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The so called “fattening phenomenon” is a peculiar type of singularity which
appears in motion by mean curvature of boundaries [17], and more generally
in geometric evolutions of manifolds. In case of motion by mean curvature of
boundaries, fattening can be defined [23], [10] as follows: if we let evolve an
initial set £, and we denote by v the unique mean curvature viscosity solution
having the signed distance function from OF as initial datum, then fattening
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Abstract

We prove that two linked circles in R® evolving by curvature develop
three dimensional fattening at finite time. The same result holds for
two planar convex closed linked curves.

Introduction

occurs if {z : v(t,x) = 0} has nonempty interior part.

A more intrinsic definition (consistent with the above one) of fattening can be
given by using the theory of barriers and minimal barriers of De Giorgi [20],
[14]; such a definition is meaningful also in case of nonuniqueness of viscosity

solutions, and for evolutions of manifolds of arbitrary codimension.



The complete characterization of those boundaries which fatten up under mo-
tion by mean curvature is clearly a difficult open problem; let us briefly recall
what is known in this respect. Examples of fattening in two dimensions for
curvature flow can be given if the initial set F is not smooth (Evans and Spruck
[23] provided an example with the set bounded by the figure eight curve), or
if the boundary OF is not compact (Ilmanen [28] provided an example of a
smooth non compact curve for which the signed distance function restricted to
the tubular neighbourhood of width p is not smooth for any p). On the other
hand, if E C R? has compact smooth boundary, fattening does not occur, as
a consequence of a theorem of Grayson [26] (see also [10] and [15] for related
results). In dimension n > 3 the situation is much more complicated: first of
all, as a consequence of a result of Huisken [27], a smooth bounded strictly
convex set ¥ C R” flowing by mean curvature does not develop fattening. A
few years ago De Giorgi [17] conjectured that a suitable torus in R* flowing by
mean curvature should develop fattening, but the conjecture was disproved by
Soner-Souganidis in [30] (see also [29], [1]). In three dimensions there are no
examples of smooth compact sets which develop fattening at finite time under
mean curvature flow, while for non compact smooth initial sets, results in this
direction can be found in the paper of Angenent-Chopp-Ilmanen [7] (see also
(18], [31]). Numerical simulations by Fierro and Paolini in [24] suggest the
existence of a torus in R* which should develop fattening. Angenent-Ilmanen-
Velazquez [8], [9] gave examples of fattening in dimension four through seven
of smooth non compact hypersurfaces.

We are concerned with the evolution of curves in R® in the generalized sense
of De Giorgi [20], developped further by Ambrosio and Soner [4]; see also [13],
and [2], [21] concerning singularity formation.

For this evolution law we can speak of k-dimensional fattening, £ > 1, when
the k-dimensional Hausdorff measure of the evolving curve becomes non zero
at some positive time. The special case of the figure eight curve in R® provides
an easy example of 2-dimensional fattening, whereas almost nothing is known
concerning 3-dimensional fattening. In this paper, using the theory of minimal
barriers, we show that an initial datum F which is the union of two disjoint
linked circles in R® develops three-dimensional fattening (see Theorem 4.1).
The study of this example was suggested by De Giorgi, as a first step in order
to understand the relations between the possible singularities of the evolution
and the codimension of the flowing manifold.

We prove, more generally, that two convex planar linked space closed curves
evolving by curvature develop three-dimensional fattening. We expect that,
differently from the codimension one situation, the present example of singu-
larity is stable with respect to small perturbations of the initial datum.

The main tools are the theory of minimal barriers, the comparison principle,
and some results on the evolution by curvature of Lipschitz continuous curves.



2 Notation and main definitions

In the following for simplicity we let I := [0, 4+o0o[. We denote by P(R?) the
family of all subsets of R®. Given p > 0 and z € R® we denote by B,(z) the
open ball centered at x with radius p; by (-,-) we mean the standard scalar
product in R®. If v is a planar or space curve, we denote by () the trace of .
We define dist(-, 9) := +oo and, given a set £ C R®, we set,

dy(z) = dist(z, E) — dist(z, R* \ ), n(x) = %(dist(x, E))’.

It is well known that, if £ has smooth compact boundary, then dj is smooth
in a suitable tubular neighbourhood U of OE, Vd is, on OF, the exterior
unit normal to OF, and the restriction of V2dy to the tangent space to OE
coincides with the second fundamental form of OF.

The following results on the square distance function have been proved in [3],
[4]. Let v be a smooth closed embedded curve in R®; then 7, is smooth in a
suitable tubular neighbourhood €2 of v. On 7 the matrix V2777 represents the
orthogonal projection on the normal space to v; ify € €, V2777 (y) has exactly 2
eigenvalues equal to one, and the remaining eigenvalue is strictly smaller than
one. Precisely, if 7(y) := y — Vn,(y) is the (unique) orthogonal projection of
y on vy, then

() = d,(y)x(y)
P T d,)r(y)

where 111 (y), p2(y), ps(y) are the eigenvalues of V7, (y) and x(y) is the curva-
ture of v at m(y) along Vd, (y).

Notice that, if y € Q\ v, then V2d'y(y) =<

p2(y) = ps(y) =1, (2.1)

(V?n,(y) — Vd, (y) ® Vd, (y)).

Therefore,

AL(y)

_ K(y) 1
1+d,(y)k(y)’

where i (), A2(y) are the eigenvalues of V*d_(y) corresponding to eigenvectors
orthogonal to Vd, (y), and A3(y) is the vanishing eigenvalue corresponding to
vd,(y).

Finally, —AVn, coincides, on -, with the curvature vector of +.

Given a map ¢ : L — P(R®), where L C R is a closed interval, we denote by
dg, Ny o L X R?® — R the functions defined as

dy(t, z) := dist(z, ¢(t)) — dist (z, R* \ ¢(t)) = Ay (),

n(t,z) = %(dist(:r, B(1))* = 1y ().
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We notice that —%ﬁ(t, x) corresponds to the normal expansion rate of ¢(t) at
x € 0P(t).

If ¢1,¢9 : L — P(R®), by ¢1 C ¢ (vesp. ¢y = oo, ¢1 N ¢2) we mean ¢ (t) C
Pa(t) (resp. ¢1(t) = da(t), ¢1(t) N Po(t)) for any ¢ € L.

Let p be a given vector of R® \ {0} and set P, := Id — p ® p/|p|%; if Sym(3)
stands for the space of all symmetric (3 x 3)-matrices, we denote by F :
(R3\ {0}) x Sym(3) — R the function defined as follows:

F(p, X) :== =\i(p, X), (2.3)

where A;(p, X) < Xo(p, X) are the eigenvalues of the matrix P,X P, which
correspond to eigenvectors orthogonal to p.

We now define the family F of all smooth evolutions of compact surfaces
without boundary, expanding with normal velocity less than or equal to F'(-,-).

Definition 2.1. Let a,b € R, a < b, [a,b] C I and let f : [a,b] — P(R3). We
write f € F if and only if the following conditions hold:

(i) f(t) is closed and Of(t) is compact for any t € |a, b|;

(i) there exists an open set A C R® such that d; € C®([a,b] x A) and
0f(t) C A for any t € [a,b];

(iii) the following inequality holds on Of(t):

%(t,x) + F(Vd,(t, ), V2ds(t,x)) >0, teab], z€df(t). (2.4)

We write f € F< (resp. f € F~) if the inequality < (resp. the equality) holds

We also define the family G of all smooth local curvature evolutions of closed
embedded curves.

Definition 2.2. Let a,b € R, a < b, [a,b] C I, and let v : [a,b] — P(R?).
We write v € G if and only if the following conditions hold:

(i) ~(t) is compact for any t € |a, b];

(ii) there exists an open set A C R® such that n, € C*([a,b] x A), y(t) C A
for any t € [a,b], and rank(Van) =2 for any t € [a,b], x € Y(t);

(i1i) the following system of equalities holds on ~(t):

ovn,

v (t,z) — AVn,(t,z) = 0, t € [a,b], x € (). (2.5)



The properties of 7, listed at the beginning of this section, together with
oV,

the observation that — represents the projection of the velocity onto the
normal space (see [4]), motivates (iii) of Definition 2.2. Short time existence
for curvature flow of smooth initial closed space curves is a consequence of a
general theorem proved in [25].

Remark 2.3. The families F and G are translation invariant in space, that
is, if f € F (resp. Y€ G) then f+y € F (resp. v +y € G) for any y € R3.
Using this fact one can check that, if A CR? is an open set, then M(A, F)(t)
and M(A, G)(t), which will be defined in (2.6), are open sets for any t € I.

Let us recall the definitions of geometric barrier and inner barrier in the sense
of De Giorgi [19], [20], [12].

Definition 2.4. A map ¢ is a barrier with respect to F if and only if ¢
maps a closed interval L C I into P(R®) and the following property holds: if
f: [a,b] €I — P(R3) belongs to F and f(a) C ¢(a), then f(b) C &(b).
Given such a map ¢, we shall write ¢ € B(F,L). When L = I, we simply
write ¢ € B(F).

A function v is an inner barrier with respect to F< if and only if ¢ maps
a closed interval set L C I into P(R®) and the following property holds: if
f:la,b] € L — P(R3) belongs to F< and (a) C int(f(a)) then ¢(b) C
int(f(b)). Given such a map 1, we shall write ¢ € B(FS,L). When L =1,
we simply write 1 € B(F<).

A barrier ¢ € B(F) corresponds to a weak notion of a set whose boundary d¢
expands with normal velocity greater than or equal to F'(-,-).

Definition 2.5. Let t; € R and let E C R® be a given set. The minimal
barrier M(E, F, 1) : [to, +oo[— P(R?), with origin at E C R" (at time ty), is
defined as

M(E,F,t0)(0) = ({6(0) : ¢ € B(F, [t0,+o0])6(ts) 2 B} (26)
The maximal inner barrier N'(E, F<, to) : [to, +00[— P(R?) is defined by
N(EB, 7= 1) (1) == J{v ) : v € BIFS, [to, +o0]). t(t) € E}.
If p > 0, we set Ef := {z € R : dist(z, ) < p}, and
M (B, F ty) = [V M(ES, Fito),  N*(E,F=,to) == | N(ES, F=<, 1)

p>0 p>0

2.7)



Notice that M*(E,F, ty) € B(F,[to,+oc[); moreover, one can prove that
N*(E, F< 1) € B(FS, [ty, +00]), see [12].

We define B(G, L), M(E,G,ty), M*(E,G,ty) by replacing F with G in Defi-
nitions 2.4, 2.5 and in (2.7), respectively.

In the following, to simplify the notation, we often omit the explicit dependence
on ty of all barriers (and hence on [ty, +00[); we always omit this dependence
when £, = 0.

Remark 2.6. The following observations hold.

(1) If E is contained in a affine subspace V, then M*(E,F) and N*(E, F<)
are contained in V.

(ii) M(E,F), N(E,F<), M*(E,F) and N*(E,F<) verify the semigroup
property in time, i.e.,

M(E, F t:)(ts) = M(M(E, F,t1)(t2), F,12) (ts),  to <t1 <ta <t
and similarly for N(E,F<), M*(E,F), N*(E,F<), see [12].

(iii) M*(-, F) extends the family G, that is, if v : [a,b] — R® belongs to G,
then M*(y(a), F)(t) = v(t) for any t € [a,b], see [4].

The next theorem shows (i) the connection between the minimal barrier and
the maximal inner barrier (see [12]), and (ii) the connection between the min-
imal barriers and the viscosity solutions (see [11]).

Theorem 2.7. For any bounded set E C R" there holds
M*(E,F) =N*(E,F=) =V (E), (2.8)

where V(E) denotes the zero sublevel set of the continuous viscosity solution
0
of 8_1: + F(Vu, V*u) = 0, in the sense of [16], having min(dg(x),1) as initial

datum.
We now define the fattening phenomenon.

Definition 2.8. Let E C R? be a set with empty interior. We say that E
develops a-dimensional fattening, o € |1, 3], if, for some t; > t, there holds

e (M*(E, 7,9 (t)) =0 fortelit], (2.9)

H* (M*(E, F, f)(t)) >0 for some t € |t;,+o0] (2.10)

where H* denotes the a-dimensional Hausdorff measure in R3.



References concerning examples of fattening for mean curvature flow in codi-
mension one have been listed in the Introduction; in higher codimension, we
recall the following observation, which is proved in [12].

Remark 2.9. In R3, the union of the three coordinate azes (istantly) develops
three-dimensional fattening. The same argument applies to show that if the set
E is the union of n lines in R™, meeting at a given point, and not contained
in an affine hyperplane, then E (istantly) develops n-dimensional fattening.

3 Preliminary lemmas

In this section we give some preliminary results needed to prove Theorem 4.1.
The following lemma shows that, if 7y is a closed space curve smoothly evolving
by curvature, then the boundaries of small tubular neighbourhoods of 7(t) are
flowing surfaces verifying (2.4).

Lemma 3.1. Let v : [a,b0] C I — P(R®), v € G and choose 0 > 0 such
that m, is smooth on Q := {(t,z) : t € [a,0],n,(t,x) < 0®}. Then the map
f:]a,b] = P(R?) defined by f(t) := {z € R® : dist(z,v(t)) < o} belongs to F.
Hence if ¢ : I — P(R®) is a map such that ¢(t) is an open set for any t € I,
then

¢ € B(F)= ¢ € B(G). (3.1)
It follows that, if E C R®, then M*(E,F) > M*(E, Q).
Proof. See [4, Theorem 3.8 and Remark 6.2]. o

Actually there holds M*(E,F) = M*(E,G), see [13]; we will not need this
more refined result in the sequel.

The next lemma concerns an immersed closed space curve smoothly evolving
by curvature with the exception of a single point which belongs to the curve
for all times and remains fixed.

Lemma 3.2. Let G : [0,T[— P(R®) be a time dependent family of closed
immersed curves verifying the following properties:

(i) there exists z € R® such that z € G(t) for any t € [0,T;

(i) G(t) \ {z} smoothly evolves by curvature for any t € [0, T, in the sense
that, for any t € [0,T], each point of G(t) \ {2} has a neighbourhood
where ng is smooth and the system in (2.5) holds at that point;

(1ii) for any open ball B such that z € OB, there holds BN G(t) # 0 for any
t e 0,7

Then
G € B(F<,[0,T)). (3.2)



Roughly speaking, condition (iii) means that, around z, the evolving curves
are not contained in a half space for strictly positive times. Notice that we do
not assign any kinematic condition at the point z (also, at z the curves are not
necessarily smooth).

Proof. Let f : [a,b] C |0, T[—) P(R3) f e F=, int(f(a)) 2 G(a). We
have to prove that int (f b)) 2 G(b). Let 6 : [a,b] — [0,+oc[ be defined as
§(t) := dist(0f(¢), G(t)), t € [a, b] To prove the lemma it is enough to show
that ¢ is nondecreasing on [a, b]; as 0 is continuous, it is sufficient to prove that
d is nondecreasing on |a, b[.

Fix ¢t € ]a,b] and choose z € G(t), y € O0f(t) such that 6(t) = |z — y|.
Assumption (4i7) implies that x € G(t) \ {z}, since the open ball of radius
|z —y| and centered at y must intersect G(t). Hence ¢ is smooth in a suitable
neighbourhood of (¢,z). Let us show that

od;
ot

BVnG
(recall that — adf ( ¥) s the expanding velocity of f(t) at y, and —BZZG (t,z) is
the projection of the velocity of G(t) at = onto the normal space).
Let A(¢,y) be the smallest eigenvalue of V?d;(t,y) corresponding to an eigen-
vector orthogonal to Vd;(t,y). Since f € F=, we have
ody
ot
We claim now that, by the choice of x and y, there holds

At,y) < (VAng(t, ), Vdy(t,y)). (3.4)

Indeed, for any e € |0, |z — y|[ we have that, in a suitable local orthonormal
basis of R®, the matrix V2dg(t,y) is diagonal, and precisely by (2.2)

(t,y) < At y).

2 _ o2 —di ~(y) :
Vidgs (ty) = Vidg(t,y) = diag (1 +da(t, y)s(y) da(t,y)’ 0> ’

where d+ (t, 2) = dist(z, G(t)F) —dist(z, R*\ G(t)[) = dg(t, 2) —¢, and £(y) is
the curvature of G(t) at z along Vd;(t,y). As G(t) C f(t) for any € € ]0, |z —
y|[ and dist(G(¢)F,R® \ f(t)) = |z — y| — €, we have

V2dg(t,y) < Vg (t, me()),

where 7 (x) := x 4+ eVdg(t,y). Letting e — 0 we get (3.4).
Since by hypothesis (i7) we have VAng(t,-) = 6%;7@ (t,-) on G(t)\{z}, inequal-
S(t+7)—6(1)

ity (3.3) follows from (3.4). Using (3.3) one can check that lim (1)nf
T— T

> 0, which in turn implies that § is nondecreasing on |a, b[. o



Lemma 3.3. Let v(0) C R? be a bounded planar curve with endpoints in p, g,
whose trace is the graph of a Lipschitz continuous function. Then y(0) admits
a smooth Dirichlet evolution y(t) by curvature, with fized extremes in p, q, for
any t € 10, +o0l.

Proof. See [22]. 0

Lemma 3.4. Let P,QQ € R®, and let v(0) be a given Lipschitz continuous
embedded curve with endpoints in P, Q). Assume that, fort € 10,T[, v(t) is a
smooth Dirichlet evolution by curvature, with fized extremes in P, @), having
v(0) as initial datum. Let E be a subset of R® such that

E 2 ~(0) and P,Q € M*(E,F)(t) foranytel[0,T].

Then
M (E,F)(t) 2~(@)  for anyt € [0,T].

Proof. 1t is enough to show that the map t € [0, T[— ¢(t) :=~(t) UM*(E, F)(t)
belongs to [57(.7:5, [0, 7). Indeed by Definition 2.5 and the first equality in (2.8)
this fact would imply ¢ C N (E,F<) C M*(E, F) which entails the result.
We now prove the claim 1 € g(ff, [0, T7).

Let f : [a,b] C [0,T[— P(R®), f € F=, ¢(a) C int(f(a)); we have to
show that ¢(b) C int(f(b)). Let 0 : [a,b] — [0,400] be defined as §(t) :=
dist(Of (t),%(t)); it will be enough to show that 6(¢) > d(a) for any ¢ €
[a,b]. As the family F is translation invariant in space, the distance from f
to M*(E,F) is nondecreasing in time, so that, for any £ € M*(E, F)(t) and
t € [a,b], we have

dist (¢, 0f (t)) > dist(M*(E, F)(t), 0f (1)) (3.5)
> dist(M*(E, F)(a),0f (a)) > 6(a) >0,  t€[a,b] '
Assume now by contradiction that
3(t) < d(a) for some ¢ € |a, b)]. (3.6)

Choose x € 9(t) and y € df(t) such that §(¢) = |z — y|. From (3.5) it follows
that = € y(t) \ {P, @}. Then, reasoning as in the proof of Lemma 3.2, we get

i inf S(t+T1)—0(2)

T—=0t T

> 0.

Hence, for any s € ]a, b] such that 6(s) < 6(a) there holds lim inf 2F0=0¢) >

70t T

which implies d(s) > d(a) on ]a, b], contradicting (3.6). O



4 The example

The next theorem illustrates the example of the two linked circles.

Theorem 4.1. Let 0 < ¢ < R and let E C R? be the union of the two disjoint
linked circles E_, E,

E:=F_UE,,
E_:= {(0,29,73) : (z2+¢)*+ 23 =R}
Ey = {(z1,2,0) : z]+ (22 —¢)* = R*}.
Then E develops 3-dimensional fattening at finite time, i.e.,
H}(M*(E, F)(t)) >0,
for t >t arbitrarily close to a certain t > 0.

Proof. Denote by E_(t) (resp. E,(t)) the smooth evolution by curvature of E_
(resp. of E.), for t € [0,t![, where t! is the extinction time, and let 0 < # < ¢f
be the collision time of the two evolving circles. We also set T := t' —*.

By (iii) of Remark 2.6 we have

M (E,F)t)=E_ () UE.(), te[0,i].

It is easy to prove that M*(E, F)(t) = E_(t) U E,(t). Clearly, E_(f) U E (%)
is the union of the two circles centered at (0, —c¢,0) and (0, ¢, 0), of radius ¢,
and lying respectively in the (zs,z3)-plane and in the (z1,z9)-plane.

For notational simplicity, we set

M(t) := M*(E_(T) UEL (1), F,0)(t), t>T1.

Observe that, by the semigroup property of M* (see (ii) of Remark 2.6) there
holds
M(t) = M*(E, F)(¢), > (4.1)

t
(recall that by M*(-, F)(t) we mean M*(-,F,0)(t)). Therefore, in order to
prove the theorem we need to show that

H?(M(t)) >0, (4.2)
for times ¢ > ¢ arbitrarily close to .

Step 1. Construction of the immersed evolving curve y(¢) in the (x1, x2)-plane.

Let v(0) be the curve, lying in the (z1,x;)-plane, whose trace (y(0)) is the
union of the two circles y~(0), v+ (0) of radius ¢, tangent at the origin,

77 (0) = {(z1,22) 1 21+ (@2+0)" = ¢}, 77 (0) = {(21,22) : 21 +(22— )" =’}



As v(0) is an immersed curve of class C™', there exists the evolution by cur-
vature starting from ~(0), in the sense of smooth planar immersed curves
(see [5], [6]), which we shall denote by (¢). Such an evolution is smooth
for t € 10, 7], and has the shape of a figure eight curve; more precisely, by
symmetry, its trace (y(¢)) is the union of two parts (y~(t)), (y*(¢)), where
(v () N (v*(t)) = {(0,0)}, and (v (¢)) (resp. (y*(¢))) lies in the half plane
{(z1,22) : xo <0} (vesp. {(z1,22) : 2 > 0}). Notice that, at the origin, y(t)
has a transverse intersection, i.e., the two branches of v(¢) meet with an angle
less than 7 (this is a consequence of the strong maximum principle governing
the curvature equation, see for instance [26]). Notice also that y~(¢) (resp.
v*(t)) coincides with the Dirichlet curvature flow of 4~(0) (resp. of v*(0))
keeping the origin as fixed point of the evolution.

Step 2. Definition of the evolving space curves G(t).

For any ¢ € [0,7] denote by G(t) the space curve whose trace is r(y~(¢)) U
(v*(t)), where r(y~(t)) is the rotation of (v (¢)) around its symmetry axis
xo of m/2; G(t) is then simply constructed by the figure eight curve ~(¢) by
rotating one of its two parts by 7/2 around the zo-axis (see Figure 1). Clearly,
(G(t)) contains the origin of R® for any ¢ € [0, T7[.

Notice that M(t) = G(0); moreover, G(t) satisfies all assumptions of Lemma
3.2 (take z as the origin of R®), hence we have G € B(F<,[0,T[) by (3.2).

Therefore, since by the semigroup property of M* and (2.8) we have M (t) =
M (M (1), F, 1) (t) = N*(M(Z), F<,T)(t) for t > T, we deduce

ME+t)=(YMM@,),FI){E+t) 2G(t) foranyte[0,T[. (4.3)

p>0

Step 3. Developping of two dimensional fattening.

Given o € [0,T[, let us denote by «; (t) (resp. «f(t)), for t € [o,T][, the
evolution by curvature starting from the Lipschitz continuous planar curve
whose trace is (7~ (o)) (resp. (v7(0))).

The evolutions a(t) belong to the family G just after their starting time o,
i.e., for t € |o, T[; therefore if ¢ € B(G),

o (o) Cint(¢(0)) = a5 (t) C ¢(t), fort € [0, T (4.4)

(here we use well-known semicontinuity properties in time of the barriers, see
[12]). Moreover, recalling that M (M (%)}, F,)(Z + t) is open for any p > 0
and any ¢ > 0 (see Remark 2.3), using (3.1) we deduce that M (M (f)}, F,1) €
B(G). Hence, by (4.3) and (4.4), for any p > 0 we find

MM@H,FHE+E) Day(t)Uat(t), tel0,T, oe0,4, (4.5)
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Figure 1: The space curve G(t) and the two dimensional fat region

which implies

ME+) 2 | (o) U of ), telo,Tl. (4.6)

0<o<t

Notice that the right hand side of (4.6) is the union of two planar sets having
the shape of “rings” (see Figure 1): the first set lies in the (z9, z3)-plane and
is bounded by G(t) and E_(t) = oy (t); the other set lies in the (x1,x2)-plane
and is bounded by G(t) and E(t) = oy (t). Thus, by (4.6),

HE(M(T+1)) >0, t 10,7,

hence E develops 2-dimensional fattening for times arbitrarily close to ¢, and
the fat region lies partly in the (z9, z3)-plane and partly in the (x1, z2)-plane.
Step 4. Conclusion of the proof of (4.2).

Thanks to step 3, for any %1, ty sufficiently small with 0 < ¢; < t, < T, there
exists [ > 0 such that the set

K:={(0,22,235): =l < x5 <0, |z3| <~} U{($1,$2,0)3 21| < 29,0 <y <1}

is contained in M (f + t) for any t € [t1,t2]. The set K is the union of two
triangles, having a common vertex at the origin O of R?; the first one, which



we denote by O/P\IPQ, lies in the (z9,z3)-plane, and the second one, denoted
by mg, lies in the (z1, xo)-plane (see Figure 1).

Let P be a point belonging to the segment P, P,. Lemma 3.3 implies that there
exists a planar Dirichlet evolution (contained in the plane OPQ);) starting
from the curve which is the union of the two segments PO and OQ);, with
fixed extremes in P and (. Since P,Q; € M(t + t) for t € [t1, 2], applying
Lemma 3.4 (with @, in place of @), and starting the evolution of the broken
line PO U OQ; at any time t € [t1, 5], we obtain that there exist p > 0 and
t € Jt1,tof such that M(% + ) contains the planar set B,(O) N O/P\Ql

Since p and t can be chosen independently of P € P P,, letting P vary in
Py P,, we obtain that M (f+1) contains the set B,(Q)NT (O, Py, Py, 1), where
T(0O, Py, P,,Q;) denotes the tethraedron having vertices in O, Py, Py, Q1. This
concludes the proof. o

Remark 4.2. With an argument similar to the one given in the proof of The-
orem 4.1 we can show that three dimensional fattening occurs if the initial set
E consists of the disjoint union of two planar convex closed linked curves, if
neither one vanishes at the first collision time.

Notice that our proof is not appliable in the case of two closed planar linked
curves, due to the fact that assumption (iii) of Lemma 3.2 is not, in general,
satisfied.

We conclude the paper pointing out some open problems, which should deserve
further investigation.

Problem. We expect that three dimensional fattening occurs if the initial
set F/ consists of the union of two disjoint closed smooth curves, which are
close in the C2-norm to the set FE of Theorem 4.1. If this is the case, then the
singularity is stable, with respect to small perturbations in the C2-norm of the
initial datum FE.

Problem. “Almost every” curve in R”, with n > 4, do not develop fattening;
this is a particular case of a conjecture given by De Giorgi.

Problem. If a smooth embedded curve in R?® develops fattening under curva-
ture flow, then the fattening is necessarily three dimensional.
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