets of W corresponding
to Fi(z)(t) we set li;) = 0). By (28) and the definition of n4* we have

i 0,t) = na(Pa () + s [n6(Qu () = P 0)
|P.(x,t) — x|

= el O T 1y Qo gy PO
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Figure 1: in this example we have i := i(z), §; = 1 and AL = (Q-(z,t) — Q'(z,t) — P(z,t) +
P'(z,t)) - 1i(t)

Let us write

see Figure 1. Recalling that /{;(T“) (t) = bi)li(z)/ Li(z) (1), we get

di(a)li(a)
x — P(x,t)
Li(z)(t) + di(a) (2, 1) Si(a)liz) + AL ( )

= ny(Pia) (1)) + [K3" (8) = digay (2, g (2, 1)] (2 = P(,1)) + O((digw) (@, 1))?) + O(AL).

g (7,t) = ng(Pya) (t)) +

Since div,nj is the derivative of nf - 7,y with respect to the arc-length parameter on F.(z,1),
we get .
div,ng, = k7 () — diga) (2, h(2, 1) + O((dia) (x,1))?) + O(AL).

As z € T.(t) we have (di)(z,1))? = O(e?|logel?), therefore to prove (30) it is enough to
show that AL = O(£?|loge|?); actually we shall prove that AL = O(£3|loge|?).
Fori e {1,...,m}, we let

Ve(x,t) = 7e(2) + ene()g(t) + €[ (k5 (1)) *w: (2) + g*(t) xe(2)] — O€®|logel?, = € IR.

Notice that (-, t) is strictly increasing on | —2z,, 2z.[ for € small enough. Fix now ¢ € v (7;)
and let z := 7. 1(c). From the relation

(p+eq)™(c) =p " (c) - 5%
L 207 OO DO | s



we get

As e 'AL = O(sup;; |(72) " (¢) — (¥2)7*(¢)|), from the above equality and (19) we obtain

eIAL = 520(s1,1jp [(5(8) = (W5,(1))?] ‘;((j))) — 22(1 4+ 22)0(1) = O(?| loge]?).

Therefore AL = O(e®|loge|?). This concludes the proof of (30).
Notice that

div,ng(z,t) = divng(z,1) t€[0,T], ae. z€T(t). (31)

Step 4. Definition of (.
Let

e we ™) + i (ye™)g (1) + eb(a, ) - PLYEng (@, t)  on T,
¢ (1) :=
0 elsewhere in Q2 x [0, T'].

Notice that (. € (L*(2 x [0,T]))%. Let us check that (  (x,t) € T°(Vv, (z,t)) for any
t € [0,7] and for a.e. z € Q. A direct computation yields

T°(V;)
=Tl .(6) + n (55 g (1) + eb(z, 1) - PL(HD) Velia) (2, 1) + 2w (5i2) Thg(2,1))

Since k, is constant on each arc of 0F(t), recalling the definition of hy; we obtain that for
almost every z € 7.(t) there holds Vhy(z,t) = 0. Therefore, using (7), we get

T°(Vo,) = e 7 w) + ne(we)g(t) + eb(a, 1) - pLYENT (Vi (2,1)) 3 ¢, (2, 8).
In a similar fashion we can define (" by changing the sign in front of §(¢) in (24) and in

front of © in (26) and (27).

The crucial result is to prove that v; < u. < v, u. being the solution to (20) with the
initial datum u? defined in (32) below. To this aim we shall focus our attention to v_ .
The initial datum for problem (20) is fixed as follows. For € > 0 we set

us(,0) = u(z) = 7 (y(2,0)) + en. (y(2,0))g(0) + £°X (y(=,0))g°(0).- (32)



Step 5. There exist a real number © > 0, independent of ¢, and £y > 0 such that v (-,0) <
u?(+) in €, for any 0 < & < &.

£
Indeed, it is enough to argue as in [5, Section 4.1].

Step 6. There exist g9 > 0, and real numbers ¢, ® > 0, both independent of &, such that for
any € € ]0,e0[ and ¢ € H'(2;[0, +o0[) there holds

Co

_ _ r
| (oo Vot o) - 200) da <o (33)

For simplicity we use the notation (v, ;) in place of (v, (7). Inequality (33) can be equiv-
alently written as

. 1 Co 1 Co
o, — div(, + =¢(v.) — —g goda:—i—/ Owe + <¥(v:) — =—9g)p dx
/m)(t Sw(v) - 529) NCER S OEE =0
+/ 0CovedH =T+ T, + T,
97:(t)

where v, denotes the a.e. defined euclidean outward unit normal to 07.(t).

FEvaluation of the integral Z;.
If b = (by,by) we set b, = (0;by, 01b2). Direct computations yield, for a.e. (z,t) € T,

Ow. = (7. +nlg+eb- P.)(Oidi(z) — 0'? loge|?) + eng; + £°by - p.,
where 7., 7., w, and x, are evaluated at yi“”). Hence by (13)
Owve = (6717, + nlg)kg + (671 +mLg)g — vie|loge[*d' + O(e),

where for simplicity of notation we set k4 := K,;(z). Furthermore

n

divg. = (e 297 +¢ 'nlg +b - D!)Vdia) - n§ + (¢ 7L + nlg +eb - pl)div nj.
Using (5), (8), (30), (31), recalling the definition of hy, and setting g. := v we get
div(. = ey +e'nlg+b-p! + (7', +nlg + eb - pL) (ky — diw)hg) + O(e|loge]?)
=y +e g +b-pl + (e + nig)ky
+ (67 + nlg) (=g — 0<®| loge|*)hg + O(e| loge*)

—-2_.n —1,.n

=2 +elg+b-p! + (e +1lg)ky
— YeGehy — 7. 0¢| 10g5\2h¢ + O(ellogel?).

Moreover we can expand

e P(ve) = *P(ve) + e gned’ (7e) + b - P ()

1
+ 5910 (7) — el loge[*¢/ (7)) + O(e)-



Hence, using (24) we get
1
Byv. — dive. + —b(v.) — ;—O&_g — L+ 1L + 1L + IV, + O(e|loge|?), (34)
19

where

L = (= +¥(7)),

II, = 5_19(55775 - 62_0 + ’yé)a
1 -
III, = =b-p! +b-p'(7.) + 59%%"(%) + Jevihg + 19
. 1
= hy[Lewe + TeVi] + $[Loxe + 1+ =n2" (6],

2
IV, = ~Oc|loge ¥/ (v.) — el loge[*8' + 7.0e| log e[ *h,

and we have denoted by L. : H.(R) — L (IR) the operator defined by £.( := —(" +
¥'(7.)¢. Notice that the O(e|loge|?) at the right hand side of (34) does not depend on c
and O.

Reasoning exactly as in [8] we have I, = II, =III, = o(e . For the sake of completeness,

we now repeat the argument of [7] concerning the term IV.. We have

25—3)

IV, = (6hg — 0')e|loge[*y. — Oc|loge|*Y' (7e)
< —be|loge[*y. — O¢|loge [’y (ve) = —¢|loge[* (07 + OY' (ve))-

As 1L 4+ 1Y (7.) is uniformly positive for a proper choice of the positive constant ¢;, we have
that, if ¢ and © are large enough (independently of €), the expression in (34) is non positive,
hence 7; < 0.

Similarly, following [7, Section 6.3] we have Z, < 0. Moreover, from the definition of (. it
follows that (.(z,t)),,.,, = 0 and then Zy = 0.

The proof of Step 6 is concluded.

Summing up, we have proved the following result: there exist ¢g > 0, an exponentially
increasing continuous function 6 : [0,7] — ]0,+oo[ and a real number © > 0, both inde-
pendent of €, such that, if u. denotes the solution to (20) with initial datum (32), then
vo (z,t) < uc(z,t) for a.e. (z,t) € Q and for e € )0, &)

Theorem 5.1 follows now arguing as in [8, Theorem 6.1]. 0

The extension of Theorem 5.1 to the case g = g(z,t) seems to be not easy, even if one looks
for the suboptimal O(e|loge|) interface error estimate.

We now prove a comparison result between ¢-regular flows: when g = ¢(t) we easily obtain
the comparison using Theorem 5.1; if ¢ = g(z,t) the proof follows from the results of the
Appendix.

Theorem 5.2. Let g(x,t) satisfy conditions (15) with < replaced by <. Let (E;(t), n((;)(-, t)),
(Es(t), ng)(-,t)) be two ¢-regular flows on [0,T]. Then

Ei(0) C By(0) = Ev(t) C Ex(t),  te[0,T]. (35)



Proof. Assume first that ¢ = g(¢). Let ¢ € {1,2} and let u be the function given by
Theorem 5.1, where the initial datum wu; is fixed as in (32), correspondingly to FE;. From
(32), for ¢ > 0 small enough we have uj, > uf, in Q. Hence, by Lemma 4.1, it follows that

ul > u® a.e. in Q. (36)

Applying (23) of Theorem 5.1, from (36) we get (35).
If g = g(=,t), the result is proved in the Appendix. o

Starting from Theorem 5.2, we can give a weak definition of evolution by crystalline curvature
valid for any initial set £ C IR? and defined for any ¢ € [0, 4+o0[, by means of the barriers
method of De Giorgi [17] (see [6]).

Let F be the family of all ¢-regular flows, i.e. f € F if and only if there exist a, b € [0, 400,
a < b, such that f : [a,b] — P(IR?), and there exists a vector field n, : Usegan 07 () x {t} —
IR? such that (f(t),ne(-,t)) is a ¢-regular flow on [a, b].

Definition 5.1. A function v is a barrier if and only if ¢ : [0, +oc[— P(IR?) and the
following property holds: if f € F, f : [a,b] C [0,4+o00[— P(IR?), and f(a) C ¥(a) then
f(b) C(b). We denote by B(F) the family of all barriers.

Definition 5.2. Let E C IR? be an arbitrary given set. The minimal barrier M(E, F) :
[0, +00[— P(IR?) (with origin in E at time 0) at any time t > 0 is defined by

M(E)(t) :=({¢(t) : ¢ € B(F), ¥(0) 2 E}.

As discussed in [6], to implement the barriers method we need only a comparison result
at the level of the elements of F, which is given by Theorem 5.2. Then, the following
properties follow: M(E) € B(F) (uniqueness of the minimal barrier), and E; C E, implies
M(E,) C M(E,) (comparison property).

One can also check that M(E)(0) = E, that the minimal barrier agrees with the elements
of F and that satisfies the semigroup property in time.

6 The double obstacle potential

In this section we want to discuss a different formulation of the relaxed evolution problem
(2), useful for computational purposes, showing an optimal interface error estimate valid in
N = 2 dimensions and for g = g(t).

More precisely, we define ¥(s) := 1 —s? if s € [-1,1] and ¥(s) := +oo if s ¢ [—1,1] (see
34], [35], [36]). Then 1 := LU’ is defined as ¢(—1) = (—o0,1], ¢(s) = —s if s € (=1,1),
(1) = [~1,00). The analogous to (18) is ¥+ > 0, whose solution in IR is the nondecreasing
function v, defined as y(y) = -1 ify < 3¢, y(y) =siny ify € [F, 5], v(y) = 1ify > 7.
Therefore, the first relation in (20) becomes

. o 1 m
up — div(T°(Vu)) — =2 9

We address (20) with the first relation replaced by (37) as the double obstacle problem DOP.

in Q. (37)



Definition 6.1. A couple (u,() is a subsolution of DOP if, for any T > 0, the following
properties hold:

(i) u € L*(0,T; H(Q; (—o0, 1])) N HY(0,T; L?(2)) and ¢ € (L*(Q))Y;

(ii) for any ¢ € H'(Q; [0, +oo|) with spt(p) C {z € Q : u(x,t) > =1} and a.e. t € |0, T
there holds

™

1
/(utso + (Vo — Sup — —gp) dv < 0; (38)
Q € 4e

(i1i) conditions (iii) and (iv) of Definition (4.1) hold.

The couple (u,() is a supersolution of DOP if (i) holds with H'(Q;(—o0,1]) replaced by
H'(Q;[—1,400)); condition (ii) holds with spt(¢) C {z € Q : u(z,t) > —1} replaced by
spt(p) C {x € Q : u(z,t) < 1} and with < replaced by > in (38); condition (iii) of Definition
4.1 holds with > in place of <, and condition (iv) of Definition 4.1 holds. The couple (u, ()
15 a solution of DOP if it is both a subsolution and a supersolution.

The analogous of Lemma 4.1 (and hence uniqueness of a solution to DOP) holds true also
(in arbitrary N dimension) for sub- and supersolutions of the double obstacle problem, with
a similar proof (observe that spt(e™) C {u; > —1} N {uy < 1}). Also, performing the
minimization of £; on the convex subset of all v € H'(Q) with |v| < 1, we can prove the
existence of a solution to DOP.

The main result of this section is the analogous of Theorem 5.1:

Theorem 6.1. Assume that (E(t),ne(-,t)) is a p—regular flow on [0, T, with g = ¢(t). For
any € > 0 let u. be the solution to the double obstacle problem with initial datum as in (44)
below. Let ¥, (t) :== {x € Q : u.(x,t) = 0}. Then there exist ¢g € ]0,1] and a constant C
depending on OF(0), g, T, and independent of ¢ € |0,¢o|, such that for all ¢ € |0,&o] the
following optimal interface error estimate holds:

sup dy(S.(t), 0E(t)) < Ce2. (39)

t€[0,T]

As in the regular case, the main steps for the validity of (39) are a comparison result and
a proper construction of the lower and upper barriers. Since they can be obtained by a
suitable modification of the proof of Theorem 5.1, in the following we will recall just the
sketch of the proof, pointing out the steps which differ from the regular case.

The modified distance functions in (24) have to be changed as follows:

Ye = Ye(w,1) = y(x,1) — eb(t) (*Cry(z,1)* + Ca),
yé = yz(mv t) == yi(xv t) — () (5201yi(x7 t)2 + 02):

where y(z,t) and y*(z,t) are defined in (24), Cy,Cy > 1 are suitable constants independent
of ¢ and G(t) = €2Kt, with K := maXOStST”lﬁi“Lw(aE(t».

For any t € [0,T], the sets T.(t), Tz, TX(t), Si(t), Q'(t) and Ti(t) are defined as in Section
5, with z. replaced by /4.



We recall the definition of the shape functions, introduced and studied in [35]. Let /[
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I e

denote the characteristic function of [-7, 7] and L= ("+(, for C € H'(-%,%),¢(£5) =0.
The shape functions n € CY'(IR) and x € C%!'(IR), solve the problems
5 , 5 .. T
= —_ — = - 4

The function n = 3(yy ++' — 5)Ij—z,z) is even and satisfies n(+£%3) = 7'(£3) = 0, and the
function x = 35(4y7' + (4y® — 7%)y)I;_z 71 is odd and satisfies x(+£%5) = 0. Since x’ exhibits
a jump discontinuity at +7, precisely [x'](£5) = F§, we introduce the auxiliary function
X_ € C%!(IR) which can be interpreted as a suitable shift of the original y, defined by
X— = X+ g7, which still solves the second equality in (40). Furthermore, x" is discontinuous
at —7 because [x_](—5) = §, but x_(5) = 0.

For any i € {1,... ,m} and z € S!(t) set

1

D, 8) =0+ enlyl)g(t) +¢((<5,(0)* + 59°() ) x- (v)): (41)

We define v : Q x [0,7] — [—1,1] as in (27) where the last two relations are replaced by
z € T (t) = v (z,t) := -1, r € TH(t) = v (z,t) := 1. (42)

The extension ng of the Cahn-Hoffman vector n, is done as in the regular case (Step 2,
Section 5). In particular, arguing exactly as in Step 3, we can show that

div,ng (@, 1) = 657 (t) — diggy (2, ) hg(2,1) + O(€?),  ae. (2,8) € T.. (43)

Let

— — i(z i(z 1 i(z 5
G (@, 8)=(7 () +97' (57 & (ol )+ 59°) X (1 = 26%0C 1) iy (a1
on 7:(t), and ¢ (z,t) =0 on Q\ 7-(t). Then (, (x,t) € T°(Vv, (z,t)) for any ¢t € [0,T] and
for a.e. x € Q.
The initial datum is fixed as

ue (2, 0) = ug(z) = (y(,0)). (44)

We have that (v_,() := (ve, () is a subsolution of DOP: precisely there exists 9 > 0 such
that for any & € )0, eo[ and p € H'(2;[0, +oo[) with spt(¢) C {z € Q : v (z,t) > —1} there
holds

™

1
“p 4+ (T -V — v p— <0. 4
/Q(atvs(p_*_gs 14 62vsgp 46.9@0) d.’L'_O (5)

The left hand side of (45) can be written as Z; + Z, + Z3, where

. 1 T T 1
1, = / @(atvs - leCE — U — _g> d.’l?, I, = _/ (_g + _2)(10 d:r,
Te(t) € e {or (=1} 47 €



and Z; = [, (1) (. Ve do. For ¢ sufficiently small [35] we have Z, < 0 and Z3 < 0. Moreover,
by (40) we can write

I, = / ¢<€7QI{‘ + 5711{’ +I7+ sIf + O(a)),
Te(t)

where 70 = —Ly =0, I? = —g(ﬁn—v’ + %) =0,7I¢ = —(h¢+ %g2> (EX, —ygy’) =0, and
Td = —e(t)( — 4C1y" + Coy (2K — hy) — 2017').

Arguing exactly as in [35], we can deduce that Z¢ < 0. Therefore the lower barrier verifies
the comparison lemma conditions. As for the regular case, the proof of the Theorem 6.1
follows arguing as in [7].

7 Appendix

In this appendix we discuss the maximum principle and the comparison principle for driven
crystalline evolutions. In what follows, the forcing term g is always assumed to fulfill (15).
The proofs are only sketched, since we slightly extend a known result proved by Giga and
Gurtin in [26]. Our result generalizes the one in [26], since ¢-regular sets may have arcs not
corresponding to facets of the Wulff shape (arcs in group Go), which are necessary because
the forcing term depends on space.

Let us introduce some notation. Let (E,n,) be a ¢-regular set, where n, is the (uniquely
defined as in Section 2) Cahn-Hoffmann vector field. If F is an arc of OF we denote by Lg
its length, and if F' corresponds to the facet W of Wy we denote by [y the length of W. We
also set Iig := dplp/Lp, with 6 € {0,£1}, depending on the local convexity or concavity
of OF at F, and gp(t) := ﬁ Jrg(z,t) dH'(2).

For a fixed t € [0, +o0[, let us introduce the function Vi : 9E — IR? defined as follows:

F COE, F € Gy, z €int(F) = Vg(z) := —ny(z) (] +7r(t)),
(46)
F COE, F €G,, z €int(F) = Vg(z) = —ng(x)g(z,1).

We now need to define Vi on the vertices of OF. Let z be a vertex of OF. By (46) there are
two vectors V;F(z) corresponding respectively to the two arcs F'* of OF meeting at z. Let
r* be the line passing through the point z + V() and parallel to the tangent vector to F*
at x. Vg(z) is then defined as the vector (r~ Nr™) — z. This vector is well-defined thanks
to property (iv) of Definition 2.1.

The function Vg is intuitively the velocity of each point of OF.

Let = be a vertex of OF. Let 71 be the tangent half-lines to OF at x, pointing locally outside
E (resp. inside E) if E is locally convex (resp. concave) at z. We define the set E is the
half-cone inside 7_ and 7. If z is not a vertex of OF, then F = E

A version of the maximum principle can be written as follows.



Theorem 7.1. Let (E;, n ) be two ¢-reqular sets, i = 1,2. Assume that E1 C Ey, and let
x € O0E1NOF,. The followmg statements hold.

(i) Let x € Fy N F,, where F; C 0F;, F; € G, fori = 1,2, and assume that Fy and Fy
correspond to the same facet W of W,. Then

Or, > 0m, K +0g () > K5 +Tp, (1), (47)

(ii) More generally, the vector © + Vi, (x) — Vi, (z) points locally out of Ey U Ej.

The complete proof of statement (ii) is long, because several different cases (due to the
presence of arcs both in G; and in G5) must be taken into account. A complete classification
has been given in the case ¢ = 0 and G, = ) in the paper [26]. Here we restrict ourselves to
sketch the proof of statement (i), which reveals the role played by the no-fracture condition
(15).

Proof of (i). Without loss of generality, we can assume that W has unitary length. The
inequality dp, > 0p, is immediate. We suppose that F; and E, are locally convex at z, i.e.
dp, = 0, = 1. Let P, Q1 (resp. P»,Q)y) be the endpoints of Fy (resp. of Fy). Assume also
P, # P; and Q1 # (2; the case of equalities can be obtained as a limit case. By conditions
(15) we have

—L 2|§|$—P2|§F _/ gﬁl—L 2|, z € Iy, (48)
Lg 2 L

2

where |, ;2 g means the integration of g(z,t) for z in the segment [P, z|, and we set for

simplicity gp, := g, (t)-
In particular, for x = P, and x = Q)1 we get

P, -P 1
_%S|PZ_P1‘§F2_/ 9, (49)
Fy Py
1 @ 1 1
g g < — ) 50
I~ |Q1 Pl Jp, 7T Qi —P| Lpg (50)
Inserting the obvious relation fgl g+ fgf 9 = LGy, into (50), we get
Q1 —Q B Q2
—¥ <|Q1 — Q2| Ig, — g. (51)
FQ 1
Summing (49) and (51) we get
Lp, — Lp, 1 h N T
=R <P = Pl - ) +1Q1 = @l ar. - )

= (Lr, — Lr) 9p, + L, G, — L, G, = L, (Gp, — Ty)-



Then the last inequality in (47) follows. 0

Observe that, if € int(F}), where Fy C 0E;, F} € G; and F; corresponds to W C 0W,,
then there exists F, C 0F,, F, € Gy, F, corresponding to W, such that x € F; N F;, and
statement (i) applies. The same observation holds replacing F} by F;, and vice-versa.

If in statement (i) we assume that F; € Gy for i = 1,2, then (47) reduces to the trivial
equality g(z,t) = g(z,t).

Assume that z € F; C OFE; is a vertex of 0F;, with Fy; € Gy, and = € int(F,), where
F> C 0F,, F, € Gy. Then from (16) we get K,gl (z,t) + G (t) > g(z,1).

Remark 7.1. If in Theorem 7.1 the set E; evolves with forcing term g;, with g, > g, then
the second inequality in (47) is strict and, in statement (it), the vector x + Vg,(z) — Vg, ()
points locally strictly out of F1 U Ej.

The following approximation result can be proved directly.

Lemma 7.1. Assume that the function g(z,t) satisfies conditions (15) with < replaced by
<. Let E be a ¢-reqular set, and let E(t) be the ¢-reqular flow on [0,T] starting from
E constructed in Theorem 3.1. Then there exist oy > 0 and ¢-regular flows E,(t), with
o € | — og,00[, such that E,(t) is a solution in [0,T] of the evolution equation velocity
= — (kg + g + 0)ng, starting from E. Moreover supe(o 7 limg—o du(0E,(t), 0E(t)) = 0.

Theorem 7.2. Let E be a ¢-regqular set and assume that the function g(x,t) satisfies con-
ditions (15) with < replaced by <. Then there exist T > 0 and a unique ¢-reqular flow E(t)
on [0,T] such that E(0) = E.

Proof. Assume that there exist two ¢-regular flows F (t), Ey(t) on [0,7], such that F;(0) =
E»(0) = E, and let E(t) be the ¢-regular flow constructed in Theorem 3.1. We shall prove
that E(t) = FE1(t) = Ey(t) for any ¢t € [0,T]. Let 0¢,0 and E,(t) be as in Lemma 7.1.
Assume also that o > 0. Let us show that E,(t) C E;(t) for t € [0,7] and i = 1,2.
Assume by contradiction that F,(t) is not contained in E;(t) for some ¢ € [0,7] and for
i either 1 or 2. Let t; be the infimum of such t. Then E,(ty) C E;(ty), and setting
n(t) := dist(0FE,(t), 0F;(t)), we have n(ty) = 0. Moreover, by Theorem 7.1 and Remark
7.1, we get lim inf,_, o+ w > (0, which leads to a contradiction. Hence E,(t) C E;(t),
and letting 0 — 0% we deduce E(t) C E;(t) for any ¢t € [0,7]. Choosing o € | — gy, 0] we
similarly obtain E,(t) DO E;(t), hence E(t) = E;(t) = E(t) for any ¢ € [0, 7. o

Using Theorem 7.2 we can now conclude the proof of Theorem 5.2. Indeed, reasoning as in
the proof of Theorem 7.2 with o € |0, 0¢[, we have E,(t) C FEy(t) for ¢t € [0,T], and letting
o — 0 we also get Fy(t) C E(t), for t € [0, T).
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