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On a crystalline variational problem, part I1:
BV —-regularity and structure of minimizers
on facets
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Abstract

For a nonsmooth positively one homogeneous convex function ¢ : R* — [0, +00],
it is possible to introduce the class R4 (R™) of smooth boundaries with respect to
¢, to define their ¢-mean curvature kg, and to prove that, for E € R4 (R™), there
holds k4 € L*°(0F) [9]. Based on these results, we continue the analysis on the
structure of F and on the regularity properties of k4. We prove that a facet F' of
OF is Lipschitz (up to negligible sets) and that x4 has bounded variation on F'.
Further properties of the jump set of k¢ are inspected: in particular, in three space
dimensions, we relate the sublevel sets of k4 on F' with the geometry of the Wulff
shape Wy := {¢ < 1}.

1. Introduction

Let ¢ : R* — [0,+oo[ be a nonsmooth one homogeneous convex func-
tion. In this paper we continue the analysis initiated in [9] on the properties of
the class R4 (R™) of Lipschitz ¢-regular sets (i.e. the “smooth” boundaries in the
finite dimensional Banach space (R™, ¢)) and of their ¢-mean curvature 4. For
E € R4(R") and g € L?(OE) we can consider a solution Ny, of the following
variational problem:

min{F(N): N € H(OE;R")}, F(N):= / (divg N — g)* dPy, (1)
oFE

where H(OE;R") is the class of ¢-normal vector fields on OF with intrinsic tan-
gential divergence divy , in L%(OF), and dPs denotes the (density of the) ¢-
perimeter, see [9] for all details. The function g has, in the evolution problem, the
role of the forcing term. Setting dmin = divg, 7 Nmin, the ¢-mean curvature k4 of
OF is defined as k¢ := dmin When g = 0. The basic result k4, € L*(JE) proved
in [9] is the starting point of the present paper, which is focused on finer regularity
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properties of k4 (or, more generally, of dmin) on suitable facets of 0 E. The impor-
tance of explicitely computing k4 (Whenever this is possible) relies on the fact that
K¢ 1s exptected to be the initial velocity of O F in the evolution problem having 0F
as initial datum.

Denote by Wy := {¢ < 1} the Wulff shape. In Definition 32 we define
what we mean by a facet F' of OF corresponding to a facet of 9Wy (we write
F € Fcty(OF)). If F is such a facet, it turns out that dyin — ¢ has locally bounded
variation on the interior of F' (Theorem 33). To improve this regularity result, we
need to investigate the regularity properties of the facets of Fct4(OF). In general,
it is clear that facets of a Lipschitz boundary may be very irregular. However Lip-
schitz ¢-regular sets have a Lipschitz ¢-normal vector field constrained to vary
in a suitable family of convex compact cones. Using this information, in Theo-
rem 44 we prove a first structure result on Lipschitz ¢-regular sets which reads
as follows. If E € R4(R™) and F' € Fcty(OF), then F has finite perimeter in
R™~1. Moreover, there exists a compact subset Zr C OF out of which OF can be
written locally as the graph of a Lipschitz function and, if n = 3, Z is finite. In
general, Zr is non empty, see Figure 2, and we can exhibit an example inn = 4
dimensions where Zr has two dimensional positive Hausdorff measure. In any
case, the regularity properties of F' coupled with the result that dyi, € L (OF)
(for g € L>®(OE)) are enough to prove that dp;n — g has bounded variation on F
(see Theorem 53). With this result at hand, we are allowed to consider the jump
set of dmin — g on the interior of F. Section 6 is concerned with finer regularity
properties of dyin — g and of its sublevel sets, denoted by 2}". In Theorem 64 we
prove that each 2{ solves a kind of anisotropic isoperimetric problem in the hy-
perplane containing the facet. This anisotropy, denoted with 5, has unit ball which
is essentially the facet of YWy parallel to F'. As a by-product of Theorem 64 and the
results of [11], [12], [4] we obtain some interesting informations on the structure
of .Qf . We quote in particular the following result (Corollary 65) : in n = 3 space
dimensions and if g = 0, every connected component of Qf is contained, up to a
translation and a homotety, in the boundary of the corresponding facet of the Wulff
shape.

In a forthcoming paper [8] we study necessary and sufficient conditions for a
facet to subdivide in the subsequent evolution, and we make rigorous the second
example discussed in [7].

2. Setting and notation

In this paper, we will follow the notation and the definitions of [9]. We recall
that the duality mappings 7" and T°° are defined by

T =)D ¢(§), T°(&")=¢"(§")D ¢°(£"), & & €eR?,
where D~ is the subdifferential, and that

W= {6 €R":¢°(€) <1},  Ws={£€ R :$(6) <1},
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where ¢° is the dual of ¢. We say that ¢ is crystalline if Wy is a convex polytope.
By a facet of 9W, (or of OW3) we always mean a closed (n — 1)-dimensional
facet.

Given a nonempty Lipschitz set £ C R?, we let df be the oriented ¢-distance
function from OF negative inside E, and, on OE, we set v := FoEy = vay,
where v¥ is the outward normal to OF with euclidean unit length.

If E is Lipschitz we define

Norg(OE;R")={N:E — R": N(z)€ T°(v, (z))for H"'— a.e. z € IE},
Lip, 4(0F;R") = Lip(0E; R") N Norg (OF; R").

Definition 21 Let E C R™ be a Lipschitz set with compact boundary. We say that
E is Lipschitz ¢-regular if there exists a vector field ny € Lip, ,(0E;R"™). We
denote by R4 (R™) the class of all Lipschitz ¢-regular sets.

We sometimes shall write (E,n4) € Rg(R™), and we shall say that (E,ng)
is Lipschitz ¢-regular.
We set

H(OE,R") :={N € Norys(0E;R") : divy,N € L*(0E)},
H(DE,R") :={N € Nory(dE;R") : divy,N € L®(JE)},

where the definition of divg, , is given in [9], and will not be repeated here. We
just make the following observation.

Remark 22 Let (E,ng) € Ry(R™) and let F' be a facet of OE. For any vector
field N € Nory,(OE; R™) there holds

(dive, N,v) = / wdiv,NdP, Vi € Lip(BE), spt(t) C int(F).
int(F)
@

Indeed, using Lemma 4.4 of [9], we have
<div¢>,7’N; ¢> - <div¢,7'n¢; ¢> = <div¢,T(N - TL¢), ¢>

= - V,—’lﬁ . (N - TL¢) dP¢, = —/ VT’(p -N dP¢ - / ’l,b diVTTL¢ dP¢.
OE OF OE

Then (2) follows using the fact that ¢°(¢F) is constant on int(F), that spt(¢)) €
int(F) and performing a euclidean integration by parts.

Therefore, on int(F") (which is contained in a affine hyperplane of R™) the
operator divg - IV coincides with div, N, which denotes the usual weak divergence
of N € Nory(0E;R™) on int(F’). We shall accordingly use the notation div,N
in place of divg,, V.

We let dP, be the measure supported on OF with density ¢°(vF).

The following results have been proved in [9].
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Theorem 23 Let E € Ry(R™) and assume that g € L>°(0E). Then
dimin € L2 (E). 3)

Moreover
/ (div¢,,TNmin -9) div¢,T(Nmin —N) dPy <0 VN € H(OE;R"). (4)
8F

Finally, if for any t € R we define
At = {dmin —-g> t}: 'Qt = {dmin —g< t})

then

/ dmin dPy < . divg . N dPy Vte R, VN € HOE;R"), (5
and

/Q dmin dPy > ; divg N dPy Vte R, VN € H(OE;R"). (6)

Definition 24 We say that F' is a facet of OF if F' is the closure of a connected
component of the relative interior of OE N T,OF for some x € OF such that the
tangent hyperplane T, OF to OF at x exists.

If F is a facet of OF, we denote by OF (resp. int(F')) the relative boundary (resp.
the relative interior) of F'. It is clear that, on int(F'), the measure dPy coincides
with H™ 1, up to the positive constant ¢°(vF).

We say that E is convex at F' if 0F, locally around F', meets the hyperplane
Hp containing F only in F. We say that OF is concave at F'if R™ \ E is convex
at F'. Whenever necessary, we identify Hp with the hyperplane parallel to Hr
and passing through the origin, and F' with its orthogonal projection on this latter
hyperplane.

We often do not indicate the dependence on E of the unit normals v and Uf ,
ie. wesetv:=vP v, := uf.

Let m > 1 (throughout the paper, m has the rdle of n — 1). Given a (scalar
or vector valued) Radon measure p on an open subset {2 of R™, we denote by |y|
the total variation of . If p € [1, +00], the symbol LE (2) denotes the class of all
functions f such that | f|? is integrable with respect to the measure y if p < +o0,
and f is essentially bounded with respect to u if p = +o0. If v is a positive Radon
measure, and if g is absolutely continuous with respect to v, the density of y with
respect to v will be indicated by Z—‘;, and is usually called the Radon-Nikodym
derivative of p with respect to v.

BV functions. The space BV ({2) is defined as the set of all functions u €

L' (£2) whose distributional gradient Du is a Radon measure with bounded total
variation on {2, i.e. [Du|(2) = [, |Du| < 4o0. It is well known that BV ({2)

is contained in L;”~* (£2) and that, if £2 is bounded and has Lipschitz boundary,

loc
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then BV (£2) is contained in L 7= (£2). Also, If £2 is bounded and Lipschitz and
u € BV ({2), then u admits a trace (still denoted by w) on 92, which belongs to
L'(00).

We denote by u*(z) the essential upper and lower limits of u at 2 € (2, and
we let J, := {u~ < u™} be the jump set of u (see [3]).

The space BVioc(2) is the class of all functions which are of bounded variation
on each open set A € (2.

We say that a set B C (2 is of finite perimeter in {2, and we write P(B, 2) <
+o0, if 1 € BV (2). We say that B is of locally finite perimeter in 2 if 15 €
BViec(B). Each set B C {2 of finite perimeter will be always identified with its
representative consisting of points of density one. If B is of finite perimeter in {2,
0* B denotes the reduced boundary of B. 8*B is rectifiable and can be endowed
with a generalized exterior euclidean unit normal v so that

D15(C) = —/C  vpdnm
o

for any Borel set C' C (2.
We recall the following result, proved in [6].

Theorem 25 Let 2 C R™ be a bounded open set. Let
u € BV () (7

and
X € L®(2;R™), divX € L™(£). ®)

Then the linear functional
(X,Du):go—>—/ucpdidea:—/uX-Vgoda:, p€eCHN)
Q Q

defines a Radon measure (still denoted by (X, Du)) and satisfies
(X, Du)|(B) < || X||ze (2| Dul(B)
for any Borel set B C (2.
We denote by (X, Du) € L%, (£2) the density of (X, Du) with respect to |Du|,
that is
(X, Du)(B) = / 0(X, Du) d|Du| for any Borelset B C 2.  (9)
B

Note in particular that, if spt(X) € (2, then

(X, Du)(B) = —/ uwdivX dz for any Borel set B D spt(X).  (10)
B
Unless further regularity properties are assumed on u or on X, in general the func-
tion (X, Du) has not a pointwise expression almost everywhere with respect to
the measure | D®u| (where D®u denotes the singular part of the measure Du with
respect to the Lebesgue measure).
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Remark 26 Let uy,us satisfy (7) and let X satisfy (8). If u1 = us on an open set
A € (2, then

(X, Du1)(B) = (X, Dus)(B) V Borel set B C A.

Finally, we will often use the tilde to enphasize objects (such as normal vectors
or positively one homogeneous convex functions) in a (n — 1)-dimensional space.

3. BVjoc-regularity of minimizers on facets

We are interested in studying the behaviour of dy,;, — g on certain facets of
OFE. In order to do that, we need some preliminaries.
Let F' be a facet of OE. Clearly, the vector l/f (z) is independentof z € int(F).

Definition 31 Ler E € R4 (R™) and let F be a facet of OE. We define

vy(F) == l/f(x), x € int(F),
WI = T°(vy(F)).

Wf is a closed convex set contained in 0Wy. Moreover, if F is parallel to a
facet W of W, and has the same exterior unit normal, then W‘f = W. Indeed,
ve(W) = vy (F) implies WE = T°(v,(W)). Since T°(vy(W)) = W, it follows
that W = W.

Definition 32 Let E € R4(R™). We define
Fcty(OF) := {F : Fis afacet of OF and Wf is a facet of 6W¢} .

The class Fcty(OF) is non empty only if Wy has at least one facet: this
assumption (obviously satisfied in the crystalline case) will be therefore tacitly
assumed in the sequel.

The following result is a first regularity property of minimizers of J on facets
corresponding to facets of the Wulff shape.

It is useful to recall that, by Remark 22, the ¢-tangential divergence coin-
cides with the euclidean tangential divergence on facets of dF, for vector fields
in H(OE; R™).

Theorem 33 Let E € Ry(R") and let F' € Fcty(OF). Then
dmin —g€ BWOC(lnt(F)) (11)

Proof. Let for simplicity of notation V' := dmin — g. Fix an open set A relatively
compact in int(F"). We have to prove that V € BV (A), i.e.

sup {/ Vidiven dPy - n € Co (AR, [n] < 1,1 - vy (F) = 0} < Foo. (12)
A
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Choose p > 0 and a point y € int (Wf ) such that
B,(y) "W Cint (Wj). (13)

Fix no € Lip, ,(0E;R™) with the following properties:

{770 =y in aneighbourhood of A contained in int(F), (14)

no =ng in OF \int(F).
Letn € CH(A;R?), || < 1,n-vy(F) =0, and set

=10 — p7-

Then 77 € Lip(0E;R"™), and by (13), (14), |n| < 1 and the fact that spt(n) is
compact in A, it follows that 77 € Lip,, 4(OE;R"). In particular 7 € H(9E; R").
(From (4) it follows that

VdiV¢’TNmin dP¢ < Vdiv,. 7 dP¢
OF OF

= Vdiv,no dPs — p/ Vdiv,n dPy.
oOF A

Therefore

/ Vdiv,n dPy < p~* / Vdivy,, (Mo — Nmin) dP; (15)
A oOF
< Cp M IVllz2om) 1dive,- (o — Nomin) |l £2(08),

where C' := max|,|=; ¢°(v). Passing to the supremum over 7 in (15) we deduce
(12), and (11) follows.

We now want to give a pointwise version of inequality (6) on facets of OF
corresponding to facets of 9W.

Definition 34 Ler F' € Fcty(OF). For any t € R we define

AF = {z € int(F)
2f = {z € int(F)

: dmin () — g(z) > t}, (16)
tdmin(z) — g(x) < t}.
Observe that from Theorem 33 and the coarea formula, 2} and Af" have locally
finite perimeter in int(F") for almost every ¢ € R. We denote by 7, = 7} :=
D1
—ﬁ the exterior (generalized) unit normal to int(F) N 9* 2.
nt
The following proposition gives a pointwise version of the inequality (6) on
facets F' € Fcty(OE), and a pointwise expression of 6(Nmin, D1gr).
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Proposition 35 For almost every t € R and for H"~2-almost every z € int(F) N
0* AF we have

—60(Nuin, D14r)() =min{ 2-p(z) 2 € W(f}, (17
and for almost every t € R and for H"2-almost every x € int(F) N 8*2F we
have

—0(Nmin, D1gr)(z) = max{ z-Uf(x):z € Wf} . (18)

Proof. Set 2 := int(F'). Fix t € R such that 1 or has locally finite perimeter in
2.Setu :=1gr and J,, := 0*NF . By (6) we have

/ w div,; (Npin—N) dH™ 1 >0 VNeﬁ(BE; R™), spt(Nmin—N) € int(F).
Q
Applying (9) and (10) withm =n — 1, B = 2 and X = Ny, — N, we get
/ O(Nmin — N, Du) dH" 2 < 0. (19)
Ju

Choose a subset N of spt(Npin — N) N J, such that H*~2(N) = 0 and for any
7 € (Spt(Nmin — 1) N Ju) \ A there holds

1
0(Nmin, Du)(z) = lim —— / 0(Nmin, Du) dH™™2  (20)
( )@ p—0t Wy _opn 2 B, (z)NJ. ( )
and L
7 (z) = lim ——— v dH™ 2, 1)
i@ p—0F Wp_op" 2 /B,,(gﬂ)mu ¢

where w,, 5 denotes the Lebesgue measure of the unit ball in R" 2. Equality (20)

follows from the fact that 6(Nmin, Du) € L$5._5(J,) and £2f has locally finite

perimeter, while equality (21) follows from the definition of 7/;.
Fix 2 € (spt(Nmin — N) N Jy,) \ N and r > 0 such that B,.(z) C {2. Choose
z € WS such that

z-ﬂ:(m)zmax{w-ﬁ;‘(x):wew(f}.

For any p > 0 with p + p* < r, we choose a function 7, : 0E — R™, n, €
H(OE;R™), such that

() = z Vy € B,(z),
W)=\ Nin(y)  for H™' — ey ¢ B, 2 ().

(From (19) and the fact that Ny,i, = 1), outside of B, ,»(x), we have

0> lim _ / 0(Numin — 1p, Du) dH" 2
B,(z)NJy

T p—0t wn—an_z

1
+ lim

_ 0(Nwin — 1,, Du) dH™ 2.
p—=0t Wp_p"2 ~/(Bp+p2(z)\Bp(z))ﬂJu g
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Observing that the last limit at the right hand side vanishes, and that 7, is constant
on B,(z), so that 8(n,, Du)(y) = —z - 7} (y) for H"~'-almost every y € B,(z),
using (20) and (19) we get

0(Nmin, Du)(z) < —z - 7} (z) = —max{w-ﬂz‘(x) T weE Wf}

Let us prove the opposite inequality. Consider vector fields N, € H (OE;R™) such
that N, € Lip(£2;R"), Ne = Npin weakly-x in L>(£2;R") and div, N, =
div,; Nmin weakly in L™ ~1(§2), as € — 0. Then, one can check that

0(Ne, Du) = 0(Npin, Du) in  weakly— * in L7, ; (£2). (22)
Since moreover —0(N,, Du) = N, - I}, we have that
—0(Ne, Du)(z) < max{w -7/ (z): w€ W¢ },

for H"~2-almost every = € J,,. Passing to the limit as € — 0 and using (22), we
obtain

—0(Npmin, Du)(z) < max{w -7 (z) : w € W¢ },

and the proposition is proved.

4. Regularity of facets of OF

The following three lemmas will be used to prove Theorem 44 which, in turn,
is necessary to prove Theorem 53. Notice that £* € T°(€) if and only if § € T'(£*)
for any &, £* € R™. We also recall that the map 7 is upper semicontinuous, in the
sense that if £, € € R™ and &, — £ as h = +0o0, then

N U @) c 7). (23)

m h>m

Lemma 41 Let (E,ny) € Ry(R"™) and let F € Fcty(OE). Then
z € OF = ny(z) € OW] . (24)

Proof. Let x € OF. Since F is a facet of OF, OF is Lipschitz, and since a Lip-
schitz function with almost everywhere vanishing gradient is constant, it follows
that, in a small neighbourhood of z, there are points where uf exists and the

set T"(uf ) does not intersect int(Wf ). Assume by contradiction that ny(z) €
int(W(f ). As ng is continuous, there exists p > 0 such that ng(y) € int(AWJq%m ) for

anyy € B,(z)NOE.Lety € B,(x)NIE be such thatT"(u¢ (T ))ﬂlnt(WF) 0.
Recalling that ny (3) € T°(v (7)), we reach a contradiction.
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Lemma 42 Let (E,ny) € Ry(R™) and let x € OFE. Then

lim sup dist (2, T(ng(zx))) = 0. (25)
p=0% ye B, (2)NOE, z€T(ny(y))

Moreover, if ¢ is crystalline, there exists pg > 0 such that
vy (y) € T(ng(z))  for "' —ae.y € By (z) NIE. (26)

Proof. Let (y,) C OF be a sequence of points converging to z. Since n is con-
tinuous, we have ng(ys) — ng(x); therefore, using (23), we have

sup  dist (2,T(ng(z))) -0 ash — +oo, 27)
z€T(ng(yn))

and (25) follows.

Assume that ¢ is crystalline. Since ng is continuous, we can choose pg > 0
such that ny takes B,y (x) N OF into the union of all the adiacent facets of OWy
at ng(x) (if ne(x) is interior to a facet of OWj, then this union reduces to that
facet only). By the properties of the map 7', we have T'(ny(z)) 2 T'(ng(y)) for
any y € B,,(x) N OE. Moreover, from the inclusion ngy € T°(v}) it follows

vy € T(ng). Hence

T(ng(x)) 2 T(ng(y)) Vf(y) for H"~! —a.e.y € B,,(z) N OE.
Notice that (25) implies

lim sup dist(vZ (y), T(ng(z))) = 0.
P=0% yeB,(2)nN0*E (v @), T(ns(2)))

Given a set A, by 0 A we mean the closed convex envelope of A.

Lemma 43 Let W be a facet of OWg, let € € OW, p > 0 and define the convex
compact set K, as

K,=w |J T©.

CEB,(§)NOWy
Then there exists pg > 0 such that the two following properties hold:

(i) vy(W) is an extreme point of K, for any p € 0, pol;
(ii) there exist a constant ¢ > 0 and a vector ii # O such that

Rone(W) =0, v =i (= v(W) >y —vg(W)],  28)
forany v € K, and for any p € 10, po|.

Proof. Assume first that ¢ is crystalline. In this case K, is identically equal to
T(&) for p > 0 small enough (it suffices to apply (26) with £ := W, and
& = ng(x)) and is a convex polytope with dimension between 1 and (n — 1),
having v4 (W) as vertex. Therefore (i) is immediate. Let {W1,..., W} be the
facets of W, adiacent to W at £, and denote by Vé, the exterior normal to W;,

with ¢°(1/;) =1, fori = 1,...,k. Choose any euclidean unit vector 7 with the
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following properties: 7 lies in the hyperplane of W and points strictly inside the
outward normal convex cone to W at &, i.e.

ﬁ"/(ﬁ(W):Oa ﬁ(C—5)30 V(e W, ﬁ'(7—5)2—01|7—§|a (29)

for any v € B,.(§) N OW and for some constants r > 0 and ¢; € ]0, 1] (indepen-
dent of «y). Since 1/;5 — %mqu(W) is the orthogonal projection of 1/3, in the

hyperplane of W, a direct computation gives

. i W
. vk W’()P)%(W) ’ 30)

Aevi > 1 |vi -2 27
0= O ue(W

and y/1 — ¢ > 0. Moreover there exists ¢ > 0 such that

\/1—¢2

Using (30), (31) and the fact that &6 { vy (W), v}, . .., v } = T(€) = K, forp >0
small enough, property (ii) follows.

Let now ¢ be generic. Choose a (n — 1)-dimensional polytope H such that
H C W and 0H N OW = {&} (in particular £ is a vertex of H). Let us consider
a n-dimensional polytope H such that H C Wy and H is a facet of OH. Let
{Hy,...,H;} be the facets of OH adiacent to H at ¢ and let 1/; be the exterior
normals to H; with ¢°(v},) = 1. Let also

; 1/;J vy (W)

Yo = Tuemp o)

> vy —vy(W)|, i=1,...,k (3D

14

L::m{qbo—(z/): VG%{V&,,...,V%}}.

Then L D K, for any p > 0 small enough. This follows from the following
observation: if f; and f, are two convex functions with the property that f; — fo
has a strict local minimum at some point zg, then the outward normal convex cone
to the graph of f; at zo contains the outward normal convex cone to the graph of
f2 at zo. Moreover v4 (W) is an extreme point for L. Reasoning as in the previous
case, we can find a vector 77 and a constant ¢ > 0 such that (28) holds. Indeed,
any non zero vector i € vg(W )L, pointing strictly outside of H (hence of W),
satisfies (28) for some ¢ > 0.

The following result is a regularity property of Lipschitz ¢-regular sets, and is
necessary to give a meaning to the normal traces of the vector fields in H(OE; R™)
on boundaries of facets corresponding to facets of W.

Theorem 44 Let E € Ry(R™) and let F' € Fcty(OF). Then F has finite perime-
ter in R*~1. Moreover there exists a compact set Zr C OF such that for any
x € OF \ Zp, OF is a Lipschitz graph locally around x. Finally, if n = 3, then
Z is finite.

Figure 2 show an example of Lipschitz ¢-regular set E, inn = 3 space dimen-
sions, having a facet F' € Fcty(OF) such that Zp C OF is not empty. We shall
show also that, in n > 4 space dimensions, it may happen that H"~2(Zg) > 0.
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Proof. Let z € OF. By Lemma 43 applied with W := Wf and £ := ny(z), we
can choose pg > 0, K, with p € ]0, po[, 72 and ¢ > 0 satisfying (i)-(ii). Our aim
is to write the set OF, locally around z, as a graph of a BV function with respect
to - N Hp, and to use the inequality in (ii) of Lemma 43 to prove that, in three
space dimensions, OF is locally Lipschitz, up to a finite number of points.

Denote by 7 : R* — A the orthogonal projection onto 7. Notice that, since
i - vy (F) = 0, it may happen that w(B,(z) N OF) is not an open neighbourhood
of w(x).

Choose a hyperplane P C R™ such that B,(2) NOE is the graph of a Lipschitz
map h : 2 C P — R, with {2 an open set. Note that Vf € K,, H" l-almost
everywhere on B, (z) N E. We split the proof into three intermediate steps.

Step 1. There exists a global Lipschitz graph X' over P such that

(i) B,(z) N X = B,(z) N IE,
(ii) v; (y) € K, forany y € X, where v is the normal vector field to X (nor-
malized to have ¢° = 1) which coincides with Vf on B,(z) N OE;
(iii) the map 75 is surjective onto at.

Define
G := {u € Lip(P) : Vgraph(u) € K,,u > hon 2}.
It is immediate to check that G is non empty. Let
he :=inf {u:u € G}.

Then h® € G. Moreover h® = h on (2. This follows from the fact that, being h
Lipschitz, for any z € (2 there exists a piecewise linear function g, € G such that
9:(2) = h(z).
To obtain property (iii) we need to further modify h¢ outside of {2 as follows:
define
WE=w-2-C)Vh ) A (w- -2+ C) Vz € P,

where a V b := max(a,b), a A b := min(a,b) for a,b € R, and w is chosen in
such a way that the normal vector to the graph of the map z — w - 2 belongs to
the relative interior of K, and C' > 0 is such that h* = h on (2.

Finally, we define X := graph(h*). One can check that X satisfies properties
(1)-(iii). This concludes the proof of step 1.

By (ii) of Lemma 43, it follows that X can be written as a graph over n*,

possibly with vertical parts. Since X' has locally finite area, there exists a function
f: at = Ra, with f € BVjc(A), such that X is the boundary of the subgraph
of f. Let f*(z) be the essential upper and lower limits of f at z € fi* and J; be
the jump set of f (see Figure 1). Notice that F'N B, () is contained in the vertical
part of the graph of f,i.e. FNB,(z) C {z+ti: z € m(F),t € [f~ (), fT(2)]}.

Let f. := f * p., where p is the standard sequence of mollifiers in fi*.

Step 2. We have

Gl

[Vf(z)-v| < - Vz e nt, Yve Hp Nat, Ye > 0. (32)
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W, E
Figure 1. The function f* which defines (locally) a facet F'

Define v, := V;Ubgraph(fe) at the points (2, fe(z)) for z € B,(r(2)) N7ii*. By a

direct computation we have

(wg(2, fe(2)) - )R — vg (2, fe(2))
vg(z, fe(2)) - i

Moreover, as Uf € K, by step 1, we have v§ € K. Using (ii) of Lemma 43 we
then obtain

Vi(z) = Vz € By(n(z)) nat. (33)

bz fo2)) Al < 2 lvi(en £u(2)) — wo(F)] (34)

Let now v € Hyp N #*; using (33), (34) and v - 7 = 0, we get

1 (e fe(2)) vl
|Vf€(z,f€(z)) U| S c |y;(z7f€(z)) — I/¢(F)|‘

Since v € Hp we have |v3(z, fe(2)) - v| < [v5(2, fe(2)) — vg(F)||v|, which
coupled with (35), concludes the proof of step 2.

(35)

Step 3. f* are Lipschitz continuous on B, (w(z)) N m(F). More precisely
1
IfE(z1) — fE (=) < z|z1 — 29| Vz1,22 € By(w(x)) N7 (F).

Let us consider the function fT. Fix 21, 20 € B,(m(z)) N w(F). In view of the
properties of BV functions, we can pick two sequences (z,(,?), 1 = 1,2, of points
in At \ Jy, such that zs,? — 2, f(z%)) — f1T(z;), fori = 1,2, and zg) - z,(z) €
vy(F)* for any m; moreover, we can also assume that f, (zT(,?) = f (z,(f;)), for
1=1,2,as€ = 0.

Then, using the fact that z(ml) - z,(f) € Hp and step 2, we have

() = £H ()] = lim [ F(=)) = f(=8)] = lim lim |fe(=)) = fe(=5)]

|21 — 22|

m—o0 e—0

1
< lim lim/ VL = 12D 4 £22)) - (21D = 20| dt <
0
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W,
E

Figure 2. The Wulff shape W, and a facet F' of a Lipschitz ¢-regular set having a singular
point

Since B,(z) NOF C graph(f~)Ugraph(f+) and f* are Lipschitz, by com-
pactness it follows that F is of finite perimeter in R 1.

We define

Zp={y € OF : f~(n(y)) = fT(m(y)}- (36)
Notice that, for any z € OF \ Zp, OF is the graph of a Lipschitz function (namely
fT or f7) in a neighbourhood of .

Let now n = 3. Since F is connected we have that 7(F N B,(x)) is an inter-
val, and therefore f~ and f* can coincide in at most two points of F' N B,(z).
Therefore H°(Zr N B,(z)) < 2, and so Zp consists of isolated points of OF. By
compactness, it follows that Z is finite.

Notice that, given a facet F' € Fcty(OF) and defining the set Zg as in (36),
we have
ZrNO*F = 0.
Indeed, Z is (locally) the intersection of the two Lipschitz graphs graph(f¥) and
graph(f*), and therefore F is contained, in a neighbourhood of any x € Z, in a
cone C; UC,} (with vertex at ), identified by the Lipschitz constants of f~, f+.

This implies that the blow—up of OF at x cannot be a hyperplane of Hp, hence
x ¢ O*F.

Definition 45 Let F € Fcty(OF), Zp, f*, 7 be as in Theorem 44, and let x €
OF\ Zp. If x = w(x) + ft(n(x)) (resp. x = w(z) + [~ (7 (x))) we say that OF
is weakly convex (resp. weakly concave) at x.

Notice that if x € 0*F = 0*F \ Zp, then OF is weakly convex at z (resp.
weakly concave at x) if and only if #};(z) points outside E (resp. inside E).

Corollary 46 If F' € Fcty(OF) and E is convex or concave at F, then F is
Lipschitz.

Proof. Assume that E is convex (resp. concave) at F. If z € OF then OF is
weakly convex (resp. weakly concave) at x, which implies f+(z) # f~(z).
Therefore Zr = 0.
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We now give an example of a set E € R,(R*) having a facet F' € Fcty(OF)
such that H%(Zp) > 0.

Take ¢(€) := max{|&1| + |&] + [€3], [€4}, where € = (&1,&2, &3, &) € R
Then Wy = X x [—1,1], where ¥ C R® is given by ¥ = {¢ = ((1,(, () €
R® : |¢1|+[¢2| +|¢3] < 1}. Take an openset A € [0, 1] x [0, 1] with the following
properties: A is connected, int(A) = A and H2(A4) > H2(A). Forany z € R2, let
d 4 (z) := dist(z, R? \ A) be the euclidean distance function from R? \ A. Then d 4
is 1-Lipschitz, d4 > 0 and d4(x) > 0if and only if z € A. Embed now A C R?
into R* by identifying R? with {e;, e;) C R*. Define

F:={z = (z1,22,73,24) € R* : 24 =0and 0 < z3 < da((z1,22))}.

One can check that OF is locally a Lipschitz graph out of a singular set Zr :=
{z € F: (z1,72,0,0) € A\ A}, where the closure of A is taken in the subspace
(e1,e2) C RY. Hence H2(Zr) > H2(A) — H2(A) > 0. Let us now construct a
Lipschitz ¢-regular set (E, ng) with the property that F' € Fct,(0E). Let E C R*
be defined as

E =8N pW;,

where p > 0 is a real number sufficiently large and .S is defined as
S:={zeR':24 <Oandzs <0}U{z € R': 24 > Oand 23 < da((z1,22))}-

Notice first that F' C OF, F' is connected, and F' is a facet of OF, with v4(F') =
—e4. Moreover, F' € Fcty(OE), since W(f = T°(—e4) = (X, —1) is a facet of
OW,. It remains to construct a vector field ng € Lip,, 4(0E; R*). First we choose
ne constantly equal to e3 — e4 € (X, 1) in a neighbourhood of F' in OF; using the
fact that, out of F, E is a dilation of Wy, we can extend ng on the whole of F in
such a way thatny € Lip, 4(0E;R*). The example is complete.

If F is a facet not corresponding to any facet of W, less regularity than the
one guaranteed by Theorem 44 is expected. In this respect, the worse situation
is when F' is such that T°(v4(F')) is a vertex of 0Wj (if any): in this case no
regularity property of OF' is expected.

Thanks to Theorem 44, we can give the following definition.

Definition 47 Let F' € Fcty(OF). For any x € 0*F it is well-defined an exterior
euclidean unit normal to 0*F, lying in Hp, which we will denote by v} (x). If
n = 3, U} is defined H'-almost everywhere on OF and coincides with the usual
normal vector DF.

We also define the function cp € L (0*F) as
cr(z) :==ng(x) - g (x) Vz € 0*F. 37)

The next result shows that the funtion cr is independent of the choice of ny €
Lip, ,(0E;R™), but depends only on F' and on the geometry of W.
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Lemma 48 Let (E,ng) € Ry(R"), F' € Fcty(0F) and n € Lip, ,(0E;R™).
Then, for any x € 0*F we have

max{p-75(z): p€ Wf} if OF is w—convex at ,
min{p-vp(z): p€ Wf} if OF is w—concave at .

(38)

n(x) - vp(z) = cr(z) ={

In particular; c is independent of ny € Lip,, ,(0E; R™).

Proof. Fix x € 0*F = 0*F \ Zp. Assume first that OF is weakly convex at .
Notice that there exist a nonzero vector 7 in the orthogonal projection of T'(n ()
on F and A > 0 such that

75 (z) = AT (39)
Since 7(z) € WF, we have
n(z)-q= max p-qg Vg€ T(n(z)). (40)
peEW]

Write 7 = v + pvy (F) for some v € T'(n(x)) and p € R. ;From (40) we get

n(z) - 7= max p-v+pn(z) ve(F) = max p-v+p= max p-v, (41)
pEW] pEWS peEW]
where the last equality is a consequence of the equality p-v4(F') = 1, which holds

forany p € W{ . Then (38) follows from (39).
Assume now that F is weakly concave at x. The proof is the same as in the
weakly convex case, by observing now that A < 0, and therefore

~ %

n(z) - 7p(z) = A max p-¥= min p- A= min p-7p(z).
pEW] pEW] pEW]

We conclude this section by observing that, under suitable assumptions, a facet
F of OF is Lipschitz ¢,-regular, where ¢, is the metric on Hr induced by W(f .

More precisely, let F' € Fct4(0F), fix y € int(Wf ) and let W(f = W(f - .
The (n — 1)-dimensional convex body Wdf: , contain the origin of Hp in its inte-
rior. Let ¢, be the convex positively one homogeneous function on Hr such that
{J)y <1} = Wf y- Define also sym(<f~>y) as the convex positively one homoge-
neous function on H such that {sym(¢,) < 1} = —Wdf’? ,- Notice that the classes

of Lipschitz qu -regular sets and Lipschitz sym(¢, )-regular sets do not depend on
the choice of y.

Proposition 49 Let (E,ng4) € Ry(R™) and let F' € Fcty(OF). If E is convex at
F then (F,ng — y) is Lipschitz éy-regularfor anyy € int(Wf). If E is concave
at F, then (F,y — ngy) is Lipschitz sym(q;y)-regularfor anyy € int(wqf).
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Proof. Assume that E is convex at F' and let y € int(Wf ). ¢(From Corollary 46
it follows that OF is Lipschitz; moreover ngy — y € Lip(OF'; Hr). Therefore we
have only to prove that

ng(x) —y € T°(HF () for H"™2 —a.e.x € OF, (42)

where T := 1D~(($9)?). For any z € 9*F (and therefore for 7{"~2-almost
every z € OF) OF is weakly convex at F', therefore by Lemma 48 there holds

(no() = y) - 7 () = max{p- 7() : p€ WS, }.

and relation (42) follows.
Assume now that E is concave at F'. We have to prove that

y —ny(z) € 5o (2)) for H"2 —a.e.x € OF, (43)

where 5° := 1D~ (((Sym(¢,))?)?). For any z € 8*F we have that O is weakly
convex at x, therefore

(v = ng(@)) - 75 (@) =y —min { ~p-Pp(a) : pe ~W,}
= max {p-7p(2) : p—y € =W} },

and the assertion follows.

5. BV -regularity of minimizers on facets

The aim of this section is to prove Theorem 53. We begin with the following
useful result proved in [6].

Theorem 51 Let 2 C R™ be a bounded open set with Lipschitz boundary. Let
u, X satisfy (7) and (8) respectively. Then there is a function [X - v$?] € L>®(012)
such that ”[X . I/Q]“Loo(ag) S ||X||LOO(Q;]Rm), and

/udivX dx+/ 8(X, Du) d|Du|:/ [X - v%udH™ . (44)
2 2 o8

Proposition 52 Let Nyin be a solution of (1), F € Fcty(OE), and let 0F be
defined as in (16). Then there exists a constant C > 0 such that

P(QF,int(F)) <C  forae.teR (45)

Proof. Fix y € int (Wf) and p > 0 such that B,(y) C int(W(f). Fix t € R

such that Proposition 35 holds; hence for H™2-almost every z € int(F) N .J,, we
have

0(Nmin — y, Du)(x) = —max{(z —y)-U(x):z € Wf} < —cp <0,
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for a suitable constant ¢; > 0 depending only on y and Wf , where we have set
u:=1gr, Jy := 0" Qf . Therefore

c1p < 6(y — Nuin, Du)(z) for H"? —a.e. x € int(F) N J,,.

Choose a Lipschitz open set A € int(F"). We have
F 1 n—2 1
P ,A) < — 0(y — Npin, Du) dH" % =: —1I.
C1p JAnJ. cip
Applying Remark 26 on the open set A with the choice m = n — 1, u1 = w,
Uy = 1Angtp, B = Aand X = y — Npjn, we obtain

I = (y = Nmin, Du)(4) = (y - Nmin,DlAthF)(A)

= / 0(3/ - Nmin; DlAﬂQtF) d’Hn_Z.
ANd*(AnQF)

Applying (44) withm =n -1, 2 =A, u = 1gngF, X =y — Nmin, we get

I=[ [(y = Nain) 7] 1grns dH" > — / div,(y — Npin) dH" 1
8A AnQF
< caH"2(8A) + H"H(F) (I|div, Numinl| o () + €3) 5

where ¢, and ¢3 depend only on W.
Therefore

P(0f, 4) < — (M 7(04) + H" ™ (F) (I1diV Nown |2 i) + ca) )

(46)
By Theorem 44 we have that F' has finite perimeter in R”~1. Therefore, for any
€ > 0, we can find a Lipschitz open set A, € int(F') such that H"~1(int(F) \
A.) < e and |P(A,int(F)) — P(F,R*1)| < €. Replacing A with A, in (46)
and letting € — 0%, we obtain (45).

1
c1p

Theorem 53 Let E € R4(R") andlet F' € Fcty(OF). Assume also g€ L (0E).
Then

dmin — g € BV (int(F)). (47)

Proof. Set V := dmin — g. (From (3) we have V € L°°(OE). By the coarea
formula and Proposition 52 we then have

+oo
/ |DV| = / P(2f,int(F)) dt
int(F) —oo

IV]lLee o m) .
=/” ” P(0F int(F)) dt < 20|V ||z~
—[[V]lLee (o k)
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6. Further regularity properties of minimizers

Throughout this section (E,ng) € Ry(R™) and F' € Fcty(OF). We always
consider ¢ € R such that 2" # (. We often identify 2f" with its projection on the
hyperplane parallel to Hr and passing through the origin of R™.

In order to obtain further regularity properties of the function dp,;, — g on F,
we show that its sublevel sets solve a prescribed anisotropic mean curvature type
problem (see Theorem 64).

Fix y € int(Wf ). The following definition yields an (n — 1)-dimensional
notion of ¢-perimeter for subsets of int(F’).

Definition 61 Ler A be an open subset of Hp. For any Borel set B C int(F'), we
set

ﬁ;(B,A) :=sup{/ div,ndH™ ' : ne CL(A;R"),n(z) € ny Yz € A}.
B

The above definition does not depend on the choice of y € int(F'). Notice that
P4;(B,A) > 0 for any B and A; moreover Py (int(F), Hr) < 400 by Theorem
44. When A = int(F'), we simply write P4 (B) instead of Py (B,int(F)).

Remark 62 One can check (see [2], Proposition 3.2) that we get an equivalent
definition ofﬁ; (B, A) if we lety vary in the set of all vector fields in L*° (Hp; R™),
with compact support in A, having bounded divergence in A and satisfying the
constraint n(zx) € ,Wvgjy for H™ Y-almost every x € A.

Lemma 63 Let A € int(F') be a Lipschiiz open set. Then, for almost everyt € R
we have

Py(02F A) = /A . dinin dH™ ™ — /8 A[Nmin A lgr M2 (48)

Proof. Let ¢t € R be such that Proposition 35 holds. Using Theorem 51 and (18),
we have

/ dmin dHn_l
ANQF

=— / (Nrmin, D1gr) dH" % + / [Nanin - 741 p dH" 2
Ano*QF A

= / max {p- 7} (z)} dH" "2 + / [Numin - 741 or dH" 2.
Ang*Qf peW} 84 ‘

Using Remark 62 and a commutation argument between supremum and integral
(see for instance Lemma 4.3 in [10]) we have

/ max {p- 77 (x)} dH" % = By(0F, 4),
ANG=QF peW[f

and (48) follows.
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By A we indicate the symmetric difference between sets.

Theorem 64 For almost every t € R the set QF is a solution of the following
variational problem:

inf {f’;(B) - /B(g +1t) dH™ ! : B Borelset C int(F), BARF € int(F)}.
(49)

Proof. Fix t € R such that Proposition 35 holds. Let B C int(F') be a Borel set
with BANF & int(F). We have to show that

Paef) - [ ety <Pom) - [ ot o)

t

By inner approximation of int(F') with Lipschitz open sets as in Proposition 52,
to show (50) it is enough to prove that for any Lipschitz set A € int(F’) such that
BAQ} € A, there holds

Pl )= [ (g4 awt <BB A - [ grnan sn
AnQF ANB

Fix such a set A. By Lemma 63 we have

By(0F, A) - / (g+1) dHm!

AnQF

= / (dmin —g —t) dH™ " — [Nmin - 741 or dH™ 2.
ANQF 0A ¢

Since dpin — g —t < 0 on 2], we have

/ (dmin —g — ) dH"™" < / (dmins — g — t) dH™,
ANQF ANB

and since BAR}F € A we also have

[Nomin - 74]1gr dH"? = [ [Nmin - 7415 dH" 2.
2A t 54
Therefore
Py(2f, 4) - / (g+1t) dH™ !
AnQF
< / (dmin —g— t) dH™ ! = [Nomin .;A]lB dH™2.
ANB 54

Using the definition of IS;(B, A), Remark 62 and an approximation argument we
get

P;(B, A) > / dinin dH" ™Y = [ [Nmin - 7415 dH™ 2.
ANB A
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It follows that

Pt 4) - |

(g+1) dH™ < By(B, A) - / (g + 1) dH™ 1,
AnQF

ANB

and the proof of the theorem is concluded.

Note that, if we replace the weak inequality with the strict inequality in the
definition of £2}", the assertion of Theorem 64 still holds.

We now list some regularity results on dp,i,, which are consequences of The-
orem 64 and the results in [11], [12], [13], [4]. Point (iv) of the next corollary, in
the special case ¢ crystalline and E polyhedral, has been independently obtained
by Yunger in [14].

Corollary 65 The following properties hold.

(i) For anyt € R the set Qf has finite perimeter in int(F), is a solution of the
variational problem (49), and H™=2 (002} \ 0*2f) = 0.

(ii) Assume g = 0. Lett < 0. Then ﬁf N OA # 0 for any open set A C int(F)
such that Qf N A # 0.

(iii) Assumen = 3 and lett € R Then 802} is a Lipschitz graph in a neighbour-
hood of any x € (int(F)NANE)\ X, where X is a closed subset of 002f such
that H*(X) = 0. Moreover, U‘W‘f is neither a triangle nor a quadrilateral, or
if there exists a constant ¢ > 0 such that either g > c or g < —c H?-almost
everywhere on int(F), then ¥ = {).

(iv) Assume n = 3 and g = 0. Then, for any t # 0, every connected component of
int(F) N &Qf is contained, up to a translation, in %6W¢f‘ .

(v) Assume n = 3 and g = 0. Assume also that qu is strictly convex. Then k4 is
continuous on int (F).

Proof. Lett € R. Write 2f = J,;, 125, where I, is the set of all real numbers
A < tsuch that £2£ is a solution of (49). By a compactness property for minimizers
for functionals of the form (49) (see [1, Section 3]) we obtain that Qf is also a
solution of (49). Assertion (i) then follows using again the arguments in [1].

Let us prove (ii). Suppose by contradiction § # 2F N A € A for some open
set A C int(F) and some ¢ < 0. Let £2' := 2F \ A (note that £’ could be
empty). Since P(£2') < Ps(02F) and H™ 1 (2') < H 1 (0QF), as t < 0 we
have Py (') —tH"~1(2') < Py(02F)—tH"=1(02F), which contradicts Theorem
64.

Assertions (iii) and (iv) follow from Theorem 64 and the results in [11], [12],
[13]. It remains to prove (v). It is enough to check that if ¢; < % are such that
QF # 0, 2f # 0, then 002F N dNf Nint(F) = §. Assume by contradiction
that there exists z € 002f N 0Nf N int(F). We can reduce to the case t; # 0
and t2 # 0; indeed if for instance t2 = 0, then any ¢3 € ]t¢1,0[ is such that
onf NoNE Nint(F) 5 z. (From assertion (iv), we have that 02f, fori = 1,2,
are, around x, contained in tié)Wf . Therefore, around z, 842} has ¢,-curvature

equal to ¢;. This is a contradiction, since ¢; < t2, 2 C 2, and Wf is strictly
convex.
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The generalization of (iii)-(iv) of Corollary 65 to arbitrary dimensions remains
an open problem, related to the general problem of regularity of area minimizers
in crystalline geometry. We remark that assertion (v) does not hold in general in
the crystalline case (see [7]).

We want now to prove assertion (ii) of Corollary 65 whent¢ > OQinn = 3
dimensions. In order to do that, we need a comparison-type result (Proposition
66). We begin with a technical observation.

(From (v) of Theorem 3.8 in [6], if R and S are two sets of finite perimeter in
(2, and if C is a Borel set contained in 0* R N 0*S and such that ‘Bﬁ = ‘B—iil
H™~!-almost everywhere on C, it follows that (N, D1g) = (N, D1g) H™'-
almost everywhere on C, for any N satisfying (8). In particular, if S C R and
C=0*"RNo*S

O(N,D1g) = §(N,D1lg)  H™ ' —a.e.ond*RNI*S. (52)

Recall also that, if B has finite perimeter, then B N §*B = {).

Proposition 66 Let 2 C R™ be a bounded open set and let K C R™ be a
compact set. Let

Ni, Ny € L®(2;K),  divNy,divN, € L(2) N BV(R2).

Define
0 :={z € 2: divN,(z) < t} Vt e R,
) Di,;
and for almost everyt € R let v} := — ﬁ. Suppose that for almost everyt € R
2
there holds

—0(N;, D1g;)(x) = max{p- vi(z): pe K} for H™ '—ae .z €N 0.

(53)

Let B be such that either B has finite perimeter and B € (2, or B C {2 has

Lipschitz boundary. In the latter case we set §(N;, D1g) := —[N; - vB], i =1,2.
If

—0(N,,D1g) > —6(N,,D1g)  H™ ! —a.e.ond*B, (54)

then
diviN; > divN, H™ — a.e.on B.

Proof. SetV; := divlV;, for i € {1,2}. Assume by contradiction that there exists
A € R such that H™(£2)) > 0, where 25 := (£25 \ 23) N B. Since V1, V> €
BV (2), we can also assume that (2 has finite perimeter. Clearly 1o, = 1p -
Lo - 1o\ 2. Notice that if R and S are two sets of finite perimeter we have, up to

sets of zero H™~1-measure,
O*(RNS)=(0*RNS)U(RNI*S)U (0*(RNS)NJ*RNI*S), (55)

where the three sets at the right hand side between parentheses are mutually dis-
joint.
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We now split 0*§2y, = (B N 0*2y) U (0*B N 8*(2y), and using (55) with
R = (% \ (23 and S = B we write, always up to sets of zero H™~!-measure,

BNo* N2y, = (8* 25NBN(2\23))U(0* 25NBNN;)U(BNI* 25N9* N3ND* 12y).

Hence we have, using (52),

/ 6(Ny, Dlg,) dH™ " = / 6(Ny, D1gy) dH™
O* 2y

8* 21NBN(2\22)

- / 6(Ny, Dlg) dH™ !
8+ 022 NBNR2} *

+ / O(Ny, D1 ) dH™ 1
BNo*01 N 8*22n8% 2 2

+ / §(Ny, D1g) dH™ .
0* BNO* N2y

By (53) and (54) we have

/ O(Ny, D1gn ) dH™ L < / O(Ny, D1 gn ) dH™ 2,
8* 21NBN(2\022) A 8* 21NBN(2\022) A

—/ O(Ny,D1g2) dH™ ! < —/ O(Ny, D1ge) dH™ 1

8*Q2NBN2L A 8*Q2nBNNY A

/ 6(Ny,D1g) dH™ ! g/ 6(Ns, D1g) dH™ L.
8% BNa* 02y 8% BNa* 02y

In addition, using (53) we also have

/ O(Ny,D1g) dH™ ! =/ 6(Ny, D1g2) dH™ .
BNo* 21N 22n8* 2, A BN&* 21N8* 22N8* 2, A

Then

—AH™(2\) < — [ VidH™ =/ §(Ny,Dlg,) dH™
2 o0* 2

<

/ O(Ny, D1g1) dH™ 1 —/ O(Ny, D1g2) dH™ !
8* 02 NBN (2\922) A 8+ 022 NBNNL A

+/ 0(N2,D192)d7{m_1+/ 6(N,,D1g) dH™ ¢
BNo*01 No* 02182, A 8* BNo* 2,

= / O(Na2, D1g, ) dH™ ' = — [ Vo dH™ < =AXH™(2)),
o0* 2

2

which gives a contradiction.
The following result completes assertion (ii) of Corollary 65 in n = 3 dimensions.

Corollary 67 Assume g = 0 andn = 3. Let t > 0. Then 17, N A # 0 for any
open set A C int(F) such that 2F 0 A # 0.
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Proof. Suppose by contradiction } # 2F N A & A for some open set A C
int(F) and some ¢ > 0. Let 24 := 2F N A. Observe that the connected compo-
nents [5] of {24 are simply connected (filling the holes decreases the functional in
(49) when t > 0); moreover, using (iv) of Corollary 65, it follows that {24 consists
of a finite number of connected components with pairwise disjoint closure, each of

which coincides, up to a translation, with %WF . Let C be one of these connected
components and let y € int(C). Let ¢ > 1 be such that ' := y + o(C —y) €
int(F) \ (2F \ C). For any z € 2’ define N'(2) := Nmin(y + (2 — y)). Two
cases are possible.

Case 1. There exists a Borel set L C C' with #?(L) > 0 and div,N' > 0 on
L.As o > 1 we have

div,N' < k¢ H? —a.e.on L. (56)

By (18) applied to N’ we have —0(N',D1¢o) = max{z - U5 : z € Wf} >
—6(Nmin, D1 ). Recalling also (18) and Theorem 53, we can apply Proposition
66 with 2 = 2' = B, K = W[, Ny = N', Ny = Ny It follows div, N’ > ki
‘H2-almost everywhere on 2/, which contradicts (56), since I, C £2'.

Case 2. 24 C {z : div;Npin(z) < 0}. Writing 24 = AN (ﬂu>0 .Qf) and

reasoning as in Corollary 65 (i), we get that {24 minimize ﬁ; among all compact
subsets of A with finite perimeter. Therefore 24 = @), which is a contradiction.
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