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ABsTRACT. We study some properties of De Giorgi’s minimal barriers and local
minimal barriers for geometric flows of subsets of R™. Concerning evolutions of the
form % + F(Vu, Vzu) = 0, we prove a representation result for the minimal barrier
M(E, Fr) when F is not degenerate elliptic, namely we show that M(E,Fr) =
M(E, Fry ), where FT is the smallest degenerate elliptic function above F. We also
characterize the disjoint sets property and the joint sets property in terms of the
function F'.

1. INTRODUCTION

Minimal barriers were introduced by De Giorgi in [10,9] in a general setting,
in order to provide a notion of weak solution for various problems in differential
equations. In the particular case of geometric flows of subsets of R™, the minimal
barriers approach can be adapted to different situations, including the flow by mean
curvature of manifolds of arbitrary codimension (see [9] and the paper of Ambrosio-
Soner [1]), and gives raise to a unique global evolution. In the case of motion by
mean curvature of hypersurfaces, we recall the paper of Ilmanen [13], where he
introduced the set theoretic subsolutions, which are related to minimal barriers
(see (7.10)); recently, also White [17] considered a similar approach for motion by
mean curvature.

Concerning fully non linear geometric evolutions, it has been shown in [3] (see
also [6]) that the minimal barriers recover the level set approach (defined through
viscosity solutions, see Evans-Spruck [11], Chen-Giga-Goto [7], Giga-Goto-Ishii-
Sato [12]) and that, in general, the minimal barrier selects the maximal viscosity
subsolution (in the sense of the aforementioned papers) of the problem at hand. We
recall that, to define a unique evolution of a set £ C R™ by means of the barriers
approach, no degenerate ellipticity condition is required and no assumption on E
is needed.

The aim of this paper is to study general properties of minimal barriers for
geometric evolutions of subsets of R™. We begin in Section 3 by defining the
generalized evolution M(E,F,t)(t) of any set E C R™ at time ¢ > ¢ (where F
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2 MINIMAL BARRIERS

is any family of set-valued maps) as the minimum in the class B (F) of all F-
barriers starting from F at ¢ = ¢, where the minimality is with respect to sets
inclusion. Then M(F, F,t) is unique, verifies the comparison principle and, under
minor assumptions on F, it satisfies the semigroup property. We remark that, if
we choose F = Fp as the family of all smooth local geometric (super) solutions of
an equation of the form

% + F(Vu, V?u) = 0, (1.1)
and if f is an element of Fr mapping the time interval [a,b] C [¢, +oo[ into the
class P(R™) of all subsets of R™, then M(f(a), Fr,a)(t) 2 f(t) for any ¢ € [a, b].
The equality holds true when F' is smooth and uniformly elliptic but, in general,
it does not hold for a not degenerate elliptic function F', when it happens that
the elements of Fr are not necessarily Fg-barriers. Related to this observation is
Theorem 6.1, which is one of the main results of the present paper (see Section 6
for precise statements). Assume that F is lower semicontinuous. Denote by Fgz
the family of all strict local geometric supersolutions of (1.1). Then

B(Fz) =B(Fzy), (1.2)

where Ft is the smallest degenerate elliptic function greater than or equal to F,
that is
F*(p,X) =sup{F(p,Y): Y > X}.

In particular we have M(E, Fz,t) = M(E, F7,,1).

This result shows that, in presence of a non degenerate elliptic function F', the
generalized evolution of any set by (1.1) is governed by the parabolic equation in
which F is replaced by F*.

Given any set E C R™ and ¢ > 0, let E, := {z € R" : dist (z, R" \ E) > o},
Ef :={z € R" : dist(z, E) < o}, and define

M (E, F,1) = M(E;, F.T), M (E F]I) = |M(ES F]I.
0>0 0>0

After having studied some properties of M, (FE,F,t) and M*(E,F,t), such as
stability with respect to topological closure and interior part, in Section 3.2 we
introduce the disjoint sets property and the joint sets property with respect to
(F,G), where F, G are two arbitrary families of set-valued maps. Due to elementary
counterexamples (to the joint sets property, for instance, in case of motion by
curvature in two dimensions) we introduce the regularized versions of these two
properties, which read as follows:

EiNE, =0 = M, (E,F,t)({t)NnM*(E2,G,t)(t) =0, > t,
EiUE; =R" = M,(E1, F,T)(t) U M*(E»,G,1)(t) = R",

~
~

(1.3)

~
|

These two properties play an important role, in general, in geometric evolutions
of sets. In Theorems 7.1, 7.3 we characterize (1.3) for geometric evolutions of the
form (1.1). More precisely, if we set F.(p, X) := —F(—p, —X), we have the following
assertions.
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(i) Assume that F,G are lower semicontinuous. Then the reqularized disjoint sets
property with respect to (Fr,Fg) holds if and only if (F*). > G™T.

(ii) Assume that F,G are continuous, F* < 400, GT < 400 and F*,GT are con-
tinuous. Then the reqularized joint sets property with respect to (.7-'F, fg) holds
if and only if (F*). < GT.

We notice that, in general, the assertions referring to the joint sets property
are more difficult to prove that the corresponding ones concerning the disjoint sets
property.

As a consequence of Theorems 7.1, 7.3, the following result holds (see Corollary
7.1). Assume that F is continuous, FT is continuous, and F™ < +o0o. Then the
reqularized disjoint and joint sets properties with respect to (Fr,Fr,) (resp. with
respect to (Fr, Fr)) hold if and only if F is degenerate elliptic (resp. F is odd).

We remark that the disjoint and joint sets properties, and hence their character-
ization, are related to the so called fattening phenomenon (see Remark 7.1).

In Section 5 we study the connections between the barriers and the class Byo. (F)
of local (in space) barriers (see Definition 5.1). In particular, we prove that if F' is
lower semicontinuous, then

Bioc(Fz) = B(Fz),

hence Mo (E, F7,t) = M(E, Fz,t), where Mioc(E, F7,T) denotes the local min-
imal barrier.

Finally, in Section 8 we show the connections between barriers and inner barriers.
The results of this paper have been announced in [4].

2. SOME NOTATION

In the following we let I := [tg, +oc[, for a fixed tp € R. Forn > 1, xz € R"
and R > 0 we set Br(z) := {y € R" : |y — 2| < R}. We denote by P(R") (resp.
A(R™), C(R"™)) the family of all subsets (resp. open subsets, closed subsets) of
R". Given a set E C R™, we denote by int(E), E and F the interior part, the
closure and the boundary of F, respectively; moreover, we set dist(-,0)) = +oo,
dg(x) := dist(z, F) — dist(z, R™ \ E), and for any o > 0

- n . AJ; n + . n.,
E, :={z e R" : dist (z, R" \ E) > o}, Ey :={z € R" : dist(z, E) < g}
Given a map ¢ : L — P(R"), where L C R is a convex set, we let
dy(t,z) = dist(z, ¢(t)) — dist(z, R" \ ¢(t)) = dy) (), (t,z) e L x R™.

By int(¢) (resp. ¢) we mean the map t € L — int(4(t)) (resp. t € L — ¢(t)).
If ¢1,¢2 L — 'P(Rn)’ by ¢1 g ([)2 (resp. (bl = ¢2, ([)1 N ¢2, ([)1 U (bg) we 1mean
$1(t) C $2(t) (resp. ¢1(t) = p2(t), ¢1(t) N P2(t), d1(t) U ¢a(t)) for any ¢ € L.

3. GENERAL DEFINITIONS AND PRELIMINARIES

In this section we recall the definition of barriers and minimal barriers, following
[9], and we study some of their properties. In the particular case of geometric
flows described by a function F' as in (1.1), we include the case in which F' is not
degenerate elliptic.



4 MINIMAL BARRIERS

Definition 3.1. Let F be a family of functions with the following property: for
any f € F there exist a,b € R, a < b, such that f : [a,b] — P(R"). A function
¢ is a barrier with respect to F if and only if ¢ maps a convex set L C I into
P(R™) and the following property holds: if f : [a,b] C L — P(R"™) belongs to F
and f(a) C ¢(a) then f(b) C ¢(b). Given such a map ¢, we shall write p € B(F,L).
When L = I, we simply write ¢ € B (F).

Definition 3.2. Let E C R™ be a given set and let t € I. The minimal barrier
M (E,F, 1) : [t,400[ = PR") (with origin in E at time t) with respect to the
family F at any time t >t is defined by

M (E,F,) (1) ::ﬂ{¢() ¢ : [T, +00] » P(R"™), ¢ € B(F,[f,+o0), ¢ ()QE}.

Lemma 3.1. The following properties hold.
(1) M (E, F,t) € B(F,[t, +o0[);
(2) E1 C Ey = M (E1, F,t) C M (Es, F,1);
(3) M (E,F,1)(t) =E;
(4) if [ :[a,b] C [t,+00[— P(R™), f € F, then
&) EM(f(a), F,a)(t),  te€]a,b]; (3.1)
(5) F CG= B(F,[t,+0[) 2 B(G, [t, +<[), hence M(E, F,t) C M(E,G,t);
(6) assume that the family F satzsﬁes the following assumption: given f : [a,b] C
[t,+00[— P(R"), f € F, t € la,b], then f|, s fl,.q € F- Then M (E,F,7)
verifies the semigroup property, i.e.,

M (E,F,1) (t2) = M (M (E, F,1T) (t1), F, t1) (t2), T <t <ty

Proof. Assertions (1),(2),(5) are immediate, and (4) is a consequence of (1). Using
(1) and the fact that M(E, F,t)(t) O E, we have that the map ¢ : [t, +00[— P(R™)
defined by ¢(t) := E if t = 7, and ¢(t) :== M (E, F,%) (t) if t > 1, is a barrier on
[t, +00[, and (3) follows.
Let us prove (6). Let ¢ : [t, +00[— P(R"™) be defined by
. M (E, F,T) (¢) ift <t<t,
#le) { M (M (E,F, 1) (tr1), F,t1) (t) if ¢t > t1.

Then ¢(t) = E by (3) and, using (1), (3), and the hypothesis on F, we have ¢ €
B(F,[t,+oo[). Hence M (E,F,1) (t2) C ¢(ts) = M(M (E,F,T) (t1), F,t1)(t2).
Conversely, since M (E, F, 1) is a barrier on [¢1, +oc[ which coincides with ¢(¢1) at
t = t1, we have M (E, F,1) (t2) D M(¢(t1), F,t1)(t2) = ¢(t2), and property (6) is
proved. [J

Definition 3.3. Let E CR" andt € I. For any t € [t,+oo| we set

ML(E, F,B)(t) = | M(E,, F,D)(1),

e>" (3.2)
M*(E,F,b)(t) = [ | M(ES, F, 1) ().

>0

Clearly M*(E, F,t) € B(F,[t,+o0[),
M (E, F,T) = M,(int(E), F,t) C M (E, F,T) C M*(E, F,1) = M*(E, F,1),
and if A, B € P(R™), A C B, dist(4, R*\B) > 0, then M*(A, F,I) C M, (B, F,1).

Unless otherwise specified, from now on we shall assume ¢ = ¢y, and we often
drop it in the notation of M, M, and M*.
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3.1. Consequences of the translation invariance in space. Given a map
¢ : L - PR"), L CI aconvex set, and y € R", by ¢ + y we mean the map
teL —¢(t)+y:=Uyepe(@+y)

Definition 3.4. We say that F is translation invariant (in space) if, given any
f:la, bl = PR"™), feF, andy € R"™, then f +y € F.

We say that F is compact if, given f : [a,b] = P(R™), f € F, the set f(t) is closed
and Of(t) is compact for any t € [a,b].

Notice that if F is translation invariant, then ¢ € B(F) if and only if ¢ + y €
B (F) for any y € R™.

Many of the following results can be proved under weaker assumptions on F;
for instance, when F = Fp (see Definition 4.1 below), instead of requiring the
translation invariance of Fr, one could allow F to depend explicitly on (¢, z) €
I x R™, provided that F' is uniformly Lipschitz continuous with respect to z. For
simplicity, we confine ourselves to the translation invariant case.

Property (3.3) of the next proposition is particularly useful.

Proposition 3.1. Let F be translation invariant and E C R™. The following
properties hold.

(1) For anyy € R™ we have M(E +y,F) = M(E,F) +y;

(2) for any 0 > 0 and any t € I we have

MEFF)) 2 (MEF®) (33)

(8) for anyt € I we have
M. (E,F)(t) € A(R"), M*(E,F)(t) € C(R"™); (3.4)

(4) if F is compact then ¢ € B(F) = int(d) € B (F);
(5) set F¢ :={f :[a,b] = PR"), f € F, f(t) is compact for any t € [a,b]}. Then
M. (E,F°) € B(F¢) and

E e AR") = M (E,F°)(t) = M(E,F°)(t) € A(R"), tel. (3.5)

Proof. Letting ¥ (t) = ¢(t) + y we have

ME,F)(t) = W) —y: ¢: 1= PR"), ¢ € B(F),p(to) 2 E +y}
= M(E +y,F)(t) — v,

which is property (1). Therefore, if o > 0,

_I_
U ME+y,F)(t) = ME,F)(t) + B(0) = (ME, F)(1)) . (36)

Q
yEBe(O)

Now E 4y C E+ B,(0) = EJ for any y € B,(0) , hence (3.3) follows from (3.6)
and Lemma 3.1 (2). By (3.3) applied with E replaced by E_, ¢ > 0, and using
the fact that E D (E_, )7, we have
— — +
M(E;,F)2 (M(EZ,,, 7)), - (3.7)

>0
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As the right hand side of (3.7) is an open set, we get

int(M(E, 7)) 2 |J M(EF, 7)), 2 | MEZ,, 7).

>0 0>0

It follows that (J,oint(M(E;,F)) 2 U, 50 M(Eqrie F) = Mu(E,F), which
yields
M.(E,F)(@) = ] int (M(Eg_,f)(t)) c AR™), tel. (3.8)

>0

By (3.3) we have

M(E3,, F) > (M(Eg,f))+ > M(E{, 7).

o/2

Hence _
M*(E,F) = (| M(E3,, F) 2 [ M(ES, F),

>0 >0

so that M*(E,F)(t) = ﬂQ>OM(Ej,.7:)(t) € C(R"™) for any t € I. The proof of
(3.4) is complete.

Let us prove (4). Let ¢ € B(F), f : [a,b)) C I — P(R"), f € F and f(a) C
int(4(a)). Set n(t) := dist(f(t), R™ \ int(¢(t))), t € [a,b]. As Jf(a) is compact we
have n(a) > 0. Since F is translation invariant and ¢ € B (F) we have that n(-) is
non decreasing on [a, b], which implies f(b) C int(¢(b)).

It remains to prove (5). Let f : [a,b] C I — PR"), f € F¢ f(a) C
M (E,F¢)(a). By (3.8) applied with F replaced by F¢ there exists o1 > 0 so
that

f(a) Cint(M(E,, , F°)(a)) C M(E,,, F°)(a).
Then f(b) C M(E,,, F°)(b) C M.(E,F°)(b). Hence M, (E,F°) € B(F°).
If E € A(R™) we have E = U E,, so that M.(E,F¢)(to) = E. Therefore, as
0>0
M. (E,F) € B(F°) we have M, (E,F°) O M(E,F€), which, together with (3.4),
concludes the proof of (3.5). O

3.2. The disjoint and joint sets properties.

Definition 3.5. We say that the disjoint sets property (resp. the reqularized dis-
joint sets property) with respect to (F,G) holds if for any E1,Es CR™ andt € T

ElﬂEzzw = M(El,}',f)ﬂM(Ez,g,f):(Z) (39)

(resp. ExNEy=0 = M,(E,F,1)NM*(E»,G,t)=0). (3.10)

We say that the joint sets property (resp. the regularized joint sets property) with
respect to (F,G) holds if for any E1, E3 CR™ andt €l

FiUFE, =R" = M(El,}',f)UM(Ez,g,f):R” (311)

(resp. EyUE; =R" = M,(E, F,1)UM*(E»,G,t) =R"). (3.12)
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Notice that if (3.10) holds then M*(Eq, F,{)N M. (Es,G,t) = (), and conversely.
Indeed, if (3.10) holds we have

M*(Ey, F,1) = [ Ma( F,0) € () [R™\ Mu((E2),,G,D)]
e>0 i b (3.13)
=R"\ [ M.((B2);,6,T) = R"\ M.(E»,G.1).

Similarly, if (3.12) holds then M*(Ey, F,t) U M,(E2,G,t) = R™, and conversely
(it is enough to replace C with D in (3.13)).

Lemma 3.2. The following properties hold.
(1) If (3.9) (resp. (3.10)) holds, then it holds if (F,G) is replaced by (j-:, é), with
FCF,GCG;
(2) if (3-11) (resp. (3.12)) holds, then it holds if (F,G) is replaced by (j-:, 5), with
FO2F,G26;
(3) if for any E C R™ we have

R" \ M(E, F,T) € B(G, £, +o0|), (3.14)

then (3.9) holds;
(4) if F satisfies the assumption of Lemma 3.1 (6) and (3.9) holds, then (3.14) is
satisfied;
(5) if F (or equivalently G) satisfies the assumption of Lemma 3.1 (6), then (3.9)
implies (3.10), and (3.11) implies (3.12).
Proof. (1), (2) follow from Lemma 3.1 (5). Assume (3.14); using Lemma 3.1 (3),
we then have R" \ M(E, F,t)D> M(R"\ E,G,t), which is equivalent to (3.9).
Let us prove (4). Assume (3.9) and let g : [a,b] C [t,+00[— P(R"™), g € G,
g(a) CR"\ M(E, F,t)(a). Then, by (3.9) and Lemma 3.1 (6) and (4), we have

0 = M(g(a), G, a)(b) N M(M(E, F,1)(a), F, a)(b)
= M(g(a),G,a)(b) N M(E, F,1)(b) 2 g(b) N M(E, F,1)(b),

so that g(b) C R™ \ M(E, F,t)(b), and (3.14) is proved.
It remains to show (5). Assume that (3.9) holds; hence by (4), relation (3.14)
holds. As R\ E5, C (R™\ E), C R"\ E7, by (3.14) we have
2

M. R"\E,F.t)= | JM@R"\Ef,F,1) C | J [R"\ M (E,G.T)]
=R"\ (| M (E},G,T) =R"\ M*(E,G,7),

>0

which is equivalent to (3.10). A similar proof (replacing C with D) holds for the
joint sets property. [

Note that, in the case of motion by mean curvature (with the correct choice of
the family Fp, see Definition 4.1 below), (3.9) and (3.12) hold, but in general (3.11)
does not hold, see [6].
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4. DEFINITIONS AND PRELIMINARY RESULTS ON B(FFp)

In this section we study some properties of barriers for evolutions of sets specified
by a suitable function F', which will be useful in the next sections. Let us introduce
some notation: Sym(n) is the space of all symmetric real (n x n)-matrices, endowed
with the norm |X? = 37, s X2 we set Jo := (R"\ {0}) x Sym(n) and P,

Id —p®p/Ip|?, for p € R™ \ {0}.

Let F' : Jy — R be a given function. We recall that F is geometric (see [7, (1.2)])
if FOAp,AX +0p®p) = AF(p,X) for any A > 0, 0 € R, (p, X) € Jy, and that F
is degenerate elliptic if

F(p,X)>F(p,Y), (p, X) € Jo, Y € Sym(n),Y > X. (4.1)

We say that F' is locally Lipschitz in X if for any p € R™ \ {0} the function F(p,-)
is locally Lipschitz.
In the sequel we will always assume that F' is geometric. If (p, X) € Jy we set

Fc<p7 X) = _F(_p7 _X)7
Ft(p,X):=sup{F(p,Y): Y € Sym(n),Y > X}, (4.2)
F~(p,X):=inf{F(p,Y): Y € Sym(n),Y < X}.

If F is degenerate elliptic then F is degenerate elliptic; moreover (F.)* = (F~)..

Let us define the families of local smooth geometric supersolutions (resp. strict
supersolutions, subsolutions) of (1.1).

Definition 4.1. We write f € Fp (resp. f € Fz, [ € .7-';) if and only if there
exist a,b € R, a < b, such that f : [a,b] = P(R™), and the following properties
hold: f(t) is closed and Of(t) is compact for any t € [a,b], there exists an open set
A C R"™ such that dy € C*([a,b] x A), 0f(t) C A for any t € [a,b], and

agtf + F(Vds,V3ds) >0,  te]ab], = €df(t) (4.3)
(resp aai + F(Vdy, V3ds) > 0, t € la,b[, z€df(t),
% +F(Vds, V) <0, telab], ze 8f(t)>. (4.4)

Clearly Fr, Fz and .7-—}% are translation invariant and satisfy the assumption of
Lemma 3.1 (6). Moreover

P <Fy,=Fp CFp, = B(fpl) D) B(]:FQ) = M(E, .7:F1) - M(E, .7:F2), (4.5)
and M(E,Fp) 2D M(E, F7).
Assume that F : J; — R is bounded below on compact subsets of Jy; denote

by h : [0,+o00[— ]0,+0oc] a strictly increasing C*° function such that h(R) >
sup{—F(p, X) : |p| = 1,|X| < R} for any R > 0. For any p > 0 define H(p) :=

0 h(v —1/r)
H(0) =0, H € C°([0, +00[) N C*(]0, +00]). Let

op = H L

dr. Then H : [0, +oo[— [0,+o0[ is strictly increasing, surjective,

One consequence of the following lemma is that, given f € Fr, we can suppose, if
needed, that f(¢) is compact, so that Proposition 3.1 is appliable.
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Lemma 4.1. Assume that F is bounded below on compact subsets of Jy. Then
B(Fr) = B(Fr), (4.6)

where F§ := (Fr)®, see Proposition 3.1 (5). Moreover, given ¢ € B(Fr) andt € I
we have

{z € R™ : dist(z,R" \ ¢(t)) > or(s — 1)} C int(¢4(s)), s>t (4.7)

Proof. To prove (4.6) it is enough to show that B(F§) C B(Fr). Let ¢ € B(F§),
fi]a,b] C I — PR"), f € Fp, fla) C ¢(a). We have to show that f(b) C ¢(b).
We can assume that R™\ f(¢) is compact for any ¢ € [a,b]. Pick R > 0 so that
df(t) € Bgr(0) for any t € [a,b]. Given ¢ > 0, one can check that the map

t € la,b — ng(e+b—t)(0) belongs to Fz. For any m € N, let t,, := ' (mR) and

fm(t) = f(t) N By, (t,.+b—-1)(0), t €la,b].

For m sufficiently large we can assume that 0f(t) N B,_(t,,+5—1)(0) = 0 for any
t € la,bl. As ¢ € B(FE), f € B(FE), and fo(a) C é(a), we have f(b) N Bpr(0) C
fm (D) C ¢(b). Letting m to +oo, we get (4.6).

Let us prove (4.7). Let z € ¢(t), s > t and € > 0 be such that dist(z, R™\ ¢(t)) >
or(e+s—1) > o(s—t). The map o € [t,s] = B, (c4+s—0)(z) belongs to Fr hence
B () C ¢(s). Therefore z € int(p(s)). O

QF(E)

Proposition 4.1. Assume that F' is bounded below on compact subsets of Jy and
18 locally Lipschitz in X. Then, for any E C R™ we have

M (E,Fr) = M.(E,Fz), M*(E, Fr) = M*(E, F). (4.8)

Moreover let ¢ € B(Fz), f:[a, b CI — PR"), f € Fr, int(f(a)) C ¢(a). Then
int(f (b)) € p(b).

Proof. In view of (3.2), equalities (4.8) are proved if we show
E € AR") = M(E, Fr) = M(E, F7). (4.9)

Let E € A(R"™); to prove (4.9) we need to show that M(E,Fz) € B(Fr). Let
f:la,b] €T — PR, f € Fr, f(a) € M(E,Fz)(a) =: A. By Lemma 4.1,
we can replace Fr with F§, hence by (3.5) the set A is open. We have to show
that f(b) C M(E,Fz)(b). For any t € [a,b] we can find a bounded tubular

neighbourhood (9f (t)):r(t) of df(t), of thickness c(t), each point of which has a

unique projection on df(t); we set 2c := inf{c(t),t € [a,b]}, which is positive. Let
L be the Lipschitz constant of F(Vds, V2ds) and M be the supremum of |V2d|?
when ¢t € [a,b] and z € (af(t)):. Pick a C* function g : [a, b] — ]0, +o0o[ such that
o(a) < min(c,dist(0f(a), R™\ A)) and 9+2M Lp < 0. The map g : [a,b] — P(R"),

g(t) :== f;zt) (t) = {z € R™ : dist(z, f(t)) < o(t)} is of class C*°, and each point
y € 0g(t) is of the form y = z + o(t)Vds(t, ) for a unique z € 0f(t). Moreover
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g € Fz. Indeed for any t € Ja,b] and any y € 9g(t), y = = + o(t)Vds(t, ),
z € Of(t), we have V2dy(t,y) = V2ds(t,z)(Id — o(t)V2ds(t, )", so that

V2dy(t,y) — V2ds(t,2)| < 2Mot).

Therefore, recalling that f € Fr, we have

- M ty) = -2 1,0 + i)
< F(Vdg(t, z), V2dg(t, 7)) + 6(t) = F(Vdy(t,y), V2dg (t,)) + 6(t) (4.10)
< F(Vdy(t,y), V3d,(t,y)) + 2LMo(t) + 6(t) < F(Vdy(t,y), V3d,(t,y)),

so that g € Fz. Hence f(b) C g(b) C M(E, Fz)(b).

Let ¢ € B(F7) and f be as in the statement. Let ¢, L, M be defined as before.
Let r : [a,b] — ]0, +oc[ be a C*> function such that r(b) < cand 7—2M Lr > 0. Then
the map h : [a,b] — P(R™), h(t) := T_(t)(t) = {x € R" : dist(z, R™ \ f(¢)) > r(¢t)}
belongs to Fz. As h(a) C int(f(a)) C ¢(a), we have h(b) C ¢(b).

Choose 7(t) := r(a)e?ML(t=) < p(q)e3ML(-a) < ¢; letting 7(a) — 0%, we have
r(b) — 0F, therefore int(f (b)) = U,(a)e 1o, (b) € ¢(b). O

Remark 4.1. If F' is continuous and degenerate elliptic then (4.8) holds for any
E CR" (see (7.8) below).
5. COMPARISON BETWEEN BARRIERS AND LOCAL BARRIERS

In this section we compare barriers with local barriers; we basically prove that
these two classes coincide (Theorem 5.1). Some arguments in the proof of Theorem
5.1 will be used to prove (1.2). Let us introduce the notion of local (in space)
barrier.

Definition 5.1. A function ¢ is a local barrier with respect to F if and only if
¢ maps a convexr set L C I into P(R™) and the following property holds: for any
x € R"™ there exists R > 0 (depending on ¢ and x) so that if f : [a,b] C L — P(R"™)
belongs to F and f(a) C ¢(a) N Br(x), then f(b) C ¢(b). Given such a map ¢, we
shall write ¢ € Bioe(F,L). When L = I we simply write ¢ € Bioe (F).

The definition of local minimal barrier reads as follows.

Definition 5.2. Let E C R"™ be a given set andt € I. We set
Mioe(E, F,0)(t)=(1{6() : ¢:[F, +00[= P(R"), 6 € Buoe( . [}, +o0]), 6(8) 2 E}.

As Bioo(F, [t, +00[) D B(F, [t, +o0[), we have M,.(E, F,t) C M (E', F, f).
We shall assume for simplicity that ¢ = ¢y, and we shall omit ¢y in the notation
of the local minimal barrier.

Theorem 5.1. Let F' : Jy — R be a lower semicontinuous function. Then
BIOC(F;) = B(}—;)-

In particular, for any E C R™ we have M(E, Fz) = Mioc(E, F7).

To prove the theorem we need several preliminary observations.



G. BELLETTINI and M. NOVAGA 11

Lemma 5.1. Assume that F is bounded below on compact subsets of Jo and is
locally Lipschitz in X. Let ¢ € Bioe(Fz), © € R", R = R(¢,z) be given by
Definition 5.1, f : [a,b] C I — P(R"), f € Fr, and int(f(a)) C ¢(a) N Br(z).
Then int(f(b)) C ¢(b).

Proof. 1t is enough to repeat the arguments of the second part of the proof of
Proposition 4.1. [

Lemma 5.2. Assume that F : Jo — R s lower semicontinuous. Let L C R™ be a
closed set with smooth boundary. Let T € OL and o € R be such that

a+ F(Vdy(z),V?dL(Z)) > 0. (5.1)
Then for any R > 0 there exist 7 >0, f : [a,a+ 7] = P(R") and o > 0 such that

f(a) C L, 0f(a)NBy(T)=0LNB,(T), a= %(a,f), (5.2)

f€eFzm, f(t) C Br(Z), t €la,a+ 7). (5.3)
Moreover, T depends in a continuous way on small perturbations of OL around T
i the C*° norm.
Proof. See [3, Lemma 4.1, Remarks 4.1, 4.2]. O

Definition 5.3. Let f : [a,b] C I — P(R™). We say that f is a smooth compact
flow if and only if Of (t) is compact for any t € [a,b] and there erists an open set
A C R"™ such that dy € C*([a,b] x A) and 0f(t) C A for any t € [a,b].

Lemma 5.3. Let f,g: [a,b] C I — P(R™) be two smooth compact flows, z € R"
and p > 0. Assume that
{z} = 0f(a) N9g(a) N By(x),

(9(a)\ {z}) N By(z) C int(f(a)) N B,(x),

ad ad,
W(aa r) < E(a,x).

Then there exists 0 < 7 < b — a such that

g(t) N By(z) Cint(f(t)) N By(x), t€la,a+ 7] (5.4)

Moreover, T depends in a continuous way on small perturbations of f and g in the
C? norm.

Proof. See [3, Lemma 5.1]. O

Proof of Theorem 5.1. 1t is sufficient to prove that Bioc(Fz) C B(Fz). Let ¢ €
Bioc(F7), g : [a,b] €T — P(R™), g € Fz, g(a) C ¢(a); we have to show that
g(b) C ¢(b). As F is lower semicontinuous and g € Fz, we can suppose that the
function F' is locally Lipschitz in X. In fact, it is enough to choose a function
G < F, G lower semicontinuous and locally Lipschitz in X, such that g € 75, and
to notice that Bioe(Fz) C Bioc(FZ)-

We preliminarly prove that

int(g(b)) S H(b)- (5.5)
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Suppose by contradiction that there exists g : [a,b] € I — P(R"), g € Fgz,
g(a) C ¢(a), such that int(g(b)) is not contained in ¢(b). Set

t* :=sup {t € [a,b] : int(g(s)) C &(s), s€ [a,t]}. (5.6)

SsTEP 1. We have int(g(t*)) C ¢(t*), so that t* < b.
We can assume t* > a. If by contradiction there exists z € int(g(t*)) \ ¢(t*), as g is
a smooth flow, we can find 0 < 7, < t* —a and R > 0 so that Br(z) C int(g(¢)) for
any t € [t* — 1,t*]. Therefore Br(z) C ¢(t) for any ¢ € [t* — 71,t*[ and z ¢ H(t*),
a contradiction since ¢ is a local barrier.

STEP 2. There exist * € dg(t*)Nd¢(t*), a decreasing sequence {t,,} of points of

|t*,b] and a sequence {R,,} of positive numbers, with lim ¢, =t*, lim R, =
m—+oo m—>—+oo

0, such that for any m € N

(int(g(tm)) \ @(tm)) N B, (z) # 0. (5.7)

Let us first prove that dg(t*) N d¢(t*) # (. Assume by contradiction that dg(t*) N
0¢(t*) = 0, and set n(t) := dist(g(t), R™\ ¢(t)) for ¢ € [a,b]. As dg(t*) is compact,
we have 7(t*) > 0. Let us prove that n(t*) < liminf,|; 7(s). Indeed, if not, there
exists a sequence {s;,}, Sm > t*, s;m | t*, such that limg, 1o 7(sym) < n(t*). Then
N(sm) = |Ym — Pm/|, for some Y, € g(sm), Pm € R™ \ ¢(sm); possibly passing to a
subsequence, we have y,, = y € g(t*), pm — p ¢ R™ \ ¢(t*) asm — +o0. Let o > 0
be such that B,(p) C int(¢(t*)). Then B,/5(p)N(R™ \ ¢(51)) # 0 definitively in m,
which is impossible since ¢ is a local barrier. Then 0 < n(t*) < liminfs |« n(s) =0,
a contradiction. Then K := dg(t*) N d¢(t*) # 0.

Assume now by contradiction that for any x € K there exists R(z) > 0 and
0 < t(xz) < b—t* so that

(int(g(s)) \ qS(s)) NBr(z)=0, Re]0,R(x)], s€]t’,t*+txz)].  (5.8)

As K is compact, we can find z1,...,2z, € K (and corresponding ¢(z1), ...,t(zp))
so that each R(z;) satisfies (5.8) and U?:l BR(z;) 2 K. Let R > 0 be such that
H = J,ex Bg(r) C U?Zl BR(z;), and let ¢ := min;—; . pt(x;). Then for any
z € K we have

(int(g(s)) \ qS(s)) NBg(x)=0, selt*,t" +1.

Let ¢ > 0 be such that dist(g(¢*) \ H,R™ \ ¢(t*)) > ¢. Then using (4.7) and the
fact that g is a smooth flow, we contradict the definition of ¢*.
STEP 3. Let z* be as in STEP 2. We can assume that

{z%} = 09" ) N 9s(t*),  g(t")\ {z"} € int ((¢")) . (5.9)

Indeed, let 0 < 73 < b — t* be such that each point z € 9g(t) has a unique
smooth projection 7(t,z) on dg(t*) for any ¢ € [t*,t* + 71]. Choose a function
0: 0g(t*) — [0, +o0[ of class C*° verifying the following properties:

(i) o(x) =0 if and only if x = z*;
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(i) the map ¢t € [t*,t* + 7] — ((t) belongs to Fz, where ((t) := Gy ) S g(t)
and 0C(t) :={y e R" : y =z — p(7(t,2))Vdy(t,z),z € 0g(t)};
(iii) ¢ is not a barrier for ¢ on [t*,t* 4+ 7].

Property (ii) can be achieved by taking o(-) sufficiently small in the C? norm,
since there exists ¢ > 0 so that ad"’ 2+ F(Vdg, V?dg) > cfor any z € dg(t), t € Ja, b,
and F' is lower semicontinuous.

Property (iii) can be achieved by observing that, by (5.7), for any m € N
there exist a point x,, € int(g(tm)) \ ¢(tmm) and o, > 0 such that B, (z.,) C
int(g(tm)) N Bg,, (z*). Then, if we impose go(z) < o, for any x € dg(t*) such that
|77 (tm, z) — 2*| < Ry, we get x,, € int({(¢,,)). Therefore, possibly replacing g
by ¢, we can assume that (5.9) holds, and the proof of STEP 3 is concluded.

Pick now a closed set L with smooth compact boundary such that g(t*) C L C
¢(t*), 0L N Ag(t*) N (") = {=*}, g(t*) \ {«*} € int(L), L\ {=*} C int(¢(t")),
and V2d(z*) = V2d,(t*, z*).

Let R = R(¢,z*) > 0 be given by Definition 5.1. We apply Lemma 5.2 with
a:=t* 7 :=z* and a € R such that

a < %(t*,m*)a o+ F(Vdg(t*,:]:*),Vzdg(t*,-r*)) > 0.

Therefore, there exist 0 < 7 < b—1t*, f: [t*,t* +7] = P(R"), and o > 0 such that
(5.2), (5.3) hold. We then have

{z*} = 0f(t*) N Ag(t*) N By (z*),
(9(t*)\{z*}) N B, (z*) C int(f(t*)) N By (z*),
Cin )

(f(E)\ {z*}) N By (2*) C int(4(t*)) N Bo(z*).
Using Lemma 5.1 we have
int(f(t)) C o(2), tetht"+r7]. (5.10)
By Lemma 5.3 there exists 0 < 7 < b — t* such that
g(t) N By(z*) C f(t) N By(z*), tetht" + . (5.11)

By (5.11) and (5.10) we get

int(g(t)) N By (z*) C ¢(2), t € [t*,t* + min(T, )]

which contradicts (5.7). It follows that (5.5) is proved.

To complete the proof, it remains to show that g(b) C ¢(b). Let £ > 0 be such
that —9 + F(Vd,,V3d,) > 2k for any z € dg(t) and t € ]a, b . Pick a C* function
o:la, b] — [0, +oo[ such that g(a) =0, o(b) < cand 0 < ¢ < k(1+2ML(b—a))™ !,
where ¢, L and M are as in the proof of Proposition 4.1 (with f replaced by g). Then

0+2MLo—2k < 1+2M’“L(b_a) + ﬁ‘gfjﬁ?{_"g) —2k < 0, so that, reasoning as in (4.10),

it follows that the map taking t € [a, b] into g;r(t) (t) = {z € R™ : dist(z,g(t)) < o(t)}

belongs to Fz. Therefore, from (5.5) (applied with g;r(') in place of f) we have

9(6) C int (g7, () € B(0),

and this concludes the proof. [
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6. REPRESENTATION OF M(E, Fr) FOR A NOT DEGENERATE ELLIPTIC F

The aim of this section is to prove that the minimal barrier with respect to Fg
coincides with the minimal barrier with respect to Fr+. More precisely, we will
prove the following result.

Theorem 6.1. Assume that F : Jo — R is lower semicontinuous. Let FT be
defined as in (4.2). Then
B(Fz) = B(}'}?Jr).

In particular, for any E C R™ we have M(E,]‘—?) = M(E7'7:;+)‘

To prove the theorem, we need the following lemma, whose proof is similar to
that of Lemma 5.3.

Lemma 6.1. Let f,g: [a,b] CI — P(R"™) be two smooth compact flows, x € R™
and o > 0. Assume that

z € 0f(a)Ndy(a),

f(a) N By(z) C g(a) N By(z),
% dd,

5 (a,7) < E(a, x).

Let 0 < 6 < b—a be such that each point of g(t) has a unique smooth projection
n(t,-) on Og(a) for any t € [a,a + §]. Set x(t) := n~(t,z). Then there exists
0 < 7 < § such that the following holds: for anyt € |a,a + 7| there exists o(t) > 0
such that

g(t) N By (2(t)) € int(f(t)) N By (x(2)).

Moreover, T depends in a continuous way on small perturbations of f, g in the C2
norm.

Proof of Theorem 6.1. 1t is sufficient to prove that B(Fz) C B(F,;). Let ¢ €
B(Fz), g : [a,b] € I — P(R"™), g € Fp, and g(a) C ¢(a). We have to show
that ¢g(b) C ¢(b). Reasoning as in the proof of Theorem 5.1, it is enough to show
(5.5), under the further assumption that F' is locally Lipschitz in X. Suppose by
contradiction that there exists g : [a,b] C I — P(R"), g € Fpy, g(a) C ¢(a)
such that int(g(b)) is not contained in ¢(b). Following STEPS 1,2,3 of the proof of
Theorem 5.1, defining t* as in (5.6), we can assume that t* < b, and that there
exist z* € 0g(t*)NO¢(t*), a decreasing sequence {t,, } of points of |t*, b], a sequence
{R,} of positive numbers, with lim ¢, =t*, lim R,, =0, so that (5.7) holds

m——+oo m—+oo

for any m € N and (5.9) holds.
Set
D= Vdg(t*, z"), X = V2d,(t*,z%).

Let 0 < 7 < b—t* be such that each point y € dg(t) has a unique smooth projection
n(t,y) on Ag(t*) for any t € [t*,t* + 7]. For any x € dg(t*) let z(t) := 7~ 1(¢, z).
As g € Fp,, there exists a constant ¢ € ]0, +-00[ such that

dd,

W(t*,.’ﬂ*) + F+(]_),Y) > C.
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As F7T is lower semicontinuous, we can find R; > 0 such that

W () + F*(pla), X (@) 2, 2 €T = 0g(t) N B @), (61)

where, for any z € I', we set p(z) := Vd,(t*,z), X (z) := V2d,(t*, ). Recalling the
definition of FT, for any x € I there exists Y (z) € Sym(n) such that Y (z) > X (z)

and

od,

max{ga*,x) S F+<p<x>,Y<x>)} T F(p(2), Y (2)) > 0,

F*(p(z), X (z)) = F(p(x),Y (z)).

(6.2)

Set a(z) := max{%(t*,x) - g, Z - F"’(p(m),Y(m))}. Given z € I, let L, be a

closed set with smooth compact boundary such that L, C g(t*), L, Ng(t*) = {z},
L, \ {z} C int(g(t*)), and V?dr, () = Y(z). For any x € T, applying Lemma 5.2
there exist 0 < 7(z) < 7 and f, : [t*,t* + 7(z)] — P(R™) such that f, € Fz,

ddy,

ot
and we can also assume {z} = dg(t*)NOf.(t*), f=(t*)\{z} C int(g(¢t*)). Therefore,
using Lemma 5.1, for any x € I we have

int(f,(t) C $(t),  te[t*,t" +r(z)]. (6.3)

ddy
M i r h — (t* z
; C(l)reover, given x € I', we have (915( ,x) > ot
8—:(75*,3:) - g, the inequality is obvious, and if a(x) = z — F*(p(z),Y(z)), by

(6.1) and (6.2) we have

Vdy, (t*,2) = p(z), Vids, (" 2) =Y (2), (", z) = a(z),

dg

(t*,z). Indeed, if a(z) =

X (1*,) > ¢~ F*(p(a), X () = ¢~ Plp(a), Y (2)
>c— Z — Ft(p(z),Y(z)) = g + ag{” (t*,z) > 8;;:” (t*, x).

By Lemma 6.1 it follows that, given z € T, possibly reducing 7(z), for any
t € Jt*,t* + 7(z)] there exists o = p(t,z) > 0 such that

9(8) N By(t,z)((t)) C int(fz(1))-

Since z varies on the compact set I' and 7(z) depends in a continuous way from
z € T' we have 7* := min{7(x) : z € I'} > 0. Possibly reducing 7* and using (6.3),
we deduce that

dg(t)N Br, (z*) C | int(fo()) C (1),  te |t +77.

1
3
zel

Furthermore, we can find § > 0 so that

(09(1)5 Ng() N By (&%) € |J int(fz(8) € ¢(t), €t + 7],
zel



16 MINIMAL BARRIERS

Using (4.7) and setting 7/ := min(7*, 07" (6)), we then have

9(t) N Br, (%) C ¢(t),  te]i’,t* + 7.
Moreover there exists 7" > 0 such that
9\ Bry (&%) C (1), teltr,tr+ "),
2

Hence for any ¢ € |t*,t* + min(7’',7"”)] we have g(t) C ¢(t), which contradicts
(5.7). O

7. CHARACTERIZATIONS OF THE DISJOINT AND JOINT SETS PROPERTIES
The main results of this section are Theorems 7.1 and 7.3, where we characterize

the regularized disjoint and joint sets properties with respect to (Fg, Fg).

Definition 7.1. Let F' : Jy — R be a given function. We say that F' is compatible
from above (resp. from below) if there exists an odd degenerate elliptic function
Fy : Jy — R such that Fy > F (resp. F; < F).

Lemma 7.1. F is compatible from above (resp. below) if and only if

(FF).>F* (resp. (F7)e < F_). (7.1)

Proof. If (7.1) holds, then the function Fy := (F* + (F1).)/2 is odd, degenerate
elliptic and F; > F. Conversely, let F; > F be odd and degenerate elliptic. Given
(p,X) € Jo, Y € Sym(n), Y > X, we have

Recalling the definition of F'T, we have
F*(-p,—X)+ F*(p,X) =sup{F(-p, Z) + F(p,Y): Z > -X,Y > X}. (7.3)

Given Z > —X,Y > X, wehave Y > —Z and so F(—p, Z)+F(p,Y) <0 by (7.2).
Passing to the supremum with respect to Z and Y and using (7.3) we get (7.1).
The case concerning F'~ is similar. [

Lemma 7.2. Let F : Jyo — R be degenerate elliptic. Let f,g: [a,b] C I — P(R™),
f € Fr,ge Fs. Then f(a) C g(a) = f(b) C g(b).

Proof. For any t € [a,b] set n(t) := dist(f(t), R" \ g(t)) — max,eqp() dist(z, g(t)).
For any t¢ € [a, b[ one can check that

ot T) —n(t) _ Ody _ 0dg

lim inf - =—5; t2) = 5 (6 y),
for two suitable points z € 0g(t), y € 0f(t), with |z —y| = |n(t)| (note that
Vds(t,z) = Vdy(t,y) and V2ds(t,z) > V2d,(t,y)). Recalling that f € Fp, g €

F Ié, and F' is degenerate elliptic, we have

lim i 1EET) =00 F(Vdy(t, 1), V2d,(t, z)) — F(Vds(t,y), V2ds(t,y)) > 0.

T—0+ T
We deduce that 7 is non decreasing, and the assertion follows. [J

The following theorem characterizes the disjoint sets property in terms of the
functions F', G describing the evolution.
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Theorem 7.1. Assume that F,G : Jo — R are lower semicontinuous. Then
the disjoint sets property (equivalently, the reqularized disjoint sets property) with
respect to (Fg, Fg) holds if and only if (F1). > G*. In particular
(i) the (regularized) disjoint sets property with respect to (.7-'F, .FFC) holds if and only
if F' is degenerate elliptic;
(ii) the (regularized) disjoint sets property with respect to (.7:1:', .7-'F) holds if and only
if F' is compatible from above.

Proof. Assume that (FT). > G*. Let E C R™; we shall prove that
R"\ M(E, Fr) € B(Fg), (7.4)

which implies the disjoint sets property (hence the regularized disjoint sets property,
see Lemma 3.2 (5)) with respect to (Fp, Fg). As B(Fg) 2 B(F(r+),), to prove
(7.4) it is enough to show that R™ \ M(E, Fr) € B(F(p+),). We first show that if
fihila,b) €T — P(R"), f € Fp+y,, h € Fr, then

h(a) CR™\ f(a) = h(b) S R"\ f(b). (7.5)

Set g := R\ f; as f € Fyp+y, we deduce %% + F+(Vd,, V2d,) < 0. Ash € Fp C
Fr+ we also have % + F™(Vdy, V3dy) > 0. By Lemma 7.2, if h(a) C g(a), then
h(b) C g(b) = R™\ f(b). Then (7.5) follows from the translation invariance of Fp
and the compactness of Oh(t), t € [a, b] (see Proposition 3.1 (4)).

Assume by contradiction that there exists a function f : [a,b] C I — P(R"),
f € Fp+),, with f(a) € R" \ M(E, Fr)(a) and M(E, Fr)(b) is not contained in
R"™\ f(b). Let us define

M(E, Fr)(t) N (R™\ f(2)) if t € a,b],

t) :=
#(t) { M(E, Fr)(t) ift €I\ /a,b.

Since ¢(b) is strictly contained in M(E, Fr)(b), to have a contradiction it is enough
to show that ¢ € B (Fp), which follows from Lemma 3.1 (1), (6), and (7.5).

Assume now that the regularized disjoint sets property with respect to (.7-" F, fg)
holds. Suppose by contradiction that F(—p,—X) + G(p,Y) = 2¢ > 0 for some
(p,X) € Jo, Ip| =1, X, Y € Sym(n), Y > X. Let z € R™ and o, &’ € R be such
that

0<a+G(pY)<c, 0<oa +F(-p,—X)<ec

Note that « + o/ < 0. By Lemma 5.2, there exist 7 > 0, f,h : [0,7] - P(R"),
[ € FZ, h € Fz, such that f(0) N Ah(0) = {z},

z € 0f(0), p=Vds0,2), Y:V2df(0,:1:), a=—(0,z),

xz € 0h(0), —p=Vdy(0,z), —X =V3d,(0,2), o =-"72(0,z).

Let g := R"” \ h. Then a = 65Ltf(0,31:) —%(O,x) =—a = %(O,x). By Lemma

6.1 there exists 0 < 71 < 7 such that

int(f(t)) Nint(h(t)) £0,  te€]0, 7). (7.6)
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As F and G are lower semicontinuous and f € F3, h € Fz, there exists o > 0 such

that the map ¢ € [0,7] — f, (¢) belongs to FZ, and the map ¢t € [0,7] — hg ()
belongs to Fz. Then, recalling (3.1), for ¢ € [0, 7] we have

Ma(int(£(0)), F2)(t) 2 M (17 0), F3) (1) 2 Tz (),

hence M, (int(f(0)), FZ)(t) 2 int(f(¢)). Similarly we have M*(int(h(0)), Fz)(t) 2
int(h(t)) for t € [0,7]. Hence, using the regularized disjoint sets property with
respect to (Fz,FZ) (see Lemma 3.2 (1)), from int(f(0)) Nint(h(0)) = @ we get

int (£ (1)) N int(A(t)) € M, (int(£(0)), F5) (1) N M (ins(h(0)), F7) (£) = 0,

for t € [0, 7], which contradicts (7.6).

Let us prove assertions (i), (ii). The disjoint sets property with respect to
(Fr, Fr,) is equivalent to (F.)~ = (F7*). > (F.)*. This is equivalent to say
that F. is degenerate elliptic, hence to say that F = (F.). is degenerate elliptic.
Finally, assertion (ii) follows from Lemma 7.1. O

The following theorem will be used to characterize the regularized joint sets
property.

Theorem 7.2. Assume that F' : Jyo — R is continuous and degenerate elliptic.
Then, for any E C R™ we have

M*(EafF) = Rn\M*(Rn\E’ch)’

7.7
M*(E, Fr) = R"\ M.(R"\ F, F,). (7.7)

Proof. From Corollary 6.1 and Remark 6.6 in [3], for any ¢ € I we have
M (E,Fr)(t) = M (E,Fz)(t) ={z € R" : vg r(t,z) < 0}, (7.8)

M*(E,Frp)(t) = M*(E,Fz)(t) = {z € R" : vg p(t,z) < 0},

where vg p is the unique continuous viscosity solution (in the sense of [15]) of (1.1),
with vg p(to,z) = dg(z). From the uniqueness of the viscosity solution we have
—Vp,F = URrr\E,F,, therefore (7.7) follows from (7.8). [

The following theorem characterizes the regularized joint sets property in terms
of the functions F', G' describing the evolution.

Theorem 7.3. Assume that F,G : Jy — R are continuous, F™ < 400, GT < 400
and Ft, G are continuous. Then the reqularized joint sets property with respect
to (Fr,Fc) holds if and only if (F). < G*. In particular
(i) the regularized joint sets property with respect to (.7-" 7, F, Fc) holds for any function
F satisfying the hypotheses listed above;
(ii) the regularized joint sets property with respect to (fp,fp) holds if and only if
F* is compatible from below.

Proof. Assume that (FT). < GT. We have to show that M,(E,Fr) 2 R"\
M*(R™\ E, Fg) for any E C R™. Let us first prove that

M (E, Fp+) D R"\ M*(R™ \ E, Fou). (7.9)
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As (F1). < G™, to prove (7.9) it is enough to show (see (4.5))
M*(E, .7:F+) D) R" \ M*(Rn \E’f(F"')c)’

which follows from (7.7).

Using (7.8), from (7.9) we deduce M, (E,F,) 2 R*\ M*(R™ \ E, F3,), which,
from Theorem 6.1 is equivalent to M, (E,Fz) 2 R*\ M*(R™\ E, 7). Hence the
assertion follows from Lemma 3.2 (2).

Assume now that the regularized joint sets property with respect to (.7-' F,fg)
holds; then, by Lemma 3.2 (2), it holds with respect to (.7-' F+,.7fg+). Fix E C R"™;
using (7.7) with F replaced by F*, our hypothesis becomes

R" = [R"\ M*(R"\ E, Fp+),)] U [R" \ M. (E, Fg+).)]
=R"\ (M*R"\ E, Fp+),) N M (E, Fig+),))

which is equivalent to M*(R™ \ E, Fp+),) N M (E, Fig+),) = 0. Therefore the
regularized disjoint sets property with respect to (F(g+),, F(g+),) holds. Applying
Theorem 7.1 to (F1).,(GT)., we get FT > (GT)., which is equivalent to (F1), <
G™.

Let us prove assertions (i), (ii). The regularized disjoint sets property with
respect to (Fr, Fr,) (resp. (Fr,Fr)) is equivalent to (F.)~ = (F*). < (F.)*
(resp. to (F1). = ((F")7). < F* = (F1)™) which is always satisfied (resp. which
is satisfied if and only if F* is compatible from below). [J

Example 7.1. Consider motion by mean curvature in codimension k£ >1, i.e.,
F(p,X) = - Z?:_lk Ai, where Ay < ... < \,_; are the eigenvalues of the matrix
P, X P, which correspond to eigenvectors orthogonal to p. The function F' is de-
generate elliptic and is not compatible from above, hence the regularized disjoint
sets property with respect to (Fr, Fr) does not hold, whereas the regularized joint
sets property with respect to (Fg, Fr) holds.

Corollary 7.1. Assume that F : Jy — R is continuous, F* < 400 and FT is
continuous. Then the reqularized disjoint sets property and the reqularized joint sets
property with respect to (Fr, Fr,) (resp. with respect to (Fr, Fr)) hold if and only
if F is degenerate elliptic (resp. if and only if F* is odd).

Remark 7.1. The disjoint and joint sets properties, and hence Theorems 7.1 and

7.3, are related to the n-dimensional fattening phenomenon (with respect to F),
[11,2,14,16,8,3], that is when, for some t; > t,

H (M (B, F D)\ Mu(B, F, (1) =0 fort € 1),
H" (M*(E, F.t)(t) \ M.(E, F, f)(t)) >0 for some t € |t1,+o00|

where H™ denotes the n-dimensional Hausdorff measure. For instance, in [5] it is
exhibited a two dimensional example of fattening (with respect to Fg) for curvature
flow with a constant forcing term (starting from the union of two disjoint closed
balls) and the singularity, in this specific case, is due to the fact that the disjoint
sets property with respect to (Fg, Fr) is violated. In this case F = F and F7 is
not odd.
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Remark 7.2. Assume that F : Jo — R is continuous, odd and degenerate elliptic.
Let A, B € P(R™) be such that int(B) C A. Then

M*(A\ B, Fp) = M*(A, Fr) \ Mi(B, FF).
In particular, for any E C R™ we have

M*(OE, Fr) = M*(E, Fr) \ M, (E, Fr). (7.10)

Proof. From Theorem 7.2 and from the fact that F' = F,, (7.10) is equivalent to
M, (int(B) Uint(R™ \ A), Fr) = M, (int(B), Fr) U M, (int(R™ \ A), Fr),
which follows from the disjoint sets property with respect to (Fr, Fr). O

8. THE MAXIMAL INNER BARRIER

Beside all barriers introduced in the previous sections we can consider also the
definition of inner barriers.

Definition 8.1. Let E C R™ be a given set and t € I. The maximal inner barrier
N(E,F,t) : [t, +oo] = P(R™) (with origin in E at time t) with respect to the family
F at any time t > t is defined by

N(E,F D) =J{ot): ¢: [ +oo[» PR"), ¢ € BF, i, +o), 6(1) C B},

where B(F, [T, +o0|) is the family of all functions ¢ : [, +oo[— P(R™) such that the
following property holds: if f : [a,b] C [t,+o0[— P(R™) belongs to F and ¢(a) C
int(f(a)) then ¢(b) C int(f(b)). Similarly to (3.2), we can define N, (E,F,t) and
N*(E, F,1).
Note that ¢ € B(Fr) if and only if R\ ¢ € B(F5). Consequently, for any
E C R"™ we have N'(E, F5) = R" \ M(R" \ E, Fr,), hence
N.(B, F5) = R"\ M"(R" \ E, Fr,), 1)
N*(B, F§) = R" \ Mu(R" \ B, FF,). |

The following theorem shows the connection between the minimal barrier and the
maximal inner barrier.

Theorem 8.1. Assume that F : Jy — R is continuous and degenerate elliptic.
Then, for any E C R™ we have

M*(EafF):N*(E7f§)7 M*(EaFF):N*(E7}§)
Proof. The assertions follow from (7.7) and (8.1). O
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