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Abstract

We rigorously derive the notion of crystalline mean curvature af an anisotropic par-
tition with no restriction on the space dimension. Our results cover the case of crys-
talline networks in two dimensions, polyhedral partitions in three dimensions, and generic
anisotropic partitions for smooth anisotropies. The natural equilibrium conditions on the
singular set of the partition are derived. We discuss several examples in two dimen-
sions (also for two adjacent triple junctions) and one example in three dimensions when
the Wulff shape is the unit cube. In the examples we analyze also the stability of the
partitions.

1 Introduction

The study of the properties of polycrystalline materials is an important field of research in
material science and in chemistry; in particular, understanding the geometry and the stability
of triple (and more generally multiple) junctions of interfaces is of interest in microstructures
and in the evolution of grain boundaries [8], [11], [17], [23], [21], [10].

In this paper we are interested in rigorously derive the notion of crystalline mean curvature of
an anisotropic partition with no restriction on the space dimension. Our study includes crys-
talline networks in two dimensions and polyhedral partitions in three dimensional space; we
can also treat an arbitrary smooth anisotropy. As a by-product of our results, we derive the
necessary conditions that multiple junctions must satisfy in order to be an equilibrium con-
figuration. We also uniquely find the velocity field which is expected to drive the subsequent
evolution process.



From the mathematical point of view, the first definitions and results on crystalline geometry
was given by J.E. Taylor in several papers, see for instance [24], [27], [9], [26], [28]. In these
papers the author defines crystalline mean curvature for a polygonal curve and for network of
curves, looking at the rate of change of the total free energy surface with volume swept under
deformations. In this way the crystalline curvature flow for a polygonal curve is derived,
as well as the motion of networks and triple junctions. A rather interesting discussion on
whether (and how) additional line segments have to be added at triple junctions to decrease
the total energy is outlined in [28]; the utility of this issue relies once more on the associated
evolution process. As we shall see, in three dimensions the situation is much more difficult;
we refer to [25], [27], [22], [3], [4] for some results in this direction. Concerning other results
on anisotropic partitions and related evolution problems, we refer to [14], [13], [15] [20].

Our approach is based on different ideas with respect to the above quoted papers, and relies in
particular on the theory outlined in [3] where, through the first variation of the total energy,
the crystalline (or, in general, anisotropic) mean curvature &, is computed for boundaries of
sets (i.e. when only two phases are present). Some by-products of those computations, which
are performed in any dimension, are: (i) a (pointwise) definition of x,, as the unique solution
of a variational problem; (ii) L* and BV -regularity of k,; (iii) the facet breaking/bending
phenomena (for the related flow) in connection with the regularity of x,.

Following those ideas, in order to derive the anisotropic mean curvature of a partition (i.e.,
when at least three different phases are present) it is natural to compute the first variation
of the energy, now defined as the Minkowski content M, of whole interface in the relative
geometry induced by the anisotropy ¢ itself.

Beside the usual difficulties (i.e., the nonsmoothness both of the interface and of the density
of energy, see [3]), we must face further difficulties due to the fact that now we cannot restrict
the variation to p-normal vector fields; indeed tangential components cannot be neglected,
especially in a neighbourhood of the singular set.

Let us briefly explain the content of the paper and the main results. After introducing the
notation (Section 2), we begin by computing the first variation of the energy in the smooth
case, i.e. when the anisotropy is strictly convex and smooth (Section 3). We perform the
first variation firstly in two dimensions using a parametric approach (Theorem 3.4) and then
in general dimension (Theorem 3.6). These computations could be of some interest from the
point of view of Finsler geometry, since they are based on an integration by parts formula
on manifolds with boundary (formula (14)). Furthermore, they are enlightening in order to
approach the crystalline case. An observation of this section is of particular interest: given a
manifold ¥ C R” with boundary, we can define the analog of the unit co-normal vector field
ngx on the boundary of X, in the geometry induced by the anisotropy (see the last part of
the proof of Theorem 3.6 and Definition 3.1). This vector field is constructed starting from
the intrinsic unit vector field n, to ¥ (sometimes called the Cahn-Hoffman field [19]). More
precisely, ngz turns out to be, on 0%, the component of ngz on the normal space to 9%
rotated of /2 in such a way that ngz points out of ¥. It is through ngz that the equilibrium
condition at the junction can be expressed in any dimension, see (24). Such an equilibrium
condition is (locally near the singular set) equivalent to the usual force balance (also called
Young’s law or Herring condition [18], [19], [22]).

In Section 4 we focus our attention to the nonsmooth, in particular crystalline, case. To
rigorously make the computations, we need to introduce several definitions, which resemble



those given in [3] for the two phases case.

The main result of the paper is contained in Theorem 4.8; roughly speaking, it turns out that
the (uniquely determined) mean curvature s, of a crystalline partition 7" is the tangential
divergence of a vector field Npyin which minimizes the functional

/T (div,N)? dP,, (1)

among all Cahn-Hoffman vector fields N € HJ (T; R") satisfying the condition ) i NOZij —
0 on the singular set common to all the “sheets” ¥;; of T. Here dP, is the density of the
Minkowski content, which is expressed in a natural way through the dual norm ¢° (surface
tension) of ¢, see (5). The symbol H,‘}’i(;’ (T; R™) denotes the space where the functional (1)
is naturally defined, i.e. the space of all p-normal vector fields whose restriction to each ¥;;
has square integrable divergence. Finally, N9%ii is a suitable rotation of 7 /2 of a well defined
trace N of N on 03%;;, see Definition 4.4.

As shown in Section 5, in a number of situations the minimum problem (1) can be made
explicit and its solution explicitly computed. For instance, in the two—dimensional crystalline
case and for certain three-dimensional partitions, the functional (1) reduces to a quadratic
polynomial in a finite number of variables, to be minimized on a compact domain. This
observation allows us to compute the pointwise crystalline mean curvature for many (possibly
adiacent) triple or multiple junctions in two dimensions as well as for a partition in three
dimensions. Of course, the function to be minimized can be quite involved, as for instance
for two or more than two adiacent triple junctions in a network. We show here explicit
computations in two dimensions when the Wulff shape is an octagon (see Examples 1, 2, 3,
and Examples 4 and 5 for two adiacent triple junctions) and in three dimensions when the
Wulff shape is a cube (see subsection 5.2). In two dimensions, we discuss the stability
of triple junctions, in connection with the related evolution process. We show that some
triple junctions are always unstable (Example 3), as well as suitable adiacent triple junctions
(Example 5).

Finally, our results give a unique velocity field in the associated evolution process (the
anisotropic mean curvature flow of the partition) and indicates, in two dimensions, the nature
of the process leading to the creation of new edges at a triple junction (in agreement with
the observations in [28]), see the discussion in Example 1. In three dimensions far more com-
plicated behaviours are expected, beside the facet breaking/bending phenomena observed in
the two phases case [3].

Using our approach, in a subsequent paper [5] we shall investigate on the local existence and
uniqueness of the crystalline flow for a partition in two dimension.

2 Notation

In the following we denote by - the standard euclidean scalar product in R" and by |- | the
euclidean norm in R", n > 2. Given two vectors a,b € R", we denote by a ® b the matrix
whose entries are (a ® b);; := a;b;. The symbol #* denotes the k-dimensional Hausdorff
measure in R, k € [0,n]. Given a linear subspace V C R” we denote by V* the orthogonal
complement of V. Given a vector v € R?, we denote by v+ the rotation of v of 7/2 around
the origin in counterclockwise order.



2.1 Finsler norms

We denote by ¢ : R* — [0, 400 a Finsler norm on R”, i.e. a convex function satisfying

(,O(Af) = |A|(P(‘£)a ()0(5) > C|§|a AER, LR, (2)

for some ¢ > 0. We define
the dual ¢? : R — [0, +oo[ of ¢, ©°(£°) :=sup{- &2 : p(§) < 1}, for any £° € R™;
the unit ball W, :={{ e R* : () < 1}, sometimes called the Wulff shape;
the unit ball F, := {{° € R" :  ¢°(£°) < 1}, sometimes called the Frank diagram;

the duality mappings

T(€) ={eR":£-E=9p(€)” = (9°(£)°} = 30(0(€)?),  E€RY,
(3)
T°(6%) ={EeR":£- & = (¢°(6%)" = 0(€)*} = 30(¢°(€°)?), € €RY,

0 denoting the usual subdifferential for convex functions.

We say that ¢ is smooth if W, and F, are two strictly convex bodies with smooth boundary.
We say that ¢ is crystalline if W, is a convex polytope.

Concerning the relations between the above definitions and anisotropic and crystalline motion
by mean curvature we refer for instance to [6], [3], and references therein.

2.2 Lipschitz hypersurfaces with boundary. The Minkowski content

By a Lipschitz hypersurface with (Lipschitz) boundary we mean a (n — 1)-dimensional
bounded set ¥ C R" which can be written locally as a Lipschitz graph on an open set,
and such that each point of its boundary can be written locally as a Lipschitz graph on an
open Lipschitz subset of R* 1. If z € & (resp. z € %) we denote by T;(X) (resp. Ty (0%))
the tangent space to X (resp. to 9%) at x. We also denote by Iz, (x) (resp. Ilr,(s5)) the
orthogonal projection on Ty (X) (resp. on T,(0Y)). If g : ¥ — R™ is a Lipschitz vector field,
we denote by div,g the euclidean tangential divergence of g on ¥; if f : 3 — R is a Lipschitz
function, we denote by V. f the tangential gradient of f on X.

Given a Lipschitz hypersurface ¥ C R" with boundary, we define the Minkowski content
M, (X) of ¥ with respect to the norm ¢ as

M (%) := liminf %’H" ({z € R" : dy(z, ) < p}), (4)

p—0t

where d,(z,X) := inf{p(y —z) : y € ¥}. The quantity M, (X) is a surface measure naturally
associated with ¢ and ¥. We refer for instance to [7] for its use in geometric anisotropic
evolution problems. It turns out that

My(S) = / () dH™ Y, (5)



where v(z) is a euclidean unit normal vector to ¥ at (%" !-almost every) z € £. From the
integral representation of M, (%) in (5), it is natural to regard ¢°(v) as the surface tension
of a flat interface whose normal is v. We indicate by dP, the measure on ¥ given by

dP,(B) := / (V) dH™ L, B a Borel set. (6)
BNE
At each point z € R" where d,(z,Y) is differentiable, there holds Vd,(z, %) € 0F,, that is

¢°(Vdy(z,%)) = 1. (7)

2.3 Partitions

Given a locally finite family {E;} of open subsets of R” with Lipschitz boundary such that
UX,E; =R" and E;NE; = 0 for i # j, we say that {E;} is a Lipschitz (resp. smooth)
partition of R" if ¥;; := 0F; N OF; is a Lipschitz (resp. smooth) hypersurface with Lipschitz
(resp. smooth) boundary.

For notational simplicity, when n = 2 the sets 0E; N OF; are often denoted by X, using one
index only.

Whenever n = 2, by a m-multiple junction of {E;} (m > 3 a natural number) we mean a
point g belonging to m distinct arcs, where an arc is one of the 3;;. If m = 3 we say that ¢
is a triple junction of {E;}.

3 First variation of M, in the smooth case

Throughout all this section, we assume that ¢ is smooth. Accordingly, we assume that 3 is a
(n—1)-dimensional smooth bounded embedded orientable manifold with (smooth) boundary.
We recall that v is a smooth euclidean unit normal vector field to ¥; we assume v smoothly
defined up to 0%. We define at each point of 3

vp = v/ (v);

the ¢-normal vector field n, = T°(vy) = @g(v,) = ¢g(v), sometimes called Cahn-
Hoffman field,

and at each point of X
the p-mean curvature x, := div,n, of X.

Concerning the previous definitions and their connections with geometric anisotropic evolu-
tion problems when 0% = () we refer for instance to [3].

Definition 3.1. We denote by ngz : 0% — R* the vector field defined as follows: if x € 0%
then

(i) n?(@) € {span(T,(02)ny(e)) }

(i) [n3%(@)] = Ing (@) — Ly, peyne(@)];

(iii) ngz(x) points out of X.



Observe that
dim {span(Tw(aXJ), n(p(ac)) L} =1 (8)

This follows from the fact that n,(z) and T;(0X) are linearly independent, which is a conse-
quence of the property ny(z) - v,(z) = 1.
Note also that in n» = 2 dimensions condition (i) reduces to n?

(pz(x) -nw(ﬂc) = 0, and condition
(ii) reduces to \ngz(xﬂ = |ny(x)|.

Remark 3.2. If ¢(¢) = |¢]|, then ngE is the usual conormal unit euclidean vector pointing
out of X.

Remark 3.3. The vector field ngz(a:) is obtained by substracting to n,(z) its component
on T,(0%), and then by performing a suitable rotation of 7/2 to the resulting vector (in the
two-dimensional space T,(8%)").

3.1 The smooth 2-dimensional case

In this subsection we assume n = 2 and we compute the first variation of M, using a
parametric approach.

Theorem 3.4. Let ¥ C R? be a smooth simple curve with boundary 0% = {p,q}. Let
v : [0,1] — R? be a regular parametrization of ¥ with v(0) = p and y(1) = q. Let B €
C%([0,1];R2?), X € R, and let & be the curve parametrized by v+ \3. Then

d
M0 = [ oty B AP+ 02(0) - 1)+ (p) - BO). o)
Proof. Set 1 := % and v := 7+. Recalling (5) we have
d d [t . 1
MBI = g5 | o ((r+28)7) aty

(10)
1 1
= [0 de= [ G- 84 dt - @) 50) + o) 50,

We now observe that 8+ = —3 - v7 + - Tv. Moreover, p¢(v) = ny by definition, and from

[6, Proposition 3.1, Example 4.2] we have ¢g.(v)7 - v = 0 and K, = kg (V)T - 7, where & is
the euclidean curvature. Therefore

1 d 1 ,
| Gtk - at = —/0 sege)r o7 8-yl dt =~ [ w8 dP, ()

Then (9) follows from (10) and (11). O



Corollary 3.5. Let {E;} be a smooth partition of R? and let q be a m-multiple junction
of {E;}, m > 3. Let ¥1,...,%5,, be the m arcs of the partitions meeting at q, and set
T:=U", i Letv;:[0,1] — R? be a regular parametrization of $; such that ~;(1) = q for
any i = 1,...,m. Let 3; € C*([0,1];R?) be such that 3;(0) = 0 and B;(1) = B;(1) =: B(1)
for every i,j € {1,...,m}, let A € R and Zg\ be the curve parametrized by v; + \B; and
Ty := U, 4. Then

d T s
FMAD) sy = [ movs- 0P+ (1) o0 (12)

In particular, if for any B; as above we have %MW(T)\) = 0, then each 3; has zero p-mean

curvature, and

[x=0

m
D57 (@) = 0. (13)
i=1

We call condition (13) the balance condition at g.

3.2 The smooth n-dimensional case

In this subsection we assume n > 2 and we compute the first variation of M,. Given a
C! vector field g : R* — R™ we set divy, ;g := tr ((Id — ny, ® 1) Vg). The next result was
proved, for 9% = (), in [3].

Theorem 3.6. Let 3 C R* be a smooth hypersurface with boundary. For X € R, let 1y :
R” — R" be a family of diffeomorphisms such that Vg = Id and ¥ — Id has compact support
in R*. Set £y := Y\(XZ). Then

d

—M¢(EA)| B =/ divy ;g dP, = / KoVyp + g APy —l-/ nd% cg dH" 2, (14)
dA A= s ’ b oy 7

where g := %P\:O'
Proof. Using the area formula it is well known that
dH" " (Pa(z)) = dH" () + Adiv,g(z)dH" " (z) + o(X). (15)

Denoting by vy a smooth euclidean unit normal vector field on X, we obtain

d d _ . _
SMAEpce = [ o@D T [ ) diveg dnr!
b b
d _ o : e
= /nw-au,\(wA)Azo dH" 1-I-/ ©°(v) divyg dH™ L.
by b

Following [6] one can prove that, even if g is not necessarily ¢-normal, there holds

d
5%\(¢A)|A:0 =-—vVg+(v-vVglyr  onX.



Hence
d

M0 = /mo-(—vV9+(V-VVg)V)dH”‘1+/90"(1/) divrg dH"!
b b))

= /E (divg — ny - v,Vg) dP,,

which proves the first equality in (14).
For p small enough let

U, = {z+ony(z): o€]—pp[, zei}
Epi = {zxpny(z): ze€X}, (16)
L, = {z+ony(z): z €0y, oe]—p,pl}

o(y,2)T°(Vdy(y, %)), where dy(-, %) =
‘iw( Y) = —dy(-,X) on {z + ony(z) :

nd the divergence theorem it is not

Let g¢ : U, — R" be defined as ¢¢(y) := g(y — d
dy(-,X) on {z + ony(z) : ¢ € [0,p[,z € ¥} and
o €]—p,0),z € }. Using the coarea formula, (7
difficult to check that

1 .
/ divy g dP, = pl_l)r(1]1+ _p/ div (¢°) dz = p1_1)r(1)1+[I +11,), (17)

where

1 1
. e ~+ n—1 e ~— n—1 — e -~ n—1
Ip._QP[/Ejg v, dH +/;g v, dH ], 11, : % Eﬂg v, dH" 7,

and ﬁ;t and v, are the unit euclidean normal vectors respectively to Eff and X,, pointing
outside of U,. B

Using the area formula and applying (15) with g(-) = T°(Vd,(-, X)) it is possible to chek
that

lim I, = / KoVyp - g dPy.
b

p—0t

Therefore, in view of (17), to conclude the proof of the last equality in (14) we have to show
that

lim I1, = /a § nd” - g dH" 2. (18)

p—0t

Let TY, be the tangent bundle to ¥, and let f, : TS, — [0,400[ be the Finsler norm
obtained as “restriction of ¢ to X,”, defined as follows:

{€ € Tu(B)) : fol,8) <1} =Wy, NTy(E,), T € ).

For any z,y € X, let

1
dy,(r,y) = inf{/o o(v,7) dt : v € AC([0,1];R™),v(0) = z,v(1) = y,7(t) € T»,(t)(Ep)} :



and let dj, : ¥, — R be defined as follows: d,(y) := dj,(y,0%) if y = z + ony(z), v € 9% and
o >0, and d,(y) := —dy,(y,0%) if y =z + ony(z), € 9% and o < 0.

Using the coarea formula on manifolds [12] and recalling that V.d, is the tangential gradient
of d, on X, we have

“Up

II =5 da/ dH" 2. 19
g {x€Xp:dp(z)=0} |V d ‘ ( )

Using the eikonal equation fJ (x, V.d,(z)) = 1 where f7(x,£%) := sup{€ - £ : fy(z,&) < 1}
for any (z,£°) in the cotangent bundle of ¥, we have

i e D—f o Vd(ib')) n—2
=51 d"/{wezpd,@ L @ Tl ( Wod, @) @

Letting p — 0" and setting
V(z) = span{Tu(@),mp@)),  # € 0%,

we get

lim 11, = / g T, () dH 2,
o

p—0t
where

(a) v: 0% — R is the vector field pointing out of ¥ determined by the following conditions:
v(z) € V(z)t, |D(x)| = 1, T € 0%
(b) n: 0% — R is the vector field determined (up to the sign) by the following conditions:
n(z) € TL(0X) NV (), In(z)| = 1, z € 0%

(C) fg(l‘,fo) ‘= Sup {é €01 €€ WCP N V(l‘)}, T € 0.
To conclude the proof of (18) it is sufficient to show that

ngz(m) = f§(z,n(z))v(z), T € O%. (20)
To this aim we observe that, thanks to (8), (i) of Definition 3.1 and (a), we have that v(z)
and ngE (z) are parallel and point in the same direction. Moreover,
Iy (4 V()
Ty (v ()|
Observe now that, by definition, the normal to W, at n,(z) is v,(x)/|v,(z)|. Therefore the

normal to W, N 0V (z) at ny(z) (in the space V(z)) is My (4)vy(z) /|y (z)vp(T)] = £0(z).
This implies that the supremum defining f§(z,n(z)) (see (c)) is attained at n,(z), i.e.,

fo(e,n(z)) = [ng(z) - n(z)|- (22)

n(z) =+ (21)

Hence

18 (z,0(2)) = Iny(x) - 1()| = Iny(z) — T, (amyny ()| = [nd7 ().



Remark 3.7. In the case ¢(§) = |¢|, the above argument gives the classical divergence
theorem on a manifold with boundary.

Remark 3.8. If n = 2, formula (14) reduces to (9).

Corollary 3.9. Let {E;} be a smooth partition of R* and let X;; := 0E;NOE;, T := |, ; Xij,
I':.= Ui,j 0%ij. For A € R, let 4y : R* = R" be a family of diffeomorphisms such that 1y = 1d
and 1y — Id has compact support in R*. Set Eg\j =P (8i5) and Ty == U, ZZ)\J Then

d . _
d)\M (T/\)\,\zo = /;K“‘OVSO g d’ng +/p anzw g dH" 2, (23)
v

AN

where g 1= X A=0" In particular, if for any ¥y as above we have %M(p(T)\) =0, then

Ix=0
each X;; has zero p-mean curvature and

Z naz” = onT. (24)

We call condition (24) the (n-dimensional version of the) balance condition on I'; this condi-
tion is, in three dimensions, locally equivalent to condition (21) of [19].

Remark 3.10. Condition (24) is equivalent to require that for any ¢ € T' there exist an
open neighbourhood U of g and constants ¢;; € {—1,1} (possibly depending on U) such that
i 5ijn‘P|Eij (p) =0forany pe I'NU.

4 First variation of M, in the crystalline case

To state the main result (Theorem 4.8) we need some preliminaries. Let X C R" be a Lipschitz
hypersurface with boundary. In the following any Lipschitz function or vector field defined on
¥ will be considered as defined up to 0X. We denote by v a H" !-almost everywhere defined
euclidean unit normal to ¥ and we set, as usual, v, := v/p°(v). We denote by Lip(Z;R")
the set of all Lipschitz vector fields on ¥, and

Nor,(SiR?) = {X:% 5 R': X(z) € T°(v,(z)) for ! _ae e s},
Lip, ,(%;R") := Lip(%;R") N Nory,(%;R"),

2

ip(

= {X € Lip(Z;R") : X(z)-vp(z) =0 for H* ! —ae. z € X},

)
)
SR = {Ne€L*(ZR"): N(z)-vy(z) =0for H" ' —ae. z €3}, (25)
)
) = {9 €Lip(Z): spt(y) NI = (}.

The following definition is the same as in [3, Definition 2.1], where it was introduced in the
case 0% = 0.

Definition 4.1. Let > C R™ be a Lipschitz hypersurface with boundary. We say that X is
Lipschitz p-regular if there exists a vector field n, € Lip, ,(3;R"). We denote by Rg(R”)
the class of all Lipschitz p-reqular hypersurfaces.

10



Even in the case 9X = (}, the geometry of Lipschitz ¢-regular sets is nontrivial and strictly
related to the geometry of W, see [4, Section 4], [2, Figure 7).

With a little abuse of notation, we sometimes write (X,n,) € ’Rg(]R”), and we say that
(3, ny) is Lipschitz ¢-regular.

We now define the ¢p-weak tangential divergence of a vector field; we follow the definition
given in [3, Definition 4.1] for the case 9% = (), the only difference here is that the operator
is tested on compactly supported Lipschitz functions. We refer to the paper [3] for the
motivations of such a definition and for explaining why it generalizes the definition of div,, ,
given in subsection 3.2.

Definition 4.2. Let (X,n,) € Rg(R”) and let v € L2(Z;R™). We define the function
divyn, v 1 Lip.(X) — R as follows: for any 1 € Lip.(X) we set

(divyn, rv, ) = / P v-v, diveng, dP, —/ V79 — (ng - Vop)vy] - v dP,,. (26)
by by
Let
HY (S5 RY) = {N € L(%RY) i divyp, N € L (D)},
HIY(SRY) = {N € Nory(3;R") : divgy, N € L* (%)}
Remark 4.3. Forv € HS};(Z; R")UHS};(E; R"), the operator divy , rv does not depend on
the choice of n, in Lip, ,,(3;R") (see [3, (A2) of Lemma 4.4 and Corollary 4.7]). Accordingly
we shall use the notation div, ;v in place of divy 4, ,v. Moreover, if % is contained in a

hyperplane, the function div,, ;v coincides with the usual (weak) tangential divergence div,v,
see [4, Remark 2.2].

The following definition is suggested by Definition 3.1.

Definition 4.4. Let z € 0X be such that both Tx(%) and T,(0X) ezist, and let be given a
vector z € R* \ Tp(X). We define the vector 29 € Tp(0%)* as the rotation of angle 7/2 of
the vector z — Il (ax)z in such a way that 29% points out of .

given a H" 2-almost everywhere defined vector field N : 0¥ — R™ which is nontangent to
¥, we define N9 : 9% — R* as N9%(z) := (N(z))%>.

Assumption. To simplify the computations, from now on we will assume that ¢ is crystalline
and that the partitions T are polyhedral. See Remark 4.11 for a discussion on when such an
assumption can be weakened.

Proposition 4.5. Let (3,n,) € Rg(R”) and assume that X polyhedral. For any vector field
N € HS};(Z;R”), there ezists a function N € L (0%; R™) such that

z € 0¥ = ]V(x) € T,(0%)*+ for H" 2 — a.e. z € 9%,

and

/ ¢ divy, ;N dP, = / ¢ div,n, dP, — / V- (N —ny) dP, — | $N .n, dH"?
P b)) P X ( )
27

for any ¢ € Lip(2).

11



Proof. Let us first assume that 3 is contained in a hyperplane. Let us denote by v a unit
normal vector to ¥ and by 7 the unit normal vector to % in the hyperplane containing X
and pointing out of . Let us consider the tangent vector field N — n,. Thanks to Remark
4.3 we have divy, . (N —ny) = div,(N —n,) H" '-almost everywhere on . Using the results
of [1] (see also [16, Lemma 9.2]) we have that N — n, admits a trace along 7 on 0%, which
we denote by [N — n,, 7], and [N — ny,v] € L*(0%). Moreover, recalling (6),

/ P divy (N —ny) dP, = ¢°(v) / P div, (N —ny) dH™? (28)
h) by
= ¢°(v) (—/ Votp o (N —ng,)dH" +/ PYIN — n,, D]d%"2> :
by ox
for any ¢ € Lip(X). Let us define
N(z) == ny(z) — Oy, oxyne(x) + [N — ng, Di(z) for H* 2 —ae z €95, (29)

Note that N is nontangent to & and N9 . ny = —[N —ny,vv- ngz_ Therefore (27) follows
from (28) by observing that ¢°(v) = - nd*.

Assume now that ¥ is polyhedral. We can reduce to the case in which ¥ is the union of two
sheets 3.1, X each lying in a hyperplarg\Since N has square integrable divergence, it is not
difficult to check that (N|El)‘921 = —(N\22)822 H"2-almost everywhere on ¥ N Xy. Then

(27) follows from the previous case. O

Remark 4.6. Let ( € H;.i,i(;’ (3;R™). Reasoning as in Proposition (4.5) it follows that
/ ¢ divy, ¢ dP, = — / V.- ¢ dPy + / P¢-nd” dH"? Vi € Lip(%). (30)
) b %

4.1 Lipschitz p-regular polyhedral partitions: statement of the main result

The following definition is suggested by the results in subsection 3.2. In two dimensions, it
is essentially the same definition given by J.E. Taylor in [28].

Definition 4.7. Let {E;} be a Lipschitz partition of R*. For any i # j let £;; := 0E; N OE
and I' := U, ; 0%;;. We say that {E;} is Lipschitz ¢-regular, and we write {E;} € RPy(R"),
if, for any i # j, i € Rg(]R") and there exist vector fields nfg € Lip, ,(3i5; R") satisfying

Z(nfg)az”' =0 onT. (31)
0,
Let {E;} € RP,(R") and set T := Uz-,j Yij. We denote by HS};(T;R”) (resp. Nor,(T;R"))
the space of all vector fields N : T — R" such that Ny, € HS};(EU;R") (resp. Ny, €
Nor,(%;5;R™)) for any i # j.
Let (3,n,) € Rg(R"), ¥ polyhedral, and v € Lip(3;R™). Since ¥ has a boundary, when
computing the first variation of M, we cannot restrict ourselves to p-normal vector fields,
and tangent vector fields must be considered; as already remarked in the Introduction, this
is one of the main additional difficulties in the computation of the first variation of M, with
respect to the paper [3].
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Let (2,n,) € Rg(R”). Reasoning as in [3, Lemma 3.3], one gets that there exists p > 0 such
that the map F,, (z,t) := x + tny(x), mapping ¥ x ]| — p, p[ onto its image, is bi-Lipschitz.
We set F ' () = (mn, (-),tn, (1) € Bx | —p,pl.

For t € R with |t| < p, p > 0 small enough, define U, E;‘E and X, as in (16). Given a Lipschitz
function 9 and a Lipschitz vector field 7 defined on X, we indicate by 9 := (7, ) : U, = R,
n® := n(mn,) : Uy — R* the (Lipschitz) extensions of ¢ and 7 respectively on U, along the
vector field n,. Define F(z,t) := z+tve(2) on Up,. Set also F'(:) := F(-,t) and XY= Fi(%).
Finally, let

Var(My, ¥)(v) := lim inf M (5F) — Mcp(z).
t—0+ t

(32)

Before proceeding with the computation, in the following we will split the vector field v into
its normal and tangential part as follows:

v =1y Ny + by, Py =V V. (33)
It is immediate to check that ¢, - v, = 0, and therefore ¢, is tangent to .
We also set ¢ := (1,)¢, t& := (ty)¢, and
By() = {oeLipmR) e Lip®), [ ap, <1},
b))

B(T) = { € LiD(TSRY) : s, € Lin(Zy) Vi 3. [ ()7 aP, < 1}.

The vector field ([y;(ny)?dPy) " n, belongs to B,(X). In particular, B,(X) is nonempty.
Notice also that if v € B,(X) then ¢, is a Lipschitz field. Finally, also B,(T") is nonempty.

The main result of the paper is the following.

Theorem 4.8. Let ¢ be crystalline. Let {E;} € RP,(R") be a polyhedral partition and let
T := Ui,j82,-j. Then

it Var(M,, T)(v) (34)

1/2 . 0%
— min [ / (divy, N)? dnp] :N € HIY(T;R"), Y Ny, ~=0onT
T

43
All examples in Section 5 are focused to explicitly compute a solution of the minimum problem
at the right hand side of (34).

Remark 4.9. Formula (34) gives, loosely speaking, the expression of (minus) the norm of
the gradient of the functional M. If Npi, is one minimizer of (34), then the (uniquely
defined) quantity div,, - Nmin is expected to identify the initial velocity of T, if we consider T
as the initial datum for the crystalline mean curvature flow for partitions.

13



4.2 Proof of Theorem 4.8

Let us denote by X one of the X;; of the partition. The proof of Theorem 4.8 is divided into
five steps.
Step 1. We have

inf  Var(M,,¥)(v) = su inf  {I(N,v)+ II(N,v)}, 35
o VM DI = et 00+ TT(V,0) (35)

where

I(N,v) = /E (qpv divyn, — Vehy - (N — mp)) P,
(36)
II(N,») = /E (—N-ywwg + div t:;) dP,.

Let v € B,(X). Following the same computations as in the proof of Theorem 5.1 in [3], it
turns out that (32) can be written as

Var(My, Z)(v) = sup  {I(N,v) +II(N,v)}, (37)
NeENor, (3;R7)

where I(N,v) is as in (36) and

II(N,v) = /

( — N v, Vit +v- vVt + dithv) dP,. (38)
b

Recalling the definition of the (euclidean) tangential divergence div,, we can rewrite I11(N,v)
as in (36). Using (37) and arguing as in [3, Proposition 5.2], we get

inf Var(M,,X)(v) = su inf {I(N,v)+II(N,v)}. 39
et (My, Z)(v) NENoer()E;Rn)vEB¢(E){( ) +II(N,v)} (39)

Taking v of the form yn,, 9 € Lip.(X), we have II(N,v) = 0 and I(N,v) = (divy, N, ).
Hence infp,(x) I(N,v) = infg,){I(N,v) + II(N,v)} = —oo if N ¢ HJ%(%;R*), and (35)
follows.

Step 2. The integral I1(N,v) in (36) has the expression

II(N,v) = / v-nd> dH"?, (40)
ox

and in particular it is independent of N.

Let N € Hi‘; (3;R™). Since t¢ is Lipschitz continuous and tangential, we have v,Vit{ = 0

H"!-almost everywhere on ¥, hence from Remark 4.3 we get

divy +t, = div,t, = divté — N - v, Ve, H" ! —ae. on X 41
®, v 2 v

Therefore, from (41), (36) and (30) (applied with ¢ = 1) we obtain

II(N,v) = /

ty - nd® dH" 2 = / v-nd¥ dH™ 2,
by

diV%Ttv d’PQO = / ox (%)

1)
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where the last equality follows from the decomposition (33).
Step 3. We have

inf Var(M,, X)(v)

vEB,(X)
(42)
= sup inf { / Py divy, N dP, + / v- N9 d%"—’"}.
NeHdy(s;Rn) v€Bo(X) Uz a%
If N € HJ%(5;R?), from (36) and (27) we obtain
I(N,v) = / Py divy ;N dP, + / P NO= ., dH" 2
% 0%
(43)

- / Py divy,, N dP, + / ho(NO® = n8%) -y, dH™ 2.
by 0%
Taking into account (40) and (43) we get
I(N,v) + II(N,v) = /E Py divy N dP, + /a § (v-n8% + pyng, - (N — n2%)) a2
(44)
Since N9% — ngz is parallel to v, recalling (33) we have
Pong - (NP —nf¥) = v (NP — ).

Hence (44) becomes

I(N,v) + II(N,v) = / Py divy N dP, + / v- N a2,
b ox
which, taking into account (39), gives (42).
Step 4. Relation (34) holds with the infimum at the right hand side in place of the minimum.
Recalling that T' = |J; ; ¥;j, the definitions of Nor,(T;R") and of H,‘},i;j (T;R™), when com-
puting Var(M,,, T')(v) we can add the contributions of all ¥;;. We get, using step 3,

inf T
it Var(M,, T)(0)

= sup inf /1/11, divy, N dP(p-I-/'u- Z@azﬁ dH"?
NeHgy(T;Rn) v€Be(T) | JT r i

—— 0%;;

Observe now that if for a vector field N € HSLV)(T; R™) we have 3, ; Njs,,; # 0 on I then

—— 0%y,
inf div, N dP +/ : Ne. 7] dH" 2%} = —x. 45
vEBy(T) /va Wer e [0 ZZ?: g > )
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This follows from the fact that T is polyhedral, hence we can arbitrarily fix v on I' without
violating the constraint v € B,(T) (in particular the fact that 1, € Lip(T; R")).
We finally obtain

f T
veg; - Var(M,, T)(v)

= sup inf { 1y divy N de} (46)
NeHZ(TR),Y, ; Nis,, o 9% veBy(T) UJT

1/2
- - inf [ / (div,N)? dm] :
NeHJ(TR™),Y; ; Ny, Ny ii_g LJT

Step 5. The minimum problem in (34) admits a solution Npyin € HS}; (T; R™). Moreover, if
Ny, Ny are two minimizers of (34), then div, , Ny = div,, ; No H" !-almost everywhere on 7.
The set

—— 0%;;

C:={divy,N: N € HiY(T;R"), ZN‘E =0onT

is a closed convex subset of L2(T). Indeed the convexity follows from the fact that H dlv(T R™)
is a convex subset of the Hilbert space {N € L*(T;R") : div,,N € L*(T)} and the condltlon
>ii Nz No 7 = 0 is linear.

Following [3], let us prove that C is closed. Let fi := div, ;N € C be such that f — f in
L?*(T) as k — co. We have to prove that f € C. Since supy || Ng|lp2(r;rn) < 400, possibly
passing to a subsequence we can assume that { Ny} converges weakly in L?(T; R™) to a vector
field N € L*(T; R"). Since Nj € Nor,(T;R"), we deduce that N € Nor,(T;R"). Moreover,
for any ¢ € Lip(T') from (27) we obtain

/ yf dP, = lim / y divy,, Ny dP, = / ¥ divyn, dP,
T k—+oo Jp ’ T

— lim V- (Ng —ny) dPy = / P diveng dPy, —/ Vi) (N —ny) dP,.
k—+oo JT T T

It follows that f = div, N, hence N € HS};(T; R™) and 3, ; JV‘E\U@E” =0 on I'. Therefore

C is closed in L?(T; R"). The thesis now follows since the functional in (34) is strictly convex

in the divergence.

The proof of the theorem is concluded.

Remark 4.10. If n = 2 the vector field Ny, is unique, since any vector field N € H S,i; (T; R?)
is uniquely determined by its divergence and the value at one point.

Remark 4.11. If n = 2 then Lip, ,(3;R?) is dense in HS};(E; R?). Indeed, any vector field
¢ e HS}(Z(E; R?) is nonconstant only where ¥ coincides with a segment parallel to an edge of
W, on such segments the normal component of £ is constant and the tangential component

belongs to W2, Hence ¢ is continuous and can be approximated in W'? with a sequence of
Lipschitz continuous vector fields.
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Finally, if n = 2, Theorem 4.8 holds also when T is piecewise C''!, instead of polygonal.
Indeed, one can directly prove (27) under the assumption N € Lip,,’(p(E;RZ), and then
conclude by approximation by using the previous observation.

Remark 4.12. All results of Sections 3 and 4 can be easily generalized in presence of a
family of Finsler norms ¢;; (satisfying some compatibility conditions, see for instance [22]).
For example, in the crystalline case, it is enough to consider the appropriate norm ¢;; on
each polyhedral interface dividing F; and E; and to consequently define the Cahn-Hoffman
field ny,;. In a similar way, it is possible to generalize relation (34) in the case of several
norms.

5 Examples

In this section we show with some examples how formula (34) leads to the explicit computation
of the crystalline mean curvature. As already observed in Remark 4.10, in two dimensions
each edge of the partition has constant ¢-curvature and the solution Ny, of the minimum
problem at the right hand side of (34) is unique; in three dimensions in general it is not true
that each facet of the partition has constant ¢-mean curvature already in the two-phases cases,
see [2]. Moreover, uniqueness of Npi, in general is not expected; however, two solutions of
(34) have the same divergence.

Recall that when n = 2 the sets OF; N OE; are often denoted by X; in this case Ly denotes
the length of X.

In two dimensions, we also give the following definition, whose meaning will be largely dis-
cussed in the sequel.

Definition 5.1. Let {E;} be a Lipschitz p-regular partition of R? and let q be any multiple
gunction of T. Let Ny be the solution of (34). We say that T is stable if, denoted by
31, By all the edges of T having q as an extremum (m > 3), we have that (Nmin)|s;(q)
is not a vertex of Wy, for any i =1,...,m. We say that T is unstable if it is not stable.

5.1 Two-dimensional examples

We begin with the two-dimensional case, where we assume that W, is the regular octagon
centered at the origin, see Figure 1. We denote by [ the length of the side of YW, and by r
its radius. The vectors n¢ and n? satisfy the balance condition Zg’zl ny = Zg’zl n? = 0.

As shown by J. Taylor in [28], there are only eight possible configurations T with one triple
junction and T' € R’PW(RQ), see Figure 2; each of the three edges i1, Yo, Y3 meeting at ¢ is
parallel to an edge of W,, and the possible configurations are given by the one in Figure 2
and by its rotations of an angle multiple of 7 /4.

Each of these configurations (assuming g not adiacent to another triple junction) gives raise
to a different vector field Ny, : T — R? (the minimizing solution of (34)).

The balance condition

0%
> Ny, =0 onT (47)
%,J
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C D

Figure 1: The Wulff shape W,,. The vectors n¢ and n (30 n¢ = Y2_ n? = 0) delimitate
the admissible ranges of a field N at a triple junction ¢. For instance, the vectors X,Y, Z
form an admissible triplet, i.e. X +Y + Z = 0.

Figure 2: Examples of Lipschitz ¢-regular partition 7" with one triple junction, when the
Wulff shape is the octagon.
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Figure 3: The values of any admissible vector field are fixed (up to a sign change) with values
A, D, C at the vertices of the partition different from ¢; we plot also an admissible triplet at

q.

appearing in (34) reads now as

Nis, (@) + Nis, () + Nis,(q) = 0. (48)

As shown in Figure 1, in order to satisfy the balance condition (48) the vector (Nmin)|s;(q)
can take values only in the range between n¢ and n?, i = 1,2,3.
Let us consider for instance the configuration 7" in Figure 3. We want to explicitely compute
the crystalline g-curvature of T', at least in the special cases L1 = Ly = L3 (Example 1) and
L; >> 1 and Ly = L3y (Example 2).
Note that r := [n§| = m. Moreover, by symmetry we obtain

|4 —nf| = |B —ni| = [n§ —nf| = |n§ —nj| =: 4. (49)

The balance condition Z?:l nf = 0 implies that the line passing through nI{ and ng is parallel
to the line passing through A and the origin. These observations and elementary computa-
tions yield

P (2 sin(r/8) — In® — nb| = r (# _ 2sin(7r/8)) . (50)

1
2cos(7r/8)) ’ cos(m/8)

Denote by X an arbitrary vector of the segment connecting n¢ and n% and let z := |A— X| €
[6,0 — 6]. IfY (resp. Z) is a vector belonging to the segment connecting n$ and n} (resp. n$
and nf) the condition X +Y + Z = 0 implies

yzy(x)z%(—m+l—5), z=2z(x) =

(x —0), (51)

where y := |n$ — Y| and where z := [n$ — Z|, see Figure 1.

Remark 5.2. Since in two dimensions Ny, is unique and its values are fixed (up to a sign
change) at the three vertices of the partition different from ¢ (where it equals to A, D, C,
see Figure 3), it follows that the triplet of the values of Ny, at ¢ uniquely determines Npin
on Y1, Y9, X3, simply by linear interpolation.
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Thanks to Remark 5.2, we can rewrite the functional appearing at the right hand side of (34)
as a function of the variables z,y(x), z(z) which are in a unique correspondence with triplets
of values of Ny, at g. An easy computation shows that, for a vector field N which is linear
on each Y; and satisfies the required constraints, we have, for the configuration in Figure 3,

2 l _ 2 l _ 2
[ w2 ap, = T o) + LD oy 4 L2 o
T Ly Ly Ls
where v; are unit normal vectors to X;, ¢ = 1,2,3. Observing that ¢°(11) = ¢°(1) =

©°(v3) =: ¢°(v), and inserting relations (51) into (52), the problem of finding Nmin in (34)
reduces to the problem

i f@),  f@):=az’+ Bz +, (53)

where
_L+L 1.1
T T U—202\I, ' I :
216 1 1 262 1 1 l
-5 (5 n) e C(Gn) n) (54
—12 i_l_i +ﬂ i_l_(s + (52 (l_5)2+ﬁ
TEUN\L, "I T1—25 \Is L, (1—202\ L, ' IL3)°

and (p%(u)fT(divTNmin)z dP, = mingcr5;_s f(x). Let us denote by Zmin € [§,] — 4] the
minimum point in (53).

Recalling Definition 5.1, we observe that the condition

Tmin € 16,1 — O (55)

is equivalent to the stability of T' (stability in the sense of Definition 5.1 can always be
expressed through an inclusion relation similar to (55), for any polygonal Wulff shape and
any admissible triple junction).

If T is stable then no formation of new edges from q are expected during the flow (for short
times); if T' is unstable and, in addition, f'(Zmin) > 0 (resp. f'(Tmin) < 0) if Tyin = J (resp.
Zmin = [ — J) then the appearance of a new edge starting from ¢ is expected, see Example 1.
We can now consider some special partitions 7T'.

Example 1. Let consider the configuration T" of Figure 4 where we assume

Ly = Ly = Ls. (56)

In this case we have 8 51 ;
—— = < = <Il—0.
%0 (—202+4202 ~2°
To check that —% > ¢ we have to verify that (I — 26)(l — 36) < 0; since § < [/2, this
reduces to check whether 6 > [/3. However an elementary computation based on (50) yields

0 < % We conclude that zmin = 6 and f/(Zmin) > 0. The situation is depicted in Figure 4:
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Figure 4: Example 1 (L = Ly = L3). We plot the vector field Npn. In this case Zmin =
|A —n§| = 4.

the vector field Nmin is the linear interpolation between A and n{ (recall that in this case
|A — n$| = Zmin) on Xi; similarly, it is the linear interpolation between C and n§ on ¥y and
between D and n3 on ¥3.
In this case the triple junction is unstable and a new edge is expected to (smoothly) appear in
the subsequent evolution (cfr. [28]). Our variational analysis allows us to a priori determine
which new edge will appear. More precisely, a new vertical edge will be created as time
flows, as in Figure 5. The reason why this should happen can be explained as follows: when
minimizing the function f in (53), the value of Zmin tends to decrease; if Tmin < ¢ the
constraint Npmin € T°(v,) cannot be anymore satisfied on 33, unless a new vertical edge
appears. On this new edge Ny, will belong to a different edge of W, precisely the edge
connecting F and nj§ (see Figure 1).
Example 2. If we let Ly = +oo and Ly = L3 in Figure 3, we get — = L € 14,1 — 4.
Therefore, if

Ly = L3 and L; is sufficiently large,

we deduce that the minimum point zp;, for f in (53) belongs to the interior of the interval
[6,1 — &]. Again, corresponding to this point, there are a unique triplet at ¢ and a unique
vector field Ny, defined on T' (by linear interpolation) whose tangential divergence is the
@-curvature of T'. In this case the triple junction is stable.

Example 3. Let us consider the configuration of Figure 6. In this case the function f to be
minimized in (53) is

IL'Q — x 2 Z$2
fw) = L Lol Ak 57)

When z € ]6,l — 6] decreases then y € [0,!] increases and z decreases. It follows that to
minimize f in (57) the value of Zp;, must be as small as possible, i.e. Zmin = §. Moreover,
f!(%min) > 0. Therefore (Npin)|s;; = n{ for any choice of L;, i = 1,2,3 and the triple junction
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Figure 5: Example 1: the appearence of the new vertical edge at ¢ in the evolution is due to
the fact that zmin is not in the interior of the interval [6,] — 6]. The edge is vertical, since
Tmin tends to be smaller than ¢ and the constraint n, € T°(v,) cannot be violated.

Figure 6: Example 3: this triple junction is always unstable, for any choice of L1, Lo and Ls.
Here we plot Nmin (linear interpolation on ¥; and X9 and constant vector on X3).
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is always unstable. In Figure 6 we plot Ny, (linear interpolation on ¥; and X9, and constant
vector on X3).

Example 4. Let us consider the partition T of Figure 7 having two adiacent triple junctions
¢1 and g2. In this case we have two free variables z1,z2 € [4,l — 8], where z; := |A — X (¢;)|
and X is an arbitrary admissible vector field on 3;. For a vector field which is linear on each
¥; and verifies the required constraints we have

/ (div,N)? dP, (58)
T
_ W) [(561 —a3)” | (L —y(z1))? I U 2(21))? LU= y(z2))* n #(z2)?

L1 + LQ L3 L4 L5 ’

where y(z;) = %(—xi +1—9¢) and z(z;) = ﬁ(wi — ), 1 = 1,2. Inserting these relations
in (58) we are reduced to the following minimum problem:

min fz1,22), f(z1,72) = 0127 + @973 + Q197172 + fr71 + P2 + 7,
(z1,22)€[0,l—0]2
where
S LS (D
T LT =202\, I ’
L + & 1 + 1 >0
« = _— S — - -
2 Ly (=262 \L, " Ls ’
_ 2
a2 = L17

g o= 2 N (L_1y, 0 (s(L_1y_ L
Voo '\, L) Ti—2 Ly L) 1IL,)]’
25 [ 1 5 11 !
» - orlnrs(nn)w)
_op(r 1y, ¢ 1 1) ea-9r 1 1
Tz Lo Ly Li) " (1—202\Zs L)  (1—202 \L»  ILa

LAS (§ 6l G-
1 —26 \ L3 Lo L, )’

The discussion on whether the configuration in Figure 7 is stable or unstable is now more
complicated, in view of the dependence of the minimization problem (59) on L;, i = 1,...,5,
and each situation must be analized one by one.

Observe that stability in the sense of Definition 5.1 is equivalent to

Tmin = (xlmimm?min) € ]67l - 6[2 (60)

When T is not stable, then basically at least one of the two triple junctions is not stable; if
in addition the gradient of f points inside [6, — 6]?, then the appearence of a new edge from
one of the two triple junctions (or from both) is expected during the subsequent crystalline
flow.
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Figure 7: Example 4: two adiacent triple junctions g1, ¢o; the function f to be minimized is
a quadratic polynomial in two variables.

z, z, T~ .
C B
d, o %11
X 5 by 2
ny
C
Figure 8: Example 5: this configuration is always unstable, for any choice of L;, t =1,...,5.

Note that it consists of two unstable adiacent triple junctions.

Example 5. Let us consider the partition T" of Figure 8, which coincides with the partition
of Figure 7 except for the way the network attaches to the edge 3. Again, we have two free
variables z1,zo € [§,l — 0], z; := |A — X(¢;)| and X an admissible vector field on ¥;. In this
case (58) is replaced by

/ (div,N)? dP, (61)

_ (pO(U)[(xlzlﬂﬁz) +(l_?2(:1)) +Z(Z) +(l_?j;(f2)) +Z(z§)

We observe that the second and third term at the right hand side of (61) are strictly increasing
in z1 € )4, — 4], and the fourth and fifth term are strictly increasing in z9 € ]d,1 — 6[. Since
the first term is zero when z; = 9, it follows that the minimum of the function in (61) is
attained for 1 = z9 = 4, therefore this configuration of two adiacent triple junction is always
unstable.

The instability of the configuration in Figure 8 could be related to the observation of Cahn
and Kalonji [10], where they emphasize that neighbouring triple junctions must belong to
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Figure 9: A Lipschitz ¢-regular partition of R® into five solid phases when W, is a cube (the
phase Fj is the exterior of the cube).

Figure 10: The local geometry of I' for a Lipschitz ¢-regular partition.

different symmetry classes.

5.2 A three-dimensional example

In three dimensions the geometry of Lipschitz ¢-regular partitions is more rich, and the
junctions are lines instead of isolated points. Let us fix for simplicity the Wulff shape W,,
to be the cube of side 21, i.e. ¢(£1,&,&3) = T max(|¢1], €], |€3]). We want to construct
Lipschitz ¢-regular partitions. Let us consider a Lipschitz partition {E;} of R? with the
property that any surface OF; N OF; = X¥;; is union of rectangles parallel to some facet of
OW,,, and two rectangles having boundaries which intersect each other belong to nonparallel
planes (see for instance Figure 9, where a partition into five phases is depicted). We have the
following observation.

Remark 5.3. The partition {£;} is Lipschitz ¢-regular, so that there exist vector fields
nd € Lip(Z;;; R?) satisfying (31).

Indeed, any ¢ € T' := |, ;j 2ij has a neighbourhood Uy such that I' N U, coincides (up to
translations and rotations) with one of the two sets of Figure 10. One can prove that the
Lipschitz ¢-regularity of the partition is a consequence of the Lipschitz p-regularity of the
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Figure 11: Two Lipschitz regular partitions Ty and Ty (trijunction and quadrijunction) of R?
with respect to the metric whose unit ball W,, is the horizontal section of W,,.

two configurations 77, T> in Figure 10. By considering horizontal sections of T3, T3, the proof
of the Lipschitz ¢-regularity can be reduced to a two-dimensional problem, i.e., to the proof
of the Lipschitz -regularity of 71 and T, where {¢ <1} =W, is the horizontal section of
the cube W,, (that is, the square of side 2/ centered at the origin, see Figure 11). Proving
the Lipschitz @-regularity of Tvl and Tvg is then the analog of proving the Lipschitz regularity
of the set in Figure 2, with the octagon replaced by the square (see Figure 11).

The first two assertions of the following remark follow from the fact that, computing the
Euler equation of the functional in (34), any vector field with constant divergence on each
rectangle is a critical point, hence it is a minimizer since the functional is convex. The third
assertion is a consequence of [2, Lemma 5.1].

Remark 5.4. Any vector field minimizing (34) has constant divergence on each rectangle of
Yij. Conversely, assume that there exists a vector field N € HS};’(T; R?) satisfying (47) and
such that div; N is constant on each rectangle of ¥;;. Then N is a solution of the minimum
problem at the right hand side of (34). Finally, there exists a minimizer Ny, of (34) such
that, for any rectangle R of T, the normal trace [Nmin g, r] is constant on e, for any edge
e C OR, where vp, is the euclidean unit normal to R pointing outside R (in the plane of R).

Notice that the admissible triplet of vectors for the configuration T, in Figure 11 is unique,
while there are infinitely many admissible quadruplets for the configuration To.

Observe also that no matching condition is required for the Lipschiz (-regularity in three
dimensions on zero-dimensional singular sets, i.e. we do not have to impose any condition on
the isolated points which are intersections of segments belonging to I

Under our assumptions on the partition {E;}, it is possible to compute its crystalline mean
curvature. As we shall see from (62) and (63), we can equivalently rewrite the minimum
problem in (34) as the constrained minimization of a quadratic polynomial depending only
on a finite number of variables.

Let N € H, f,i’i(;’ (T;R?) be any vector field with constant divergence on each rectangle R of
¥ij, and having constant normal trace [N|g,Vg] on each edge e C OR. We define g =
[N\r: VR] e € [-1,1].
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Notice that, if e does not belong to I' (as for instance the upper horizontal frontal edge in
Figure 9), the quantity z¢ is determined by the geometry of the partition (and is equal to [
or —I).

Condition (47) reduces to the linear system

)BR

> (@¥og+nd-vgvg)” =0 VecT, (62)

R
where the sum is made over all pairs R C Y;; such that R O e, and where vg denotes a
euclidean unit normal to R.
Recalling the divergence theorem and the fact that N has constant divergence on each rect-
angle, we get that the function to be minimized is now the quadratic polynomial

2
iv 2 = ¢’(v Lt Le)z¥

in the variables”xfgj , under the constraint (62). Finally, observe that the stability condition
now reads as z¢ € | —[,![ for any edge e C T.
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